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Abstract — In this paper we initiate the study of real group algebras and investigate some of its aspects.
Let L' (G) be a group algebra of a locally compact group G, 7 : G —> G be a group homeomorphism
suchthat 7° = 707 =1, theidentitymap,and L’ (G,7) ={f € L’ (G): for = f} (p >1). In this
paper, among other results, we clarify the structure of L”(G,7) and characterize amenability of
L' (G, 1) and identify its multipliers.
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1. INTRODUCTION

In 1965, Ingelstam [1] introduced the theory of real Banach algebras. The real function algebra theory
was developed further by Kulkarni and Limaye [2]. In their excellent monograph, “Real function
algebras”, Kulkarni and Limaye present interesting aspects of the theory of C(X,7). We refer to [3]
for our notations.

Let G be a locally compact group. An automorphism 7 : G — G is called a topological group
involution on G if 7 is a homeomorphism and 7(7(x)) = x for all x € G . For example, in group
(C,+)r(z) =z and in (R\{0},.),7(x) = x" are topological group involutions. Note that we do not
assume that 7(xy) = 7(y)7(x). L

Let C,(G,0)={f €C,(G): for (x)= f(x),xe G},and C (G,7)={f € C.(G):
for(x)=f(x),xeG} it is clear that, if 7 is the identity map on G, then
C,(G,7)=C/(G),C.(G,7)=C.(G).If 1< p<Loo, we define f o 7 (x)=f(x), forall x e G}.
Clearly, L”(G,7) < L”(G) and if 7 is the identity map, L” (G, 7) consists of real functions.

2. THE STRUCTURE OF L'(G,7) AND M (G,7)

Lemma 2. 1. Let G be a locally compact group and 7 be a topological group involution on G . If
0:C.(G)—> C.(G) is defined by o:(f)= for, then (i) o is an algebra involution on
C.(Gand C (G,0)={f €C(G)|a(f)= [},

(i) C.(G)=C.(G,7)®iC,(G,7).
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Proof. (i) We must show that whenever /' € C.(G), then for e C.(G). To do this, we have
supp (for) = cl(] (fOT) 0} = v (supp /).

It follows that supp ( for) is compact, i.e.,( fo 7)€ C,(G). Hence, supp( for) is compact, i.e.,
foz‘ € C_(G). The rest of (i) is clear.

(i) Clearly, y-/*o() S=0()  Sinces’ =i, (=identity) /T _
2 2i 2

f+a(f) and (f U(f)) S =o(/) Ttfollows that f =g +ih where g,h € C_(G,7).

2i
Now1ff g+ih= g1+1h,,theng—f a(f)leg g, and thus h = h,.
2

Note. By the same argument one can conclude thatC (G) = C,(G,7)® iC,(G,7). In fact it is
enough to show that for e C ,(G) whenever f € C;(G). Since f € C,(G), for a givene >0,
there is a compact set Flin G such that | f(x)[< & wheneverx € F'. Clearly, 7~ '(F) is compact,
and if x & 77/ (F), then 7(x) & F ,ie., | foz'(x) |< €. Therefore, fOT e C,(G).

Let M(G) be the Banach space of all complex regular Borel measures onG . For each
HeM(G), we define u, = pot , then it is clear that 1 € M (G). Also by Lebesgue dominated
convergence theorem one can show that for every bounded Borel measurable function # on G,

thdﬂ, = IG(hor)d,u. (1)

Clearly, (1) is true when % is a characteristic function; by linearity it holds when / is a simple
function; by continuity (1) holds when # is integrable.

Proposition 2. 2. Let M (G,7) ={u € M(G)| por = p}. Then M(G,7) is a real Banach algebra
with the convolution product ,u*v(E)z.[Gv(x_‘E)d,u(x)z jG W(Ey™Mdv(y) (u,veM(G,1))
and M(G)=M(G,7)®iM (G,7).

Proof. Let 1,v € M(G,7). Then
(urv)or(E) = [ v t(E)du(x) =[ v(e(z () E)du().
= [ @) HEMu) = | v(x" E)duoz @

= u*v(E)

Therefore u*v € M(G,7). The rest of the proof follows the same line as the proof of Lemma 2.1.
Therefore, it is omitted.

