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Abstract – In this paper we initiate the study of real group algebras and investigate some of its aspects. 
Let 1L )(G  be a group algebra of a locally compact group GGG →:,τ  be a group homeomorphism 
such that 12 == τοττ , the identity map, and }:)({),( ffGLfGL pp =∈= οττ )1( ≥p . In this 
paper, among other results, we clarify the structure of  ),( τGLp  and characterize amenability of 

),(1 τGL  and identify its multipliers. 
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1. INTRODUCTION 
 

In 1965, Ingelstam [1] introduced the theory of real Banach algebras. The real function algebra theory 
was developed further by Kulkarni and Limaye [2]. In their excellent monograph, “Real function 
algebras”, Kulkarni and Limaye present interesting aspects of the theory of ),( τXC . We refer to [3] 
for our notations. 

Let G  be a locally compact group. An automorphism GG →:τ  is called a topological group 
involution on G  if τ  is a homeomorphism and xx =))((ττ  for all Gx∈ . For example, in group 

zzC =+ )(),( τ  and in 1)(},.),0{\( −= xxR τ  are topological group involutions. Note that we do not 
assume that )()()( xyxy τττ = . 

Let :)({),( GCfGC oo ∈=τ τfo },)()( Gxxfx ∈= , and =),( τGCc { :)(GCf c∈  
f o τ )()( xfx = , }Gx∈  it is clear that, if τ  is the identity map on G , then 

)(),( GCGC r
oo =τ , )(),( GCGC r

cc =τ . If ∞≤≤ p1 , we define f o τ (x)= )(xf , for all }Gx∈ . 
Clearly, )(),( GLGL pp ⊆τ and if τ is the identity map, ),( τGLp consists of real functions.  
 

2. THE STRUCTURE OF ),(1 τGL AND ),( τGM  
 
Lemma 2. 1. Let G  be a locally compact group and τ be a topological group involution on G . If 

→)(: GCcσ )(GCc  is defined by ,)(: τσ off =  then (i) σ  is an algebra involution on 
)(GCc and |)({),( GCfGC cc ∈=τ =)( fσ },f  

 
(ii) ),(),()( ττ GiCGCGC ccc ⊕= . 
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Proof. (i) We must show that whenever )(GCf c∈ , then )(GCof c∈τ . To do this, we have 
supp ) supp(]}0{)([()( 11 fofclof −− ⊆′= τττ . 
It follows that supp )( τof  is compact, i.e., )()( GCof c∈τ . Hence, supp )( τof  is compact, i.e., 

)(GCof c∈τ . The rest of (i) is clear. 
(ii) Clearly, 

i
ffifff

2
))((

2
)( σσ −
+

+
= . Since i=2σ , (= identity) =

+ )
2

))((( ff σσ                              

2
)( ff σ+  and 

i
ff

i
ff

2
)()

2
)(( σσσ −

=
− . It follows that ihgf +=  where ),(, τGChg c∈ .  

Now if 11 ihgihgf +=+= , then =g
2

)( ff σ+ ,i.e., 1gg =  and thus 1hh = . 
 
Note. By the same argument one can conclude that =)(0 GC ⊕),(0 τGC  ),(0 τGiC . In fact it is 
enough to show that )(0 GCof ∈τ  whenever )(0 GCf ∈ . Since )(0 GCf ∈ , for a given 0>ε , 
there is a compact set F in G  such that ε<|)(| xf  whenever Fx ′∈ . Clearly, )(1 F−τ  is compact, 
and if )(1 Fx −∉τ , then Fx ∉)(τ ,i.e., ετ <|)(| xof . Therefore, )(0 GCof ∈τ . 

Let )(GM  be the Banach space of all complex regular Borel measures onG . For each 
)(GM∈µ , we define τµµτ o= , then it is clear that )(GM∈τµ .  Also by Lebesgue dominated 

convergence theorem one can show that for every bounded Borel measurable function h  on G , 
 

                                                           ∫ ∫=G G
dhohd

  
)( µτµτ .                                                        (1) 

 
         Clearly, (1) is true when h  is a characteristic function; by linearity it holds when h  is a simple 
function; by continuity (1) holds when h  is integrable. 
 
