Iranian Journal of Science & Technology, Transaction A, Vol. 28, No. A2 Printed in Islamic Republic of Iran, 2004 © Shiraz University

REAL GROUP ALGEBRAS^{*}

A. EBADIAN ^{1, 2} AND A. R. MEDGHALCHI ^{1**}

¹Faculty of Mathematics, Teacher Training University, Tehran, I. R. of Iran, 15614 ²Current address: Department of Mathematics, Urmia University, I. R. of Iran a.ebadian@mail.urmia.ac.ir, medghalchi@saba.tmu.ac.ir

Abstract – In this paper we initiate the study of real group algebras and investigate some of its aspects. Let $L^1(G)$ be a group algebra of a locally compact group $G, \tau : G \to G$ be a group homeomorphism such that $\tau^2 = \tau o \tau = 1$, the identity map, and $L^p(G, \tau) = \{f \in L^p(G) : fo\tau = f\}$ $(p \ge 1)$. In this paper, among other results, we clarify the structure of $L^p(G, \tau)$ and characterize amenability of $L^1(G, \tau)$ and identify its multipliers.

Keywords - Real Banach algebra, amenability, multiplier, derivation, group involution

1. INTRODUCTION

In 1965, Ingelstam [1] introduced the theory of real Banach algebras. The real function algebra theory was developed further by Kulkarni and Limaye [2]. In their excellent monograph, "Real function algebras", Kulkarni and Limaye present interesting aspects of the theory of $C(X, \tau)$. We refer to [3] for our notations.

Let G be a locally compact group. An automorphism $\tau: G \to G$ is called a topological group involution on G if τ is a homeomorphism and $\tau(\tau(x)) = x$ for all $x \in G$. For example, in group $(C,+)\tau(z) = \overline{z}$ and in $(R \setminus \{0\},.), \tau(x) = x^{-1}$ are topological group involutions. Note that we do not assume that $\tau(xy) = \tau(y)\tau(x)$.

Let $C_o(G,\tau) = \{f \in C_o(G) : fo \tau(x) = \overline{f(x)}, x \in G\}$, and $C_c(G,\tau) = \{f \in C_c(G) : f \circ \tau(x) = \overline{f(x)}, x \in G\}$ it is clear that, if τ is the identity map on G, then $C_o(G,\tau) = C_o^r(G), C_c(G,\tau) = C_c^r(G)$. If $1 \le p \le \infty$, we define $f \circ \tau(x) = \overline{f(x)}$, for all $x \in G\}$. Clearly, $L^p(G,\tau) \subseteq L^p(G)$ and if τ is the identity map, $L^p(G,\tau)$ consists of real functions.

2. THE STRUCTURE OF $L^{1}(G, \tau)$ **AND** $M(G, \tau)$

Lemma 2. 1. Let G be a locally compact group and τ be a topological group involution on G. If $\sigma: C_c(G) \to C_c(G)$ is defined by $\sigma: (f) = \overline{f} \circ \tau$, then (i) σ is an algebra involution on $C_c(G)$ and $C_c(G,\tau) = \{f \in C_c(G) \mid \sigma(f) = f\},\$

(ii)
$$C_c(G) = C_c(G,\tau) \oplus iC_c(G,\tau)$$
.

^{*}Received by the editor May 14, 2002 and in final revised form January 26, 2004

^{**}Corresponding author

Proof. (i) We must show that whenever $f \in C_c(G)$, then $\overline{fo} \tau \in C_c(G)$. To do this, we have $\operatorname{supp}(\overline{fo}\tau) = cl([(\overline{fo}\tau)^{-1}\{0\}]' \subseteq \tau^{-1}(\operatorname{supp} \overline{f})$.

It follows that $\operatorname{supp}(\bar{f}o\tau)$ is compact, i.e., $(\bar{f}o\tau) \in C_c(G)$. Hence, $\operatorname{supp}(\bar{f}o\tau)$ is compact, i.e., $\bar{f}o\tau \in C_c(G)$. The rest of (i) is clear.

(ii) Clearly,
$$f = \frac{f + \sigma(f)}{2} + i \frac{(f - \sigma(f))}{2i}$$
. Since $\sigma^2 = i$, $(= \text{identity})$ $\sigma(\frac{(f + \sigma(f))}{2}) = \frac{f + \sigma(f)}{2i}$ and $\sigma(\frac{f - \sigma(f)}{2i}) = \frac{f - \sigma(f)}{2i}$. It follows that $f = g + ih$ where $g, h \in C_c(G, \tau)$.
Now if $f = g + ih = g_1 + ih_1$, then $g = \frac{f + \sigma(f)}{2}$, i.e., $g = g_1$ and thus $h = h_1$.