Remark. For a real linear space 4, the real dual space of A, that is, the space of all real-valued
continuous linear functional on A4 will be denoted by 4" .

Proposition 2. 3. Every real-valued continuous functional ¢ on C,(G,7) can be represented as
()= JG fdu , where p is the unique measure in M (G, 7) such that || v ||=|| || and vice versa.

Proof. Let feC,(G,7). Thenf=g+ih where gheC,(G,r). If we define
w(f)=¢(g)+id(h), then clearly v € C;;(G)" and so by the Riesz representation theorem ([3,
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theorem (14.4)]), there exists a unique measure 4 in M(G) such that

w(f)= jG fdu(f € Cy(G)) and ||y ||=l| #||. Tt follows that @(h) = thdﬂ for every h in
C,(G,7). Now, in order to prove that HeM(G,7), we have

V(o)) =7(g~ih) = §(g) = ig(h) =y (/). Therefore,
J 1w =] o(Ndu=| o(f)n=]_ fifo ()

(f € Cy(G)). Thus, u=pot, i.e. u € M(G,7) . Also, similar to the proof of [6, Theorem 3.2.1] we
can show that || w ||=| x|l

Conversely, let ©e M(G,7) and ¢(f)= IG fdu(f € Cy(G,7)). If feC,(G,7), then
o(f)=f.Hence,

6()=¢o(MN = o(Ndu=| o(/ g = (for)du 4)
= [ fdfor = [ _fdu=9(1).

Thus @( f) is real.

Theorem 2. 4. Let G be a locally compact group with the left Haar measure 4 and 7 be a
topological group involution on G . Then Aot = A .

Proof. It is easy to show that Ao 7 is a positive measure on G . Also if B is a Borel set, then
Aot(xB) = A(t(xB)) = A(z(x)7(B)) = A(7(B)) = lot(B)(x € G) . Therefore, Ao is left
invariant. So, there is a positive number ¢ such that Ao7(B) = cA(B) for every Borel set B. If U
is an open set, then Aoz (z(U)) = cA(z(U)) e, A(U) = cA(r(U)) which is equal to
c*A(U). Therefore, for every open set U we have A(U) = c?A(U). So, ¢=1. Hence,
lot = 1.

For a locally compact group G and the Haar measure A we defined
L’ (G,0)={f € L"(G)| for = f}(1< p<o). Clearly L’(G,7)c L”(G),L"(G,7) is a real
algebra and L”(G) = L' (G,7)®il? (G,7).

Theorem 2. 5. (a) For 1 < p <o, L”(G,7) is a real Banach space, and L*(G,7) is a real Hilbert
space with an inner product,

<f.g>= gda 5)

(b) For each f, g € L'(G,7),max{|| f ||,.ll g |l,} <l f+ig I £ 1, + 1l gl -
(c) L'(G,1)" = L*(G,1).
(d) L'(G,7) has a bounded approximate identity of norm 1.

Proof. (a). Clearly, L”(G,7)is a real subspace of L”(G). Let f,geL”(G,7) then
f*gel”(G), [4]. We will show that f *g e L’ (G, 7). In order to do this, by (2.4) and (1) we
have

(f * &)z (x)) = .[Gf(y)g(y*lT(X))dl(y)
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=IG f@@(NeE(@(y) ' x))dA») (6)

=[ FEONEE(»HdAG)
=[ gy Ndioz(y)
=[S DdA) = (f * 2)(x)

for every x € G, hence f *g e L”(G, 7). We now prove that L (G, 1) is complete. Let {f, },_, be
a Cauchy sequence in L”(G,7). Since L7(G)is complete, there exists fe€l/(G)such that

m, . || f, = f1l,=0. Now, there exists a subsequence of {f,}, as {f'u- }o., such that
lim,_,., f, (x)= f(x), 4-almost everywhere, and 50 /(r(x)) = lim,,, £, (+(x)) =lim,_,,, , (x) = f(x), -
almost everywhere. Therefore, f € L”(G,7). Hence L’ (G,7)is a real Banach algebra and not a
complex algebra.