Proposition 2. 2. Let }|)({),( µτµµτ =∈= oGMGM . Then ),( τGM  is a real Banach algebra 
with the convolution product ∫ ==∗ −

G
xdExE

 

1 )()()( µννµ ∫ −

G
ydEy

 

1 )()( νµ  )),(,( τνµ GM∈  
and ).,(),()( ττ GiMGMGM ⊕=  
 
Proof. Let ).,(, τνµ GM∈  Then 
              

∫∫ −− ==∗
GG

xdExxdExEo
 

1

 

1 )()))((()())(()()( µττνµτντνµ . 
 

                                             ∫ ∫ −− ==
G G

odExxdEx
  

11 )()()))((( τµνµτν                                         (2) 
 

)(Eνµ ∗=  
 
Therefore ),( τνµ GM∈∗ . The rest of the proof follows the same line as the proof of Lemma 2.1. 
Therefore, it is omitted. 
 
Remark. For a real linear space A , the real dual space of A , that is, the space of all real-valued 
continuous linear functional on A  will be denoted by ∗A . 
 
Proposition 2. 3. Every real-valued continuous functional φ  on ),(0 τGC  can be represented as 

∫= G
fdf

 
)( µφ , where µ  is the unique measure in ),( τGM  such that |||||||| µψ =  and vice versa. 

 
Proof. Let ),(0 τGCf ∈ . Then ihgf +=  where ),(, 0 τGChg ∈ . If we define 

)()()( higf φφψ += , then clearly ∗∈ )(0 GCψ  and so by the Riesz representation theorem ([3, 
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theorem (14.4)]), there exists a unique measure µ  in )(GM  such that 

∫ ∈=
G

GCffdf
 0 ))(()( µψ  and |||||||| µψ = . It follows that ∫= G

hdh
 

)( µφ  for every h  in 
),(0 τGC . Now, in order to prove that ),( τµ GM∈ , we have 

)()()()())(( fhigihgf ψφφψσψ =−=−= . Therefore,  
 

                                      ∫∫∫∫ ===
GGGG

ofddfdffd
    

)()( τµµσµσψ                                  (3) 
 

))(( 0 GCf ∈ . Thus, τµµ o= , i.e. ),( τµ GM∈ . Also, similar to the proof of [6, Theorem 3.2.1] we 
can show that  |||||||| µψ = . 

Conversely, let ),( τµ GM∈  and ∫ ∈=
G

GCffdf
 0 )),(()( τµφ . If ),(0 τGCf ∈ ,  then 

ff =)(σ . Hence, 
 

                             ∫∫∫ ====
GGG

dfodfdfff
   

)()()())(()( µτµσµσσφφ                              (4) 
 

∫∫ ===
GG

ffdofd
  

)(φµτµ . 
 
Thus )( fφ  is real.  
                            
  Theorem 2. 4. Let G  be a locally compact group with the left Haar measure λ  and τ  be a 
topological group involution on G . Then λτλ =o . 
 
Proof. It is easy to show that τλo is a positive measure on G . Also if B  is a Borel set, then 

))(())(())()(())(()( GxBoBBxxBxBo ∈==== τλτλττλτλτλ . Therefore, τλo is left 
invariant. So, there is a positive number c  such that )()( BcBo λτλ =  for every Borel set B . If U  
is an open set, then ))(())(( UcUo τλττλ = ,i.e., ))(()( UcU τλλ = which is equal to 

)(2 Uc λ . Therefore, for every open set U  we have )()( 2 UcU λλ = . So, 1=c . Hence, 
λτλ =o . 

For a locally compact group G  and the Haar measure λ  we defined 
).1}(|)({),( ∞≤≤=∈= pffoGLfGL pp ττ  Clearly ),(),(),( ττ GLGLGL ppp ⊆  is a real 

algebra and ).,(),()( ττ GiLGLGL ppp ⊕=  
 
Theorem 2. 5. (a) For ∞≤≤ p1 , ),( τGLp  is a real Banach space, and ),(2 τGL  is a real Hilbert 
space with an inner product, 
 
                                                                     ∫>=<

G
dggf

 
., λ                                                           (5) 

 
(b) For each .||||||||||||}||||,||max{||),,(, 1

pppp gfigfgfGLgf +≤+≤∈ τ  
(c) ),(),(1 ττ GLGL ∞∗ = . 
(d) ),(1 τGL  has a bounded approximate identity of norm 1. 
 
