The first extended zeroth-order connectivity index of a graph
G is defined as 0 1/2
1
( )
( ) ,
v
v V G
G D
where
V
(G) is the vertex set of G, and v D is the sum of degrees of neighbors of vertex v in G. We give a sharp
lower bound for the first extended zeroth-order connectivity index of trees with given numbers of vertices and
pendant vertices, and characterize the extremal trees. We also determine the
n-vertex trees with the first three
smallest first extended zeroth-order connectivity indices.
Zhou, B., & Wang, S. (2014). On the first extended zeroth-order connectivity index of trees. Iranian Journal of Science, 38(3), 213-219. doi: 10.22099/ijsts.2014.2263
MLA
B. Zhou; S. Wang. "On the first extended zeroth-order connectivity index of trees", Iranian Journal of Science, 38, 3, 2014, 213-219. doi: 10.22099/ijsts.2014.2263
HARVARD
Zhou, B., Wang, S. (2014). 'On the first extended zeroth-order connectivity index of trees', Iranian Journal of Science, 38(3), pp. 213-219. doi: 10.22099/ijsts.2014.2263
VANCOUVER
Zhou, B., Wang, S. On the first extended zeroth-order connectivity index of trees. Iranian Journal of Science, 2014; 38(3): 213-219. doi: 10.22099/ijsts.2014.2263