Note. By the same argument one can conclude that $C_0(G) = C_0(G, \tau) \oplus iC_0(G, \tau)$. In fact it is enough to show that $\overline{fo}\tau \in C_0(G)$ whenever $f \in C_0(G)$. Since $f \in C_0(G)$, for a given $\varepsilon > 0$, there is a compact set F in G such that $|f(x)| < \varepsilon$ whenever $x \in F'$. Clearly, $\tau^{-1}(F)$ is compact, and if $x \notin \tau^{-1}(F)$, then $\tau(x) \notin F$, i.e., $|\overline{fo}\tau(x)| < \varepsilon$. Therefore, $\overline{fo}\tau \in C_0(G)$.

Let M(G) be the Banach space of all complex regular Borel measures on G. For each $\mu \in M(G)$, we define $\mu_{\tau} = \mu o \tau$, then it is clear that $\mu_{\tau} \in M(G)$. Also by Lebesgue dominated convergence theorem one can show that for every bounded Borel measurable function h on G,

$$\int_{G} h d\mu_{\tau} = \int_{G} (ho\,\tau) d\mu \,. \tag{1}$$

Clearly, (1) is true when h is a characteristic function; by linearity it holds when h is a simple function; by continuity (1) holds when h is integrable.

Proposition 2. 2. Let $M(G,\tau) = \{\mu \in M(G) \mid \mu o \tau = \overline{\mu}\}$. Then $M(G,\tau)$ is a real Banach algebra with the convolution product $\mu * \nu(E) = \int_{G} \nu(x^{-1}E)d\mu(x) = \int_{G} \mu(Ey^{-1})d\nu(y) \quad (\mu,\nu \in M(G,\tau))$ and $M(G) = M(G,\tau) \oplus iM(G,\tau)$.

Proof. Let $\mu, \nu \in M(G, \tau)$. Then

(

$$\mu * \nu) o \tau(E) = \int_{G} \nu(x^{-1}\tau(E)) d\mu(x) = \int_{G} \nu(\tau(\tau(x)^{-1}E)) d\mu(x) .$$
$$= \int_{G} \overline{\nu((\tau(x)^{-1})E)} d\mu(x) = \int_{G} \overline{\nu(x^{-1}E)} d\mu o \tau$$
(2)
$$= \overline{\mu * \nu}(E)$$

Therefore $\mu * v \in M(G, \tau)$. The rest of the proof follows the same line as the proof of Lemma 2.1. Therefore, it is omitted.

Remark. For a real linear space A, the real dual space of A, that is, the space of all real-valued continuous linear functional on A will be denoted by A^* .

Proposition 2. 3. Every real-valued continuous functional ϕ on $C_0(G, \tau)$ can be represented as $\phi(f) = \int_C f d\mu$, where μ is the unique measure in $M(G, \tau)$ such that $\|\psi\| = \|\mu\|$ and vice versa.

Proof. Let $f \in C_0(G,\tau)$. Then f = g + ih where $g, h \in C_0(G,\tau)$. If we define $\psi(f) = \phi(g) + i\phi(h)$, then clearly $\psi \in C_0(G)^*$ and so by the Riesz representation theorem ([3,

Real group algebras

theorem (14.4)]), there exists a unique measure μ in M(G) such that $\psi(f) = \int_G f d\mu(f \in C_0(G))$ and $\|\psi\| = \|\mu\|$. It follows that $\phi(h) = \int_G h d\mu$ for every h in $C_0(G,\tau)$. Now, in order to prove that $\mu \in M(G,\tau)$, we have $\overline{\psi}(\sigma(f)) = \overline{\psi}(g-ih) = \overline{\phi(g)} - i\phi(h) = \psi(f)$. Therefore,

$$\int_{G} f d\psi = \overline{\int_{G} \sigma(f) d\mu} = \int_{G} \overline{\sigma(f)} d\overline{\mu} = \int_{G} f d\overline{\mu} o\tau$$
(3)

 $(f \in C_0(G))$. Thus, $\mu = \overline{\mu}o\tau$, i.e. $\mu \in M(G, \tau)$. Also, similar to the proof of [6, Theorem 3.2.1] we can show that $\|\psi\| = \|\mu\|$.

