Let (M,g ) be a compact immersed hypersurface of (Rn+1,<,>) , λ1 the first nonzero eigenvalue, α the mean curvature, ρ the support function, A the shape operator, vol (M ) the volume of M, and S the scalar curvature of M. In this paper, we established some eigenvalue inequalities and proved the above. 1) 1 2 2 2 2 M M A dv dv n ∫ ρ ≥ ∫ α ρ , 2) ( ) 2 2 1 2 M 1 M dv S dv n n α ρ ≥ ρ ∫ − ∫ , 3) If the scalar curvature S and the first nonzero eigenvalue λ1 satisfy S = λ1 (n −1) , then [ ] 2 1 2 0 M dv n ∫ α − λ ρ ≥ , 4) Suppose that the Ricci curvature of M is bounded below by a positive constant k. Thus ( ) 2 2 2 ( ) M 1 M dv k gradf dv vol M n n α ρ ≥ + ∫ − ∫ , 5) Suppose that the Ricci curvature is bounded and the scalar curvature satisfy S = λ1 (n −1) and L=k- 2S>0 is a constant. Thus ( ) 1 2 2 2 2 . M M vol M k dv S dv L L ≥ − λ ∫ ψ αρ − ∫ α ρ
BEKTAS, M., & ERGUT, M. (2006). COMPACT HYPERSURFACES IN EUCLIDEAN SPACE AND SOME INEQUALITIES. Iranian Journal of Science, 30(3), 285-289. doi: 10.22099/ijsts.2006.2764
MLA
M. BEKTAS; M. ERGUT. "COMPACT HYPERSURFACES IN EUCLIDEAN SPACE AND SOME INEQUALITIES", Iranian Journal of Science, 30, 3, 2006, 285-289. doi: 10.22099/ijsts.2006.2764
HARVARD
BEKTAS, M., ERGUT, M. (2006). 'COMPACT HYPERSURFACES IN EUCLIDEAN SPACE AND SOME INEQUALITIES', Iranian Journal of Science, 30(3), pp. 285-289. doi: 10.22099/ijsts.2006.2764
VANCOUVER
BEKTAS, M., ERGUT, M. COMPACT HYPERSURFACES IN EUCLIDEAN SPACE AND SOME INEQUALITIES. Iranian Journal of Science, 2006; 30(3): 285-289. doi: 10.22099/ijsts.2006.2764