Proof. (a). Clearly, ),( τGLp is a real subspace of )(GLp . Let ),(, τGLgf p∈  then 

),(GLgf p∈∗  [4]. We will show that ),( τGLgf p∈∗ . In order to do this, by (2.4) and (1) we 
have 

 
)())(()())()((

 

1 ydxygyfxgf
G

λττ ∫ −=∗  
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                                             = )())))((()))(((
 

1 ydxygyf
G

λττττ∫ −                                             (6) 
  

                                                    = ∫ −

G
ydxygyf

 

1 )())(())(( λττ  
 

                                                       = ∫ −

G
yodxygyf

 

1 )()()( τλ  
 

                                               = ∫ ∗=−

G
xgfydxygyf

 

1 )()()()()( λ  
 

for every Gx∈ , hence ),( τGLgf p∈∗ . We now prove that ),( τGLp is complete. Let ∞
=1}{ nnf  be 

a Cauchy sequence in ),( τGLp . Since )(GLp is complete, there exists )(GLf p∈ such that 
0||||lim =−∞→ pnn ff . Now, there exists a subsequence of ∞

=1}{ nnf  as ∞
=1}{ kn k

f  such that 

)()(lim xfxf
knk =∞→

, λ -almost everywhere, and so ),()(lim))((lim))(( xfxfxfxf
kk nknk === ∞→∞→ ττ λ -

almost everywhere. Therefore, ),( τGLf p∈ . Hence ),( τGLp is a real Banach algebra and not a 
complex algebra. 

If ∫>=<
G

dgfgf
 

, λ  for every ),(, 2 τGLgf ∈ , then ><>=< gfgf ,, . Therefore 
),(2 τGL  is a real Hilbert space. 

(b) For ),(, 1 τGLgf ∈ we have pppp igfigfigff ||||)||)(||||)((||
2
1|||| +=−++≤ .  

Similarly, .|||||||| pp igfg +≤  
(c) We know that )()( *1 GLGL ∞≅ . Let )(1 GLf ∈ . So ihgf +=  where ),(, 1 τGLhg ∈ . 

Now, we define )()()( giff φφψ +=  where *1 ),( τφ GL∈ . It is clear that *1 )(GL∈ψ  and 
therefore, there exists a unique )(GLp ∞∈  such that ∫= G

ff
 

)(ψ ))(( 1 GLfpd ∈λ  . 
       Hence we have, 
                                          
                                         )()()()())(( fhigihgf ψφφψσψ =−=−= .                               (7) )(∗      
 
This implies that 
 

                     ∫G
f

 ∫ ∫∫ ===
G GG

fdpfopdfpd
   

)()( λτλσλ λτdop  ))(( 1 GLf ∈ .                  (8) 
 

Therefore, ppo =τ , i.e., ),( τGLp ∞∈ . Also, we have ∫= G
ff

 
)(φ λpd  for every 

),(1 τGLf ∈  and by )(∗ )( fφ  is real. Conversely, if RGL →),(: 1 τφ is defined by ∫= G
ff

 
)(φ  

where ),( τGLp ∞∈  and f  is an arbitrary function, then *1 ),( τφ GL∈  and the proof is complete. 

(d)  Let U  be any compact neighborhood of e  and )( αU  be the collection of all compact 

neighborhoods of e  in U , which is directed by a set inclusion βα ≤( if and only if )βα UU ⊇ . If 

we define 
)( α

α
α λ

χ
U

f U=  and 
))(()(

)(

α

α

α

τ
α τλ

τχ
λ
χ

α

U
o

U
g UU == , then, since τ  is a homeomorphism, }{ αf and 

}{ αg are bounded approximate identities of norm one for )(1 GL . If we define 
2

α
α

gf
e a += , then 

}{ αe  is a bounded approximate identity of norm one for )(1 GL ,  and also for ),(1 τGL  since 

),(1 τα GLe ∈ . 
 
Lemma 2. 6. For ∞≤≤ p1 , the linear space ),( τGCc  is a dense subspace of ),( τGLp . 
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Proof. Suppose that ),( τGLf p∈ , since )(GCc  is a dense subspace of )(GLp , there exists a 

sequence ∞
=1}{ nnf  in )(GCc  such that 0||||lim =−∞→ pnn ff . Let 

2
τoff

g nn
n

+
= .Then 

),( τGCg cn ∈  and  0||||lim||)
2

(||lim =−=
+

− ∞→∞→ pnnpnn fgoffg τ . 
 