Conversely, let $\mu \in M(G,\tau)$ and $\phi(f) = \int_G f d\mu (f \in C_0(G,\tau))$. If $f \in C_0(G,\tau)$, then $\sigma(f) = f$. Hence,

$$\overline{\phi}(f) = \overline{\phi}(\sigma(f)) = \overline{\int_{G} \sigma(f) d\mu} = \int_{G} \overline{\sigma(f)} d\overline{\mu} = \int_{G} (fo\tau) d\overline{\mu}$$

$$= \int_{G} f d\overline{\mu} o \tau = \int_{G} f d\mu = \phi(f) .$$

$$(4)$$

Thus $\phi(f)$ is real.

Theorem 2. 4. Let G be a locally compact group with the left Haar measure λ and τ be a topological group involution on G. Then $\lambda o \tau = \lambda$.

Proof. It is easy to show that $\lambda o \tau$ is a positive measure on G. Also if B is a Borel set, then $\lambda o \tau(xB) = \lambda(\tau(xB)) = \lambda(\tau(x)\tau(B)) = \lambda(\tau(B)) = \lambda o \tau(B)(x \in G)$. Therefore, $\lambda o \tau$ is left invariant. So, there is a positive number c such that $\lambda o \tau(B) = c\lambda(B)$ for every Borel set B. If U is an open set, then $\lambda o \tau(\tau(U)) = c\lambda(\tau(U))$, i.e., $\lambda(U) = c\lambda(\tau(U))$ which is equal to $c^2\lambda(U)$. Therefore, for every open set U we have $\lambda(U) = c^2\lambda(U)$. So, c = 1. Hence, $\lambda o \tau = \lambda$.

For a locally compact group G and the Haar measure λ we defined $L^{p}(G,\tau) = \{f \in L^{p}(G) \mid fo\tau = \overline{f}\} (1 \le p \le \infty)$. Clearly $L^{p}(G,\tau) \subseteq L^{p}(G), L^{p}(G,\tau)$ is a real algebra and $L^{p}(G) = L^{p}(G,\tau) \oplus iL^{p}(G,\tau)$.

Theorem 2. 5. (a) For $1 \le p \le \infty$, $L^p(G, \tau)$ is a real Banach space, and $L^2(G, \tau)$ is a real Hilbert space with an inner product,

$$\langle f,g \rangle = \int_{G} \overline{g} d\lambda.$$
 (5)

(b) For each $f, g \in L^1(G, \tau), \max\{\|f\|_p, \|g\|_p\} \le \|f + ig\|\le \|f\|_p + \|g\|_p$.

(c) $L^{1}(G,\tau)^{*} = L^{\infty}(G,\tau)$.

(d) $L^1(G, \tau)$ has a bounded approximate identity of norm 1.

Proof. (a). Clearly, $L^{p}(G,\tau)$ is a real subspace of $L^{p}(G)$. Let $f,g \in L^{p}(G,\tau)$ then $f * g \in L^{p}(G)$, [4]. We will show that $f * g \in L^{p}(G,\tau)$. In order to do this, by (2.4) and (1) we have

$$(f * g)(\tau(x)) = \int_G f(y)g(y^{-1}\tau(x))d\lambda(y)$$

$$= \int_{G} f(\tau(\tau(y)))g(\tau(\tau(y))^{-1}x))d\lambda(y)$$

$$= \int_{G} \overline{f(\tau(y))}g(\tau(y^{-1})x)d\lambda(y)$$

$$= \int_{G} \overline{f(y)}g(y^{-1}x)d\lambda o \tau(y)$$

$$= \int_{G} \overline{f(y)}g(y^{-1}x)d\lambda(y) = \overline{(f * g)}(x)$$
(6)

for every $x \in G$, hence $f * g \in L^p(G, \tau)$. We now prove that $L^p(G, \tau)$ is complete. Let $\{f_n\}_{n=1}^{\infty}$ be a Cauchy sequence in $L^p(G, \tau)$. Since $L^p(G)$ is complete, there exists $f \in L^p(G)$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$. Now, there exists a subsequence of $\{f_n\}_{n=1}^{\infty}$ as $\{f_{n_k}\}_{k=1}^{\infty}$ such that $\lim_{k\to\infty} f_{n_k}(x) = f(x)$, λ -almost everywhere, and so $f(\tau(x)) = \lim_{k\to\infty} f_{n_k}(\tau(x)) = \lim_{k\to\infty} \bar{f}_{n_k}(x) = \bar{f}(x)$, λ almost everywhere. Therefore, $f \in L^p(G, \tau)$. Hence $L^p(G, \tau)$ is a real Banach algebra and not a complex algebra.

If $\langle f,g \rangle = \int_{G} f\overline{g}d\lambda$ for every $f,g \in L^{2}(G,\tau)$, then $\langle f,g \rangle = \overline{\langle f,g \rangle}$. Therefore $L^{2}(G,\tau)$ is a real Hilbert space.

