In this paper , the quintic B-spline collocation scheme is employed to approximate numerical solution of the KdV-like Rosenau equation . This scheme is based on the Crank-Nicolson formulation for time integration and quintic B-spline functions for space integration . The unconditional stability of the present method is proved using Von- Neumann approach . Since we do not know the exact solution of the nonlinear KdV-like Rosenau equation , a comparison between the numerical solutions on a coarse mesh and those on a refine mesh is made to show the efficiency of discussed method.
Abazari, R. and Abazari, R. (2015). Numerical solution of the Rosenau equation using quintic collocation B-spline method. Iranian Journal of Science, 39(3), 281-288. doi: 10.22099/ijsts.2015.3152
MLA
Abazari, R. , and Abazari, R. . "Numerical solution of the Rosenau equation using quintic collocation B-spline method", Iranian Journal of Science, 39, 3, 2015, 281-288. doi: 10.22099/ijsts.2015.3152
HARVARD
Abazari, R., Abazari, R. (2015). 'Numerical solution of the Rosenau equation using quintic collocation B-spline method', Iranian Journal of Science, 39(3), pp. 281-288. doi: 10.22099/ijsts.2015.3152
CHICAGO
R. Abazari and R. Abazari, "Numerical solution of the Rosenau equation using quintic collocation B-spline method," Iranian Journal of Science, 39 3 (2015): 281-288, doi: 10.22099/ijsts.2015.3152
VANCOUVER
Abazari, R., Abazari, R. Numerical solution of the Rosenau equation using quintic collocation B-spline method. Iranian Journal of Science, 2015; 39(3): 281-288. doi: 10.22099/ijsts.2015.3152