A projective parameter of a geodesic as solution of certain ODE is defined to be a parameter which is invariant under projective change of metric. Using projective parameter and Poincaré metric, an intrinsic projectively invariant pseudo-distance can be constructed. In the present work, solutions of the above ODE are characterized with respect to the sign of parallel Ricci tensor on a Finsler space. Moreover, the Ricci tensor is used to define a Finsler structure and it is shown that, the pseudo-distance is trivial on complete Finsler spaces of positive semi-definite Ricci tensor and it is a distance on a Finsler space of parallel negative definite Ricci tensor.
Bidabad, B., & Sepasi, M. (2015). On the characteristic of projectively invariant Pseudo-distance on Finsler spaces. Iranian Journal of Science, 39(2), 233-238. doi: 10.22099/ijsts.2015.3023
MLA
B. Bidabad; M. Sepasi. "On the characteristic of projectively invariant Pseudo-distance on Finsler spaces", Iranian Journal of Science, 39, 2, 2015, 233-238. doi: 10.22099/ijsts.2015.3023
HARVARD
Bidabad, B., Sepasi, M. (2015). 'On the characteristic of projectively invariant Pseudo-distance on Finsler spaces', Iranian Journal of Science, 39(2), pp. 233-238. doi: 10.22099/ijsts.2015.3023
VANCOUVER
Bidabad, B., Sepasi, M. On the characteristic of projectively invariant Pseudo-distance on Finsler spaces. Iranian Journal of Science, 2015; 39(2): 233-238. doi: 10.22099/ijsts.2015.3023