(b) For $f, g \in L^{1}(G, \tau)$ we have $||f||_{p} \le \frac{1}{2}(||(f + ig)||_{p} + ||(f - ig)||_{p}) = ||f + ig||_{p}$. Similarly, $||g||_{p} \le ||f + ig||_{p}$.

(c) We know that $L^{1}(G)^{*} \cong L^{\infty}(G)$. Let $f \in L^{1}(G)$. So f = g + ih where $g, h \in L^{1}(G, \tau)$. Now, we define $\psi(f) = \phi(f) + i\phi(g)$ where $\phi \in L^{1}(G, \tau)^{*}$. It is clear that $\psi \in L^{1}(G)^{*}$ and therefore, there exists a unique $p \in L^{\infty}(G)$ such that $\psi(f) = \int_{G} f \ p d\lambda(f \in L^{1}(G))$.

Hence we have,

$$\overline{\psi}(\sigma(f)) = \overline{\psi}(g - ih) = \phi(g) - i\phi(h) = \psi(f).$$
(7) (*)

This implies that

$$\int_{G} f \ p d\lambda = \overline{\int_{G} \sigma(f) p d\lambda} = \int_{G} (fo\tau) \overline{p} d\lambda = \int_{G} f \ \overline{p} \sigma \tau d\lambda \ (f \in L^{1}(G)).$$
(8)

Therefore, $po\tau = \overline{p}$, i.e., $p \in L^{\infty}(G,\tau)$. Also, we have $\phi(f) = \int_{G} f p d\lambda$ for every $f \in L^{1}(G,\tau)$ and by (*) $\phi(f)$ is real. Conversely, if $\phi : L^{1}(G,\tau) \to R$ is defined by $\phi(f) = \int_{G} f$ where $p \in L^{\infty}(G,\tau)$ and f is an arbitrary function, then $\phi \in L^{1}(G,\tau)^{*}$ and the proof is complete.

(d) Let U be any compact neighborhood of e and (U_{α}) be the collection of all compact neighborhoods of e in U, which is directed by a set inclusion $(\alpha \leq \beta$ if and only if $U_{\alpha} \supseteq U_{\beta})$. If we define $f_{\alpha} = \frac{\chi_{U\alpha}}{\lambda(U_{\alpha})}$ and $g_{\alpha} = \frac{\chi_{\tau(U_{\alpha})}}{\lambda(\tau(U_{\alpha}))} = \frac{\chi_{U\alpha} \circ \tau}{\lambda(\tau(U_{\alpha}))}$, then, since τ is a homeomorphism, $\{f_{\alpha}\}$ and $\{g_{\alpha}\}$ are bounded approximate identities of norm one for $L^{1}(G)$. If we define $e_{\alpha} = \frac{f_{\alpha} + g_{\alpha}}{2}$, then $\{e_{\alpha}\}$ is a bounded approximate identity of norm one for $L^{1}(G)$, and also for $L^{1}(G,\tau)$ since $e_{\alpha} \in L^{1}(G,\tau)$.

Lemma 2. 6. For $1 \le p \le \infty$, the linear space $C_c(G, \tau)$ is a dense subspace of $L^p(G, \tau)$.

Real group algebras

Proof. Suppose that $f \in L^p(G,\tau)$, since $C_c(G)$ is a dense subspace of $L^p(G)$, there exists a sequence $\{f_n\}_{n=1}^{\infty}$ in $C_c(G)$ such that $\lim_{n\to\infty} ||f_n - f||_p = 0$. Let $g_n = \frac{f_n + \bar{f}_n \sigma \tau}{2}$. Then $g_n \in C_c(G,\tau)$ and $\lim_{n\to\infty} ||g_n - (\frac{f + \bar{f}\sigma \tau}{2})||_p = \lim_{n\to\infty} ||g_n - f||_p = 0$.

Theorem 2. 7. For $\mu \in M(G,\tau)$ and $\psi \in L^2(G,\tau)$, let $T_{\mu}\psi = \mu * \psi$. Each T_{μ} is a bounded operator on the real Hilbert space $L^2(G,\tau)$, and the mapping $\mu \to T_{\mu}$ is a faithful *-representation of $M(G,\tau)$. Note that $M(G,\tau)$ is a *-Banach algebra.

