Abstract. R.Hamilton defined Ricci flow as evolution of Rie-mannian metrics satisfying a weak parabolic partial differential equation. We have considered and studied Ricci flow as an inte- gral curve of a certain vector field in the manifold of Riemannian metrics. In this paper we study properties of this integral curve and find some results on the stability of the solution.
Ghahremani-Gol, H. , Razavi, A. and Didehvar, F. (2015). On Intrinsic Properties of Ricci Flow Curve. Iranian Journal of Science, (), -. doi: 10.22099/ijsts.2015.3222
MLA
Ghahremani-Gol, H. , , Razavi, A. , and Didehvar, F. . "On Intrinsic Properties of Ricci Flow Curve", Iranian Journal of Science, , , 2015, -. doi: 10.22099/ijsts.2015.3222
HARVARD
Ghahremani-Gol, H., Razavi, A., Didehvar, F. (2015). 'On Intrinsic Properties of Ricci Flow Curve', Iranian Journal of Science, (), pp. -. doi: 10.22099/ijsts.2015.3222
CHICAGO
H. Ghahremani-Gol , A. Razavi and F. Didehvar, "On Intrinsic Properties of Ricci Flow Curve," Iranian Journal of Science, (2015): -, doi: 10.22099/ijsts.2015.3222
VANCOUVER
Ghahremani-Gol, H., Razavi, A., Didehvar, F. On Intrinsic Properties of Ricci Flow Curve. Iranian Journal of Science, 2015; (): -. doi: 10.22099/ijsts.2015.3222