Let C be a field of subsets of a set I. Also, let 1 i i be a non-decreasing positive sequence of real numbers such that 1, 1 0 1 i and 11 i i . In this paper we prove that BV of all the games of -bounded variation on C is a non-separable and norm dual Banach space of the space of simple games on C . We use this fact to establish the existence of a linear mapping T from BV onto F A (finitely additive set functions) which is positive, efficient and satisfies a weak form of symmetry, namely invariance under a semigroup of automorphisms of I,C.
AHMADI LEDARI, A., & HORMOZI, M. (2010). BV AS A NON SEPARABLE DUAL SPACE. Iranian Journal of Science, 34(3), 237-244. doi: 10.22099/ijsts.2010.2191
MLA
A. AHMADI LEDARI; M. HORMOZI. "BV AS A NON SEPARABLE DUAL SPACE", Iranian Journal of Science, 34, 3, 2010, 237-244. doi: 10.22099/ijsts.2010.2191
HARVARD
AHMADI LEDARI, A., HORMOZI, M. (2010). 'BV AS A NON SEPARABLE DUAL SPACE', Iranian Journal of Science, 34(3), pp. 237-244. doi: 10.22099/ijsts.2010.2191
VANCOUVER
AHMADI LEDARI, A., HORMOZI, M. BV AS A NON SEPARABLE DUAL SPACE. Iranian Journal of Science, 2010; 34(3): 237-244. doi: 10.22099/ijsts.2010.2191