Proof. The linearity of T_{μ} on $L^2(G, \tau)$ is obvious, and the boundedness of T_{μ} , with $||T_{\mu}|| \le ||\mu||$, follows from [3,(20.12.ii)]. For $\psi \in L^1(G, \tau) \cap L^2(G, \tau)$, we have

$$(\mu * \nu) * \psi = \mu * (\nu * \psi) \tag{9}$$

[2, (19.2.iv)]. Thus $T_{\mu*\nu}(\psi) = T_{\mu}(T_{\nu}\psi)$ for all $\psi \in L^{1}(G,\tau) \cap L^{2}(G,\tau)$. Since $C_{c}(G,\tau) \subseteq L^{1}(G,\tau) \cap L^{2}(G,\tau)$, by Lemma (2.7), $L^{1}(G,\tau) \cap L^{2}(G,\tau)$ is dense in $L^{2}(G,\tau)$. It follows that $T_{\mu*\nu} = T_{\mu}T_{\nu}$. To show that $T_{\mu} \neq 0$ if $\mu \neq 0$, consider an $f \in C_{c}(G,\tau)$ such that $\int_{G} f^{*}d\mu \neq 0$. Since $\mu * f(e) = \int_{G} f^{*}d\mu \neq 0$ and $\mu * f$ is continuous; thus $T_{\mu}f$ is not a zero element of $L^{2}(G,\tau)$. Note that f^{*} is the involution of f.

3. AMENABILITY AND WEAK AMENABILITY OF REAL GROUP ALGEBRAS

In this section, we show that amenability of $L^{1}(G, \tau)$ and $L^{1}(G)$ are equivalent. We shall use some notions of [1].

Definition 3. 1. A Banach algebra A over F is called amenable if for every Banach A-module X over F, $H^{1}(A, X^{*}) = \{0\}$.

Let A be a Banach algebra over F, and X be a Banach A-module over F. If F = R, we say that X is a real Banach A-module for the real Banach algebra A. If F = C, we say X is a Banach A-module for the Banach algebra A.

Definition 3. 2. Let X be a real Banach space. Then $BL_R(X,C)$, consists of all complex-valued continuous real-linear functional on X, which is a real Banach space, denoted by X' and called the complex dual of X.

If A is a real Banach algebra and X is a real Banach A-module, then X' with the natural module action is also a real Banach A-module.

Note that in this case X' is isomorphic to $X^* \times X^*$.

Lemma 3. 3. Let G be a locally compact group and let τ be a topological involution on G. Suppose X is a real Banach $L^1(G,\tau)$ -module. Then $H^1(L^1(G,\tau), X') = \{0\}$ if and only if $H^1(L^1(G,\tau), X^*) = \{0\}$.

Proof. It is easy to see that $Z^1(L^1(G,\tau), X') = Z^1(L^1(G,\tau), X^*) \oplus iZ^1(L^1(G,\tau), X^*)$. Now, let $H^1(L^1(G,\tau), X^*) = \{0\}$ and let $D \in Z^1(L^1(G,\tau), X')$. There exist elements a and b in X^* such that $D = \delta_a + i\delta_b$. If c = a + ib, then $c \in X'$ and $d = \delta_c$. Hence $H^1(L^1(G,\tau), X') = \{0\}$.

Conversely, we assume that $H^{1}(L^{1}(G,\tau), X') = \{0\}$ and let $D \in Z^{1}(L^{1}(G,\tau), X^{*})$. By the assumption $D \in B^{1}(L^{1}(G,\tau), X')$. Clearly, $B^{1}(L^{1}(G,\tau), X') = .B^{1}(L^{1}(G,\tau), X^{*}) \oplus iB^{1}(L^{1}(G,\tau), X^{*})$

Hence there exist unique elements D_1, D_2 in $B^1(L^1(G, \tau), X^*)$ such that $D = D_1 + iD_2$. On the other hand, D = D + i0 where $D, 0 \in Z^1(L^1(G, Z), X^*)$. Therefore, we have $D_1 = D$ and $D_2 = 0$. Hence $D \in B^1(L^1(G, \tau), X^*)$ and so $H^1(L^1(G, \tau), X^*) = \{0\}$.

Lemma 3. 4. Let $(X, \|.\|)$ be a real Banach space and $X \times X$ be the (complex) linear space under the standard operations of addition and scalar multiplication. If we equip $X \times X$ by the norm $\||.\||$, which satisfies the inequalities

$$\max\{\|x\|, \|y\|\} \le C_1 \||$$
(10)

and

$$\| | (x, y) \| \le C_2 \max\{ \| x \|, \| y \| \},$$
(11)

for constants C_1 and C_2 , then

(i) $(X \times X, |||, |||)$ is a Banach space

(ii) The map $\eta: X \to X \times X$, defined by $\eta(x) = (x,0)$, is a real-linear continuous mapping. (iii) The map $\psi: X' \to (X \times X)^*$, defined by $\psi(\lambda)(x, y) = \lambda(x) + i\lambda(y)$, is a real-linear continuous mapping onto the real Banach space $(X \times X)^*$.