Theorem 2. 7. For ),( τµ GM∈  and ),(2 τψ GL∈ , let ψµψµ ∗=T . Each µT  is a bounded 
operator on the real Hilbert space ),(2 τGL , and the mapping µµ T→  is a faithful  
−∗ representation  of  ),( τGM . Note that ),( τGM  is a −∗ Banach algebra. 

 
Proof. The linearity of µT  on ),(2 τGL  is obvious, and the boundedness of  µT , with |||||||| µµ ≤T , 
follows from [3,(20.12.ii)]. For ),(),( 21 ττψ GLGL ∩∈ , we have 
 
                                                             )()( ψνµψνµ ∗∗=∗∗                                                       (9) 
 
[2, (19.2.iv)]. Thus )()( ψψ νµνµ TTT =∗

 for all ),(),( 21 ττψ GLGL ∩∈ . Since ),(),(),( 21 τττ GLGLGCc ∩⊆ , 
by Lemma (2.7), ),(),( 21 ττ GLGL ∩ is dense in ),(2 τGL . It follows that νµνµ TTT =∗ . To show that 

0≠µT  if 0≠µ , consider an ),( τGCf c∈  such that ∫ ≠∗

G
df

 
0µ . Since =∗ )(efµ ∫ ≠∗

G
df

 
0µ  

and f∗µ  is continuous; thus fTµ is not a zero element of ),(2 τGL . Note that ∗f  is the involution 
of f . 
 

3. AMENABILITY AND WEAK AMENABILITY OF REAL GROUP ALGEBRAS 
 
In this section, we show that amenability of ),(1 τGL and )(1 GL  are equivalent. We shall use some 
notions of [1]. 
 
Definition 3. 1. A Banach algebra A over F is called amenable if for every Banach A-module X  
over F , }0{),(1 =∗XAH . 

Let A  be a Banach algebra over F , and X  be a Banach A-module over F . If RF = , we say 
that X  is a real Banach A-module for the real Banach algebra A . If  CF = , we say X  is a Banach 
A-module for the Banach algebra A .  
 
Definition 3. 2. Let X  be a real Banach space. Then ),( CXBLR , consists of all complex-valued 
continuous real-linear functional on X , which is a real Banach space, denoted by X ′  and called the 
complex dual of X . 
If A  is a real Banach algebra and X  is a real Banach A -module, then X ′  with the natural module 
action is also a real Banach A -module.  

Note that in this case X ′  is isomorphic to ∗∗ × XX . 
 
Lemma 3. 3.  Let G  be a locally compact group and let τ  be a topological involution on G . 
Suppose X is a real Banach ),(1 τGL -module. Then }0{)),,(( 11 =′XGLH τ  if and only if 

}0{)),,(( 11 =∗XGLH τ . 
 
Proof. It is easy to see that )),,(()),,(()),,(( 111111 ∗∗ ⊕=′ XGLiZXGLZXGLZ τττ . Now, let 

}0{)),,(( 11 =∗XGLH τ  and let ).),,(( 11 XGLZD ′∈ τ  There exist elements a  and b in ∗X  such 
that ba iD δδ += . If ibac += , then Xc ′∈  and cd δ= . Hence }0{)),,(( 11 =′XGLH τ . 



A. Ebadian / A. R. Medghalchi 
 

Iranian Journal of Science & Technology, Trans. A Volume 28, Number A2                                                   Summer 2004 

294

        Conversely, we assume that }0{)),,(( 11 =′XGLH τ  and let )),,(( 11 ∗∈ XGLZD τ . By the 
assumption )),,(( 11 XGLBD ′∈ τ . Clearly, =′)),,(( 11 XGLB τ . )),,(()),,(( 1111 ∗∗ ⊕ XGLiBXGLB ττ   
 
Hence there exist unique elements 21, DD  in )),,(( 11 ∗XGLB τ  such that 21 iDDD += . On the 
other hand, 0iDD +=  where )),,((0, 11 ∗∈ XZGLZD . Therefore, we have DD =1  and 

02 =D . Hence )),,(( 11 ∗∈ XGLBD τ and so }0{)),,(( 11 =∗XGLH τ . 
 
