In this paper we demonstrate the existence of a set of polynomials Pi , 1 i n , which are positive semi-definite on an interval [a , b] and satisfy, partially, the conditions of polynomials found in the Lagrange interpolation process. In other words, if a a1 an b is a given finite sequence of real numbers, then Pi (a j ) ij (ij is the Kronecker delta symbol ) ; moreover, the sum of Pi 's is identically 1.
ZEKAVAT, S. M. M. and KHOSHDEL, S. (2008). POSITIVE LAGRANGE POLYNOMIALS. Iranian Journal of Science, 32(3), 191-195. doi: 10.22099/ijsts.2008.2286
MLA
ZEKAVAT, S. M. M. , and KHOSHDEL, S. . "POSITIVE LAGRANGE POLYNOMIALS", Iranian Journal of Science, 32, 3, 2008, 191-195. doi: 10.22099/ijsts.2008.2286
HARVARD
ZEKAVAT, S. M. M., KHOSHDEL, S. (2008). 'POSITIVE LAGRANGE POLYNOMIALS', Iranian Journal of Science, 32(3), pp. 191-195. doi: 10.22099/ijsts.2008.2286
CHICAGO
S. M. M. ZEKAVAT and S. KHOSHDEL, "POSITIVE LAGRANGE POLYNOMIALS," Iranian Journal of Science, 32 3 (2008): 191-195, doi: 10.22099/ijsts.2008.2286
VANCOUVER
ZEKAVAT, S. M. M., KHOSHDEL, S. POSITIVE LAGRANGE POLYNOMIALS. Iranian Journal of Science, 2008; 32(3): 191-195. doi: 10.22099/ijsts.2008.2286