Proof. (i) and (ii) are clear. (iii) ψ is a well-defined real-linear mapping. For each $\lambda \in X'$ we have

$$\|\psi(\lambda)\| = \sup\{|\psi(x, y)|:\| | (x, y)|| \le 1, x, y \in X\}$$

$$\le \sup\{|\lambda(x)| + |\lambda(y)|:\| x \| \le C_1, \| y \| \le C_1, x, y \in X\}$$

$$\le 2C_1 \|\lambda\|.$$
 (12)

Hence ψ is continuous. On the other hand, for each $\lambda \in X'$ we have

$$\|\psi(\lambda)\| = \sup\{|\psi(\lambda)(x,0)| : x \in X, \||(x,0)\|| \le 1\}$$

$$\ge \{|\lambda(x)| : x \in X, C_2 \|x\| \le 1\} = C_2^{-1} \|\lambda\|.$$
(13)

Hence ψ is one-to-one. To show that ψ is onto, let $\Lambda \in (X \times X)^*$. Then $\Lambda o \eta \in X'$ and $\psi(\Lambda o \eta) = \Lambda$.

Theorem 3.5 Let G be a locally compact group and τ be a topological involution on G. Then $L^1(G,\tau)$ is amenable if and only if $L^1(G)$ is amenable.

Proof. Let $L^1(G, \tau)$ be amenable, X be a Banach $L^1(G)$ -module and $\Delta \in Z^1(L^1(G), X^*)$. If X_R represents X as a real Banach space then it is a real Banach $L^1(G, \tau)$ -module under the module actions defined by

$$f x = (f + i0)x, \quad x f = x(f + i0), (f \in L^{1}(G, \tau), x \in X)$$
(14)

Now we define the map $D: L^1(G, \tau) \to X^*_R$ by $Df = \operatorname{Re}\Delta(f+i0)$. Clearly D is a real-linear mapping and since for each $f \in L^1(G, \tau)$

$$|| Df || \le \sup\{|\Delta(f+i0)(x)| : x \in X, ||x|| \le 1\} \le ||\Delta|| ||f||,$$
(15)

D is continuous. On the other hand, for each $f, g \in L^1(G, \tau)$,

$$(Df).g = \operatorname{Re}(\Delta(f+i0).(g+i0)), f.(Dg) = \operatorname{Re}((f+i0).\Delta(g+i0)).$$
(16)

Hence $D(fg) = (Df) \cdot g + f \cdot (Dg)$ and so $D \in Z^1(L^1(G, \tau), X^*_R)$. The amenability of $L^1(G, \tau)$ implies that there exists $u \in X^*_R$ such that $D = \delta_u$. Now we define $\lambda : X \to C$ by $\lambda(x) = u(x) - iu(ix)$. Clearly $\lambda \in X^*$ and for $f \in L^1(G, \tau), x \in X$ we have

$$(\lambda .. (f+i0))(x) = u(f.x) - iu(f.ix), ((f+i0).\lambda)(x) = u(x.f) - iu(ix.f).$$
(17)

We can show that $\Delta(f + ig))(x) = (\delta_{\lambda}(f + ig))(x)$ for every $f, g \in L^{1}(G, \tau)$ and $x \in X$. Hence $\Delta = \delta_{\lambda}$ and so Δ is an inner derivation, i.e. $H^{1}(L^{1}(G), X^{*}) = \{0\}$ Thus $L^{1}(G)$ is amenable.

Conversely, let $L^1(G)$ be amenable and let X be a real Banach $L^1(G, \tau)$ -module. By Lemma 3.3 it is enough to show that $H^1(L^1(G), X') = \{0\}$. Let $D: L^1(G, \tau) \to X'$ be a continuous real derivation. By Lemma 3.4, $X \times X$ is a Banach space under the norm $||| (x, y) ||| = \max\{||x||, ||y||\}$. The map $\psi: X' \to (X \times X)^*$, defined by $\psi(\lambda)(x, y) = \lambda(x) + i\lambda(y)(x, y \in X, \lambda \in X')$ is a continuous real-linear mapping which is one-one and onto. The space $X \times X$ is a Banach $L^1(G)$ -module under the familiar module actions. Now we define the map $\Delta: L^1(G) \to (X \times X)^*$ by $\Delta(f + ig) = \psi(Df) + i\psi(Dg)$. Clearly Δ is a complex linear mapping and for $f, g \in L^1(G)$,

$$\|\Delta(f+ig)\| \le \|\psi\| \|D\| \|f\|_{1} + \psi \|D\| \|g\| \le 2 \|\psi\| \|D\| \max\{\|f\|_{1}, \|g\|_{1}\}$$
(18)
$$\le 2 \|\psi\| \|D\| \|f+ig\|_{1}.$$