Lemma 3. 4.  Let ||).||,(X  be a real Banach space and XX ×  be the (complex) linear space under 
the standard operations of addition and scalar multiplication. If we equip XX ×  by the norm || ||.| | , 
which satisfies the inequalities 
 
 
 
                                                              ||||}||||,max{|| 1Cyx ≤ |                                                    (10)    
 
and 
 
                                                     || ||),(| yx ||},||||,max{||| 2 yxC≤                                               (11) 
 
for constants 1C  and 2C , then 
(i) |||).|||,( XX ×  is a Banach space 
(ii) The map XXX ×→:η , defined by )0,()( xx =η , is a real-linear continuous mapping. 
(iii) The map ∗×→′ )(: XXXψ , defined by )()(),)(( yixyx λλλψ += , is a real-linear 
continuous mapping onto the real Banach space ∗× )( XX .  
 
Proof.   (i) and (ii) are clear. (iii) ψ  is a well-defined real-linear mapping. For each X ′∈λ  we have 
 

|:||),(sup{|||)(|| yxψλψ = ||),(| yx },,1| Xyx ∈≤  
 

                                   },,||||,|||:||)(||)(sup{| 11 XyxCyCxyx ∈≤≤+≤ λλ                               (12) 
 

||||2 1 λC≤ . 
 
Hence ψ  is continuous. On the other hand, for each X ′∈λ  we have 
 

||,|:)0,)((sup{|||)(|| Xxx ∈= λψλψ ||)0,(| x }1|≤  
 

                                             ||||}1||||,|:)({| 1
22 λλ −=≤∈≥ CxCXxx .                                       (13) 

 
Hence ψ  is one-to-one. To show that ψ  is onto, let ∗×∈Λ )( XX . Then Xo ′∈Λ η  and 

Λ=Λ )( ηψ o . 
 
Theorem 3. 5  Let G  be a locally compact group and τ  be a topological involution on G. Then 

),(1 τGL  is amenable if and only if )(1 GL  is amenable. 
 
Proof. Let ),(1 τGL be amenable, X  be a Banach )(1 GL -module and )),(( 11 ∗∈∆ XGLZ . If RX  
represents X  as a real Banach space then it is a real Banach ),(1 τGL -module under the module 
actions defined by 
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                                   ,).0(. xifxf +=     )),,((),0.(. 1 XxGLfifxfx ∈∈+= τ                     (14) 

 
Now we define the map ∗→ RXGLD ),(: 1 τ  by )0(Re ifDf +∆= . Clearly D  is a real-linear 
mapping and since for each ),(1 τGLf ∈  
 
 
                                    ||||}1||||,|:))(0(sup{||||| ∆≤≤∈+∆≤ xXxxifDf |||| f ,                      (15) 
 
D  is continuous. On the other hand, for each ),(, 1 τGLgf ∈ , 
          
                            ))0().0Re(().()),0).(0(Re().( igifDgfigifgDf +∆+=++∆= .             (16) 
 
Hence ).().()( DgfgDffgD +=  and so )),,(( 11 ∗∈ RXGLZD τ . The amenability of ),(1 τGL  
implies that there exists ∗∈ RXu  such that uD δ= . Now we define CX /→:λ  
by )()()( ixiuxux −=λ . Clearly ∗∈ Xλ  and for XxGLf ∈∈ ),,(1 τ  we have 
             
                    ).().())().0((),.().()))(0..(( fixiufxuxifixfiuxfuxif −=+−=+ λλ .             (17) 
 
We can show that )))((()))(( xigfxigf +=+∆ λδ  for every ),(, 1 τGLgf ∈  and Xx∈ . Hence 

λδ=∆  and so ∆  is an inner derivation, i.e. }0{)),(( 11 =∗XGLH  Thus )(1 GL  is amenable. 
Conversely, let )(1 GL  be amenable and let X  be a real Banach ),(1 τGL -module. By Lemma 

3.3 it is enough to show that }0{)),(( 11 =′XGLH . Let XGLD ′→),(: 1 τ  be a continuous real 
derivation. By Lemma 3.4, XX ×  is a Banach space under the norm |||),(||| yx ||}||||,max{|| yx= . 
The map ∗×→′ )(: XXXψ , defined by ),,)(()(),)(( XXyxyixyx ′∈∈+= λλλλψ  is a 
continuous real-linear mapping which is one-one and onto. The space XX ×  is a Banach )(1 GL -
module under the familiar module actions. Now we define the map ∗×→∆ )()(: 1 XXGL  by 

)()()( DgiDfigf ψψ +=+∆ . Clearly∆  is a complex linear mapping and for )(, 1 GLgf ∈ , 
 
        ||||||)(|| ψ≤+∆ igf |||| D +1|||| f ψ  |||| D ||||2|||| ψ≤g }||||,||max{|||||| 11 gfD          (18) 

 
||||2 ψ≤ |||| D 1|||| igf + . 