If <f,g>= J.ngdi for every f,geL*(G,7), then < f,g>=< f,g>. Therefore
L*(G,7) is areal Hilbert space. 1

(b) For f,g € L'(G,r)wehave || /]|, < 5(” (f+ill, + 11 =i, =l f+igll,
Similarly, || g [|,<]| f +ig]l,

(c) We know that L'(G) = L”(G). Let f e L'(G). So f =g+ih where g,heL(G,7).
Now, we define w(f)=¢(f)+ig(g) where ¢ L' (G,7)°. It is clear that w e L'(G)" and
therefore, there exists a unique p € L”(G) such that w(f) = IG f pdA(f e L'(G)) .

Hence we have,

y(o(f) =w(g—ih)=p(g)—ig(h) =w(f). (7 (%)

This implies that
[ f pai=] o(Npdi=[ (for)pdd=|_f powdi (f €L'(G)). ®)

Therefore, por=p, ie, pel”(G,r). Also, we have ¢(f)—I f pdA for every
f e L'(G,7) and by (*) #(f) is real. Conversely, if ¢: L'(G,7) = Ris defined by ¢(f) = I f
where p € L”(G,7) and f is an arbitrary function, then ¢ € L'(G,7)" and the proof is complete.

(d) Let U be any compact neighborhood of e and (U,) be the collection of all compact
neighborhoods of e in U, which is directed by a set inclusion (@ < fifand only if U, 2U,). If
we define ; _ _Zvs and Ao _ _Xua®T | then, since 7 is a homeomorphism, {f, }and

« &8s =
AU,) MU, AU, ) L+
{g,,}are bounded approximate identities of norm one for L'(G). If we define e, ga , then

{e,} is a bounded approximate identity of norm one for L'(G), and also for L' (G, 7) since

e, € L'(G,7).
Lemma 2. 6. For 1 < p < oo, the linear space C,(G,7) is a dense subspace of L’ (G, 7).
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Proof. Suppose that f € L”(G,7), since C,(G) is a dense subspace of L”(G), there exists a

sequence {f,},_, in C.(G) such that lim, | f,—f1,=0. Let g :%.Then

f+for
2

g, €C.(G,7) and lim_, | g,~( I, =lim,_ |lg, = f1],=0-

Theorem 2. 7. For y e M(G,7) and w e L’(G,7), let T,w=uxy. Each T, is a bounded
operator on the real Hilbert space L°(G,7), and the mapping u—T . is a faithful
* — representation of M (G, 7). Note that M (G, 7) is a * —Banach algebra.

Proof. The linearity of 7, on L*(G,7) is obvious, and the boundedness of 7', with || T’ Sl

H omo

follows from [3,(20.12.ii)]. For w € L'(G,7) N L*(G, ), we have
(uxv)*y = pux(v*y) ©)

[2, (19.2.iv)]. Thus 7, (y) =T, (T,p) forall e L'(G,7)NL*(G,7). Since C (G,7)c L'(G,7) N I*(G,7)
by Lemma (2.7), L' (G,7) N L* (G, 7)is dense in L* (G, 7) . It follows that T, =T,T,. To show that
T, #0 if 4#0, consideran f € C.(G,7) such that ‘[Gf*d,u #0.Since u* f(e) = j Frdu+0
and p* f is continuous; thus 7, f is not a zero element of L*(G,7). Note that f* is the involution

of f.

3. AMENABILITY AND WEAK AMENABILITY OF REAL GROUP ALGEBRAS

In this section, we show that amenability of L'(G,7)and L'(G) are equivalent. We shall use some
notions of [1].

Definition 3. 1. A Banach algebra A4 over F'is called amenable if for every Banach A-module X
over F, H'(4,X")=1{0}.

Let A be a Banach algebra over F', and X be a Banach A-module over F' . If F' =R, we say
that X is a real Banach A-module for the real Banach algebra 4.1If F = C, wesay X isa Banach
A-module for the Banach algebra 4.