Hence Δ is continuous. Considering the module actions on $X \times X$ we can show that

$$\psi((Df).g) = \psi(Df).(g+i0) \tag{19}$$

and

$$\psi(f.(Dg)) = (f+i0).\psi(Dg) \tag{20}$$

Since D is a X'-derivation on $L^1(G, \tau)$, by using the above equation we have

$$\Delta((f_1 + ig_1).(f_2 + ig_2)) = (\Delta(f_1 + ig_1).(f_2 + ig_2) + (f_1 + ig_1).(\Delta(f_2 + ig_2)).$$

Therefore, $\Delta \in Z^1(L^1(G), (X \times X)^*)$ and so there exists $\Lambda \in (X \times X)^*$ such that $\Delta = \delta_{\Lambda}$. Since ψ is onto and one-to-one there exists a unique $\lambda \in X'$ such that $\Lambda = \psi(\lambda)$.

Now we notice that $\psi(f.\eta) = (f+i0).\psi(\eta)$ and $\psi(\eta.f) = \psi(\eta).(f+i0)$ for every $f \in L^1(G, \tau)$ and $\eta \in X'$. Hence

$$\psi(Df) = \psi(Df) + i\psi(D0) = \Delta(f + i0) = \delta_{\Lambda}(f + i0)$$

A. Ebadian / A. R. Medghalchi

$$(f+i0).\Lambda - \Lambda.(f+i0) = (f+i0).\psi(\lambda) - \psi(\lambda).(f+i0)$$
(21)
= $\psi(f.\lambda) - \psi(\lambda.f) = \psi(\delta_{\lambda}(f)).$

Since ψ is one-to-one, it implies that $D(f) = \delta_{\lambda}(f)$ for each $f \in L^{1}(G, \tau)$ and $D = \delta_{\lambda}$. This completes the proof.

Theorem 3. 6. Let G be a locally compact group and let τ be a topological involution on G. Then $L^1(G,\tau)$ is weakly amenable if and only if $L^1(G)$ is weakly amenable.

Proof. Let $L^{1}(G,\tau)$ be a weakly amenable real Banach algebra. We show that for each $\Delta \in Z^1(L^1(G), L^1(G)^*)$ there exists $\Lambda \in L^1(G)^*$ such that $\Delta = \delta_{\Lambda}$. Let $\eta : L^1(G, \tau) \to L^1(G)$ be defined by $\eta(f) = f + i0$ and $\psi: L^1(G, \tau)' \to L^1(G)^* \times L^1(G)^*$ be defined by $\psi(\lambda)(f+ig) = \lambda(f) + i\lambda(g)$. By Lemma 3.4, η and ψ are continuous real-linear mapping. Also, ψ is a one-to-one and onto mapping from the real Banach space $L^1(G,\tau)'$ onto $L^1(G)^*$ as a real Banach space. By the open Mapping Theorem for real Banach spaces, $\psi^{-1}: L^1(G)^* \times L^1(G)^* \to L^1(G,\tau)'$ is a real-linear continuous mapping. Now if we define $D = \psi^{-1} o \Delta o \eta$, then it is easy to see that D is a real-linear continuous mapping. To show that D is an $L^1(G,\tau)'$ -derivation on $L^1(G,\tau)$ we see that

$$\psi(D(fg)) = (\psi o D)(fg) = \Delta(fg + i0) = \Delta((f + i0).(g + i0))$$

= $(\Delta o \eta)(f).(g + i0) + (f + i0).(\Delta o \eta)(g)$ (22)
= $\psi(Df).(g + i0) + (f + i0).\psi(Dg).$

On the other hand, $\psi(\mu)(f+i0) = \psi(\mu,f)$ and $(f+i0).\psi(\mu) = \psi(a,\mu)$ for $f \in L^1(G)$ and $\mu \in L^1(G,\tau)'$. Hence, for each $f, g \in L^1(G,\tau)$ we have

$$\psi(D(fg)) = \psi(Df.g) + \psi(f.Dg) = \psi(Df.g + f.Dg).$$
⁽²³⁾

Since ψ is one-one, we conclude that D is an $L^1(G,\tau)'$ -derivation, i.e. $D \in Z^1(L^1(G,\tau), L^1(G,\tau)')$. By Lemma 3.3, the weak amenability of $L^1(G,\tau)$ implies that there exists $\lambda \in L^1(G,\tau)'$ such that $D = \delta_{\lambda}$. By definition of D and the above equalities it implies that $\Delta = \delta_{\psi(\lambda)}$, and so $L^1(G)$ is weakly amenable.

