A computational method for numerical solution of a nonlinear Volterra and Fredholm integro-differential equations of fractional order based on Chebyshev cardinal functions is introduced. The Chebyshev cardinal operational matrix of fractional derivative is derived and used to transform the main equation to a system of algebraic equations. Some examples are included to demonstrate the validity and applicability of the technique.
Irandoust-pakchin, S., Kheiri, H., & Abdi-mazraeh, S. (2013). Chebyshev cardinal functions: An effective tool for solving nonlinear Volterra and Fredholm integro-differential equations of fractional order. Iranian Journal of Science, 37(1), 53-62. doi: 10.22099/ijsts.2013.1537
MLA
S. Irandoust-pakchin; H. Kheiri; S. Abdi-mazraeh. "Chebyshev cardinal functions: An effective tool for solving nonlinear Volterra and Fredholm integro-differential equations of fractional order", Iranian Journal of Science, 37, 1, 2013, 53-62. doi: 10.22099/ijsts.2013.1537
HARVARD
Irandoust-pakchin, S., Kheiri, H., Abdi-mazraeh, S. (2013). 'Chebyshev cardinal functions: An effective tool for solving nonlinear Volterra and Fredholm integro-differential equations of fractional order', Iranian Journal of Science, 37(1), pp. 53-62. doi: 10.22099/ijsts.2013.1537
VANCOUVER
Irandoust-pakchin, S., Kheiri, H., Abdi-mazraeh, S. Chebyshev cardinal functions: An effective tool for solving nonlinear Volterra and Fredholm integro-differential equations of fractional order. Iranian Journal of Science, 2013; 37(1): 53-62. doi: 10.22099/ijsts.2013.1537