 
Hence ∆  is continuous. Considering the module actions on XX ×  we can show that  
 
                                                        )0).(()).(( igDfgDf +=ψψ                                                   (19) 
 
and 
 
                                                       )().0()).(( DgifDgf ψψ +=                                                   (20) 

 
Since D  is a X ′ -derivation on ),(1 τGL , by using the above equation we have 
 

)).().(()).((())).((( 221122112211 igfigfigfigfigfigf +∆++++∆=++∆  
 
Therefore, ))(),(( 11 ∗×∈∆ XXGLZ  and so there exists ∗×∈Λ )( XX  such that Λ=∆ δ . Since 
ψ  is onto and one-to-one there exists a unique X ′∈λ  such that )(λψ=Λ . 

Now we notice that )().0().( ηψηψ iff +=  and )0).(().( iff += ηψηψ  for every 
),(1 τGLf ∈  and X ′∈η . Hence 

 
)0()0()0()()( ififDiDfDf +=+∆=+= Λδψψψ  
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                                 )0).(()().0()0.().0( ifififif +−+=+Λ−Λ+ λψλψ                            (21) 
 

)).(().().( fff λδψλψλψ =−=  
 
Since ψ  is one-to-one, it implies that )()( ffD λδ=  for each ),(1 τGLf ∈  and λδ=D . This 
completes the proof. 
 
Theorem  3. 6. Let G  be a locally compact group and let τ be a topological involution on .G  Then 

),(1 τGL  is weakly amenable if and only if )(1 GL  is weakly amenable. 
 
Proof.  Let ),(1 τGL be a weakly amenable real Banach algebra. We show that for each 

))(),(( 111 ∗∈∆ GLGLZ there exists ∗∈Λ )(1 GL  such that Λ=∆ δ . Let )(),(: 11 GLGL →τη  be 
defined by 0)( iff +=η  and ∗∗ ×→′ )()(),(: 111 GLGLGL τψ  be defined by 

).()())(( gifigf λλλψ +=+  By Lemma 3.4, η  and ψ  are continuous real-linear mapping. Also, 
ψ  is a one-to-one and onto mapping from the real Banach space ),(1 ′τGL  onto ∗)(1 GL  as a real 
Banach space. By the open Mapping Theorem for real Banach spaces, 

),()()(: 1111 ′→× ∗∗− τψ GLGLGL  is a real-linear continuous mapping. Now if we 
define ηψ ooD ∆= −1 , then it is easy to see that D  is a real-linear continuous mapping. To show that 
D  is an ),(1 ′τGL -derivation on ),(1 τGL  we see that  
 

))0).(0(()0())(())(( igififgfgoDfgD ++∆=+∆== ψψ  
 

                                           ))().(0()0).()(( goifigfo ηη ∆+++∆=                                           (22) 
 

)().0()0).(( DgifigDf ψψ +++= . 
 

On the other hand, ).()0)(( fif µψµψ =+  and ).()().0( µψµψ aif =+  for )(1 GLf ∈  and 
),(1 ′∈ τµ GL . Hence, for each ),(, 1 τGLgf ∈  we have 

 
                                      )...().().())(( DgfgDfDgfgDffgD +=+= ψψψψ                           (23) 

 
Since ψ  is one-one, we conclude that D  is an ),(1 ′τGL -derivation, i.e. 

)),(),,(( 111 ′∈ ττ GLGLZD . By Lemma 3.3, the weak amenability of ),(1 τGL  implies that there 
exists ∈λ ),(1 ′τGL  such that λδ=D . By definition of D  and the above equalities it implies that 

)(λψδ=∆ , and so )(1 GL  is weakly amenable. 
Conversely, let )(1 GL  be weakly amenable and )),(),,(( 111 ′∈ ττ GLGLZD . By Lemma 3.4 

the map ∗∗ ×→′ )()(),(: 111 GLGLGL τψ , defined by =+ ))(( igfλψ  )()( gif λλ + , is a real-
linear continuous one-to-one mapping onto ∗∗ × )()( 11 GLGL , as a real Banach space. 