Definition 3. 2. Let X be a real Banach space. Then BL,(X,C), consists of all complex-valued
continuous real-linear functional on X, which is a real Banach space, denoted by X' and called the
complex dual of X .
If A is a real Banach algebra and X is a real Banach A -module, then X' with the natural module
action is also a real Banach A4 -module.

Note that in this case X" is isomorphic to X~ x X",

Lemma 3. 3. Let G be a locally compact group and let 7 be a topological involution on G .
Suppose Xis a real Banach L'(G,7)-module. Then H'(L'(G,7),X')={0} if and only if
H'(L'(G,7),X")=1{0}.

Proof. It is easy to see that Z'(L'(G,7),X")=Z"(L'(G,7), X" ) ®iZ'(L'(G,7),X"). Now, let

H'(L'(G,7),X")=1{0} and let D e Z'(L'(G,7),X"). There exist elements ¢ and bin X~ such
that D=3, +i5,. If c=a+ib,then ce X' and d =5,. Hence H'(L'(G,7),X") = {0}.
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Conversely, we assume that H'(L'(G,7),X")={0} and let De Z'(L'(G,7),X"). By the
assumption D € B' (L' (G,7), X"). Clearly, B' (L'(G,7), X ') =. B'(I'(G,7),X")®iB"(L'(G,7),X")

Hence there exist unique elements D,,D, in B'(L'(G,7),X") such that D = D, +iD,. On the
other hand, D =D+i0 where D,0eZ'(L'(G,Z),X"). Therefore, we have D, =D and
D, =0.Hence D e B'(L'(G,7),X")andso H'(L'(G,7),X") = {0}.

Lemma 3. 4. Let (X,||.]|) be a real Banach space and X x X be the (complex) linear space under
the standard operations of addition and scalar multiplication. If we equip X x X by the norm || ].]|],
which satisfies the inequalities

max{[[ x| ¥ [I} < C, ||| (10
and

11 Ge, ) H= € max{| x (L[] y (1} (11)

for constants C, and C,, then
(i) (X x X,]||.|l]) is a Banach space
(ii) The map 77: X = X x X, defined by 77(x) = (x,0), is a real-linear continuous mapping.
(iii) The map w: X' — (X xX)", defined by w(A)(x,y)=A(x)+id(y), is a real-linear
continuous mapping onto the real Banach space (X x X)".
Proof. (i) and (ii) are clear. (iii) ¥ is a well-defined real-linear mapping. For each 1 € X' we have
(D) lI=sup{ w e, V) EI G ) 1€ 1%, v € X
<sup{| AX) [+[ AW [ x [[€ Cpll y[[< € x, y € X} (12)
<2C, || A].
Hence ¥ is continuous. On the other hand, for each 4 € X' we have
[w(A) lI= sup{| w(A)(x.,0) |: x € X, || | (x,0) || <1}
>{Ax):xe X,C, [|x|K1=C || 2] (13)
Hence y is one-to-one. To show that y is onto, let A€ (X xX)". Then Aone X' and
w(Aon)=A.

Theorem 3. 5 Let G be a locally compact group and 7 be a topological involution on G. Then
L'(G,7) is amenable if and only if L'(G) is amenable.

Proof. Let L'(G,7)be amenable, X be a Banach L'(G)-module and AcZ'(L'(G),X"). If X,

represents X as a real Banach space then it is a real Banach L'(G,7)-module under the module
actions defined by
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fx=(f+i0)x, x.f=x(f+i0),(f el (G,1),xecX) (14)

Now we define the map D:L'(G,7) — X, by Df =ReA(f +i0). Clearly D is a real-linear
mapping and since for each f € L'(G, 1)

| Df |l sup{| A(f +i0)(x) |: x € X, [[ x [[<Tp <[ A ||| /1], (15)
D is continuous. On the other hand, for each f,g € L'(G,7),
(Df).g =Re(A(f +i0).(g +i0)), f.(Dg) = Re((f +i0).A(g +i0)). (16)

Hence D(fg)=(Df).g+ f.(Dg) and soD e Z'(L'(G,7),X ;). The amenability of L'(G,7)
implies that there exists uwe€ X, such thatD=0J,. Now we define A:X —>C
by A(x) = u(x) —iu(ix) . Clearly A € X* and for f € L'(G,7),x € X we have

(A..(f +i0))(x) = u(fx)—iu(fix),((f +i0).)(x) =u(x.f)—iu(ix.f). 17)

We can show that A(f +ig))(x) = (5, (f +ig))(x) for every f,g e L'(G,7) and x € X . Hence
A =6, and so A is an inner derivation, i.e. H'(L'(G),X")={0} Thus L'(G) is amenable.

