Dually flat Finsler metrics form a special and valuable class of Finsler metrics in Finsler information geometry, which play a very important role in studying flat Finsler information structure. In this paper, we prove that every locally dually flat generalized Randers metric with isotropic S-curvature is locally Minkowskian.
Tayebi, A., Peyghan, E., & Sadeghi, H. (2014). On a class of locally dually flat Finsler metrics with isotropic S-curvature. Iranian Journal of Science, 36(Issue 3.1), 377-382. doi: 10.22099/ijsts.2014.2090
MLA
A. Tayebi; E. Peyghan; H. Sadeghi. "On a class of locally dually flat Finsler metrics with isotropic S-curvature", Iranian Journal of Science, 36, Issue 3.1, 2014, 377-382. doi: 10.22099/ijsts.2014.2090
HARVARD
Tayebi, A., Peyghan, E., Sadeghi, H. (2014). 'On a class of locally dually flat Finsler metrics with isotropic S-curvature', Iranian Journal of Science, 36(Issue 3.1), pp. 377-382. doi: 10.22099/ijsts.2014.2090
VANCOUVER
Tayebi, A., Peyghan, E., Sadeghi, H. On a class of locally dually flat Finsler metrics with isotropic S-curvature. Iranian Journal of Science, 2014; 36(Issue 3.1): 377-382. doi: 10.22099/ijsts.2014.2090