Now we define the map )(: 1 GL∆ ∗∗ ×→ )()( 11 GLGL  by ).()()( DgiDfigf ψψ +=+∆  Similar 
to the proof of Theorem 3.4 we can show that ∆  is a continuous derivation. Hence there exists 

∗∗ ×∈Λ )()( 11 GLGL such that Λ=∆ δ . Since ψ  is one-to-one and onto, there exists a unique 
),(1 ′∈ τλ GL  such that )(λψ=Λ . It can be shown that  λδ=D  and so ),(1 τGL  is weakly 

amenable by Lemma 3.3. 
 
Corollary  3. 7. Let G  be a locally compact group and τ  be a topological involution on G . Then 
(i)   ),(1 τGL  is amenable if and only if G  is amenable. 
(ii)  ),(1 τGL  is weakly amenable. 
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Proof. By Theorem 3.5 and 3.6 the amenability and weak amenability of ),(1 τGL  and )(1 GL  are 
equivalent. Since  )(1 GL  is amenable if and only if G  is amenable [5], (i) follows. Since )(1 GL  is 
weakly amenable [6], we conclude that ),(1 τGL  is also weakly amenable. 
 

4. MULTIPLIERS 
 
In this section we characterize the multipliers of ),(1 τGL . A bounded real linear operator T  on 

),(1 τGL  is called a left (right) multiplier if )()()( TgfgTfgfT ∗=∗=∗  ∈gf , )),(1 τGL . 
 
Definition 4. 1. Let xδ  be the point mass at Gx∈ . We define 

2
)( xx

xm τδδ +
=  and 

)).,(()( 1 τGLffmfR xx ∈∗=  
It is clear that xx mom =τ  (since )2 ττ =  and 1|||| =xm . Therefore, ),( τGMmx ∈ . 

 
Lemma  4. 2. Let µ  be a measure in )(GM  such that ∈∗µf ),(1 τGL  for  every ∈f ),(1 τGL . 
Then ),( τµ GM∈ . 
 
Proof. We have ∫ −=∗

G
ydxyfxf

 

1 )(()()( µµ )( Gx∈ . Therefore, 
 

∫ −=∗
G

yodxyfxof
 

1 ))(()())(( τµτµ  
 

∫ −=
G

ydyxf
 

1 )())((( µτ  
 

                                                            ∫ −=
G

ydyxf
 

1 )())(( µτ                                                      (24) 
 

∫ −=
G

ydyxf
 

1 )())(( µτ  
 

    )())(( xfxf µτµ ∗=∗= . 
 
So µτµ ∗=∗ fof )(  for every f  in ),(1 τGL . Since ),(1 τGL  has a bounded approximate 
identity, we have µτµ =o . Hence ),( τµ GM∈ . 
 
Theorem 4. 3.  Let T  be a left multiplier on ),(1 τGL . Then there exists a unique  ),( τµ GM∈  
such that ∈∗= ffTf (µ )),(1 τGL  and |||||||| T=µ . 
 
Proof. We define )()(: 11

0 GLGLT →  by )()()(0 hiTgTfT +=  where ihgf += . We have    
 

=∗ )( 210 ffT )()(( 22110 ihgihgT +∗+  
 

)( 212121210 hhhiggihggT ∗−∗+∗+∗=  
 

                                         )()( 212121210 hgghiThhggT ∗+∗+∗−∗=                                     (25) 
 

21212121 ThigTgihThhTgg ∗+∗+∗−∗=  
 

)()( 2211 iThTgihg +∗+=  
 

201 fTf ∗= . 
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Hence, 0T  is a left multiplier on )(1 GL . Therefore, by [7] there exists a unique ),( τµ GM∈ such 
that µ∗= hhT0  for every h  in )(1 GL  and )(|||||| 0 GT µ= . Consequently, µ∗= fTf  for every 

),(1 τGL  and  )(|||||||||| 0 GTT µ=≤ . Now, since ∈∗µf ),(1 τGL  for all ∈f ),(1 τGL , 
),( τµ GM∈  by Lemma 4.2. But by the proof of [7, Theorem 1] we have 

αααα ωωµ TeeT limlim 0 −=−= ∗∗ .Now, since |||||||| TTe ≤α , 
 
                                                                      ||||)(|| TG ≤µ .                                                            (26) 

 
Therefore, |||||||| µ=T . 
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