Conversely, let L'(G) be amenable and let X be a real Banach L'(G, ) -module. By Lemma
3.3 it is enough to show that H'(L'(G),X")={0}. Let D: L' (G,7) = X' be a continuous real
derivation. By Lemma 3.4, X x X is a Banach space under the norm ||| (x, y) ||| = max{|| x |l,|| ¥ ||} -
The map y: X' — (X xX)", defined by w(Ad)(x,y)=A(x)+il(y)(x,ye X,1eX') is a
continuous real-linear mapping which is one-one and onto. The space X x X is a Banach L'(G) -
module under the familiar module actions. Now we define the map A:L'(G) = (X x X)" by
A(f +ig) =w(Df) +iw(Dg). Clearly A is a complex linear mapping and for ', g € L' (G),

A+ Iy DA M+ (DNl 20y [T D[ maxdf[ £ls[Tgllhy a8)

<2y lIIDIIf+igl-
Hence A is continuous. Considering the module actions on X x X we can show that
y((Df)-g) = w(Df).(g +10) (19)
and
y(f.(Dg)) = (f +i0).y(Dg) (20)
Since D isa X' -derivation on L'(G,7), by using the above equation we have
A((f, +ig)-(f; +ig,)) = (A, +ig)).(f; +ig,) + (f, +ig))(A(S; +ig,)).

Therefore, A € Z'(L'(G),(X x X)*) and so there exists A € (X x X)" such that A =5, . Since
w is onto and one-to-one there exists a unique 4 € X' such that A = w(A1).

Now we notice that w(f.n)=(f+i0)w(n) and w(n.f)=w(n).(f+i0) for every
felL(G,r) and 7 € X'. Hence

y(Df) = y(Df) +iy(DO0) = A(f +i0) = &, (f +i0)
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(f +i0).A — A(f +i0) = (f +i0)y(A) —w(A).(f +i0) @1)
=y (fA)-wA.f)=w(5,(f)).

Since y is one-to-one, it implies that D(f)=6,(f) for each f € L'(G,7) and D =5,. This
completes the proof.

Theorem 3. 6. Let G be a locally compact group and let 7 be a topological involution on G. Then
L'(G,1) is weakly amenable if and only if L'(G) is weakly amenable.

Proof. Let L' (G,7)be a weakly amenable real Banach algebra. We show that for each
A e Z'(L'(G),L'(G) )there exists A € L'(G)" such that A=6,. Let 7:L'(G,7) = L'(G) be
defined by n(f)=f+i0 and w:L'(G,7) = L(G)"xL'(G)" be defined by
w(A)(f +ig)=A(f)+iA(g). By Lemma 3.4, 7 and y are continuous real-linear mapping. Also,
w is a one-to-one and onto mapping from the real Banach space L'(G,7)" onto L'(G)" as a real
Banach space. By the open Mapping Theorem for real Banach spaces,
w ' LN(G) xL'(G) - L'(G,r) is a reallinear continuous mapping. Now if we
defineD =y oo 17, then it is easy to see that D is a real-linear continuous mapping. To show that
D isan L'(G,7)" -derivation on L'(G,7) we see that

y(D(/2)) = (woD)(f2) = A(fg +i0) = A((f +i0).(g +i0))
= (Aom)(f)-(g +i0) +(f +10).(Ao77)(g) (22)
=y(Df).(g +i0) +(f +i0)y(Dg).

On the other hand, w(u)(f +i0)=w(u.f) and (f +i0)yw(u)=w(a.u) for feL'(G) and
e L'(G,t) . Hence, foreach f,g € L'(G,7) we have

w(D(f2)) =y (Df.g)+y(f.Dg) =y (Df.g+ f.Dg). (23)

Since ¥ is one-one, we conclude that D is an L (G, 7)" -derivation, i.e.
DeZ'(L'(G,7),L'(G,7)) . By Lemma 3.3, the weak amenability of L'(G,7) implies that there
exists 1 € L'(G,7)" such that D = &,. By definition of D and the above equalities it implies that
A=96,., andso L'(G) is weakly amenable.

Conversely, let L'(G) be weakly amenable and D € Z'(L'(G,7),L'(G,7)") . By Lemma 3.4
the mapy : L' (G,7) = L'(G)" x L'(G)", defined by w(A)(f +ig)= A(f)+iA(g), is a real-
linear continuous one-to-one mapping onto L'(G)* x L' (G)", as a real Banach space.

Now we define the map A: L'(G) — L'(G)" xL'(G)" by A(f +ig) = w(Df)+iw(Dg). Similar
to the proof of Theorem 3.4 we can show that A is a continuous derivation. Hence there exists
A e L'(G) xL'(G) such that A=5,. Since ¥ is one-to-one and onto, there exists a unique
A€ L'(G,r) such that A =w(A). It can be shown that D=5, and so L'(G,7) is weakly
amenable by Lemma 3.3.

Corollary 3.7.Let G be a locally compact group and 7 be a topological involution on G . Then

(i) L'(G,7) is amenable if and only if G is amenable.
(i) L'(G,7) is weakly amenable.
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Proof. By Theorem 3.5 and 3.6 the amenability and weak amenability of L'(G,7) and L'(G) are
equivalent. Since L'(G) is amenable if and only if G is amenable [5], (i) follows. Since L'(G) is
weakly amenable [6], we conclude that L'(G,7) is also weakly amenable.

4. MULTIPLIERS

In this section we characterize the multipliers of L'(G,7). A bounded real linear operator T on
L'(G,7) is called a left (right) multiplier if 7(f *g) = (If)*g(= f *Tg) f,g e L'(G,7)).

o0, +0
Definition 4. 1. Let &  be the point mass at xe€G. We define m, = ™ and

R.(f)=m, * f(f € L'(G.1). 2

It is clear that m o7 = m_ (since 7° =) and || m, ||=1. Therefore, m, € M(G,7).

Lemma 4. 2. Let u be a measure in M(G) such that f * u e L'(G,7) for every f e L'(G,7).
Then e M(G,7).

Proof. We have f * u(x) = J.G f(xy Hdu((y) (x € G). Therefore,

[ *(@or)(x) =[O (Hor)(»)
= [ /&GO YdE)
= [ f@@y Hdu(y) (24)
= [ f@@)y HdE)

= [ () = f* u(x).

So f*(mor)= f*u for every f in L'(G,r). Since L'(G,7) has a bounded approximate
identity, we have piotr = 1. Hence u € M(G,7).

Theorem 4. 3. Let 7 be a left multiplier on L'(G,7). Then there exists a unique e M(G,7)
such that Tf = f * u(f € L'(G,7)) and || |I=I| T ||.

Proof. We define T, : L'(G) — L'(G) by T,(f) =T(g)+iT(h) where f =g +ih.We have
I, (fi * o) = T, (g, +ihy) *(g, +ihy)
=T,(g, *g, +ih *g, +ig, *h,—h *h,))
=T,(g, *g, —h *h))+iT(h *g,+g, *h,) (25)
=g, *Tg, —h *Th, +ih *Tg, +ig, *Th,
=(g, +ih)*(Tg, +iTh,)

=L *T0fs.
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Hence, T, is a left multiplier on L'(G) . Therefore, by [7] there exists a unique x € M (G,7) such
that Tyh = h* u for every h in L'(G) and || T, ||= 1| (G). Consequently, Tf = f * u for every
L'(G,r) and ||T|K|T, |5 #|(G). Now, since f*uel'(G,r) for all fel(G,1),
HeM(G,r) by Lemma 42. But by the proof of [7, Theorem 1] we have
u=w"—lim, Tje, =" —lim, Te, Now, since || Te, ||<| T ||,

| u[ (G ST (26)

Therefore, || T ||=]| ]|.
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