Conversely, let $L^{1}(G)$ be weakly amenable and $D \in Z^{1}(L^{1}(G,\tau), L^{1}(G,\tau)')$. By Lemma 3.4 the map $\psi : L^{1}(G,\tau)' \to L^{1}(G)^{*} \times L^{1}(G)^{*}$, defined by $\psi(\lambda)(f+ig) = \lambda(f) + i\lambda(g)$, is a real-linear continuous one-to-one mapping onto $L^{1}(G)^{*} \times L^{1}(G)^{*}$, as a real Banach space.

Now we define the map $\Delta: L^1(G) \to L^1(G)^* \times L^1(G)^*$ by $\Delta(f + ig) = \psi(Df) + i\psi(Dg)$. Similar to the proof of Theorem 3.4 we can show that Δ is a continuous derivation. Hence there exists $\Lambda \in L^1(G)^* \times L^1(G)^*$ such that $\Delta = \delta_{\Lambda}$. Since ψ is one-to-one and onto, there exists a unique $\lambda \in L^1(G, \tau)'$ such that $\Lambda = \psi(\lambda)$. It can be shown that $D = \delta_{\lambda}$ and so $L^1(G, \tau)$ is weakly amenable by Lemma 3.3.

Corollary 3.7. Let G be a locally compact group and τ be a topological involution on G. Then (i) $L^1(G,\tau)$ is amenable if and only if G is amenable.

(ii) $L^1(G,\tau)$ is weakly amenable.

Real group algebras

Proof. By Theorem 3.5 and 3.6 the amenability and weak amenability of $L^1(G, \tau)$ and $L^1(G)$ are equivalent. Since $L^1(G)$ is amenable if and only if G is amenable [5], (i) follows. Since $L^1(G)$ is weakly amenable [6], we conclude that $L^1(G, \tau)$ is also weakly amenable.

4. MULTIPLIERS

In this section we characterize the multipliers of $L^1(G, \tau)$. A bounded real linear operator T on $L^1(G, \tau)$ is called a left (right) multiplier if T(f * g) = (Tf) * g(= f * Tg) $f, g \in L^1(G, \tau)$).

Definition 4. 1. Let δ_x be the point mass at $x \in G$. We define $m_x = \frac{\delta_x + \delta_{\tau(x)}}{2}$ and $R_x(f) = m_x * f(f \in L^1(G, \tau))$. It is clear that $m_x o \tau = m_x$ (since $\tau^2 = \tau$) and $||m_x|| = 1$. Therefore, $m_x \in M(G, \tau)$.

Lemma 4.2. Let μ be a measure in M(G) such that $f * \mu \in L^1(G, \tau)$ for every $f \in L^1(G, \tau)$. Then $\mu \in M(G, \tau)$.

Proof. We have
$$f * \mu(x) = \int_{G} f(xy^{-1}) d\mu((y) \ (x \in G)$$
. Therefore,
 $f * (\overline{\mu}o \tau)(x) = \int_{G} f(xy^{-1}) d(\overline{\mu}o \tau)(y)$
 $= \int_{G} f(x(\tau(y^{-1})) d\overline{\mu}(y)$
 $= \int_{G} \overline{f}(\tau(x)y^{-1}) d\overline{\mu}(y)$ (24)
 $= \int_{G} f(\tau(x)y^{-1}) d\overline{\mu}(y)$
 $= \overline{f} * \mu(\tau(x)) = f * \mu(x)$.

So $f * (\overline{\mu}o\tau) = f * \mu$ for every f in $L^1(G, \tau)$. Since $L^1(G, \tau)$ has a bounded approximate identity, we have $\overline{\mu}o\tau = \mu$. Hence $\mu \in M(G, \tau)$.

Theorem 4. 3. Let T be a left multiplier on $L^1(G,\tau)$. Then there exists a unique $\mu \in M(G,\tau)$ such that $Tf = f * \mu(f \in L^1(G,\tau))$ and $\|\mu\| = \|T\|$.

Proof. We define $T_0 : L^1(G) \to L^1(G)$ by $T_0(f) = T(g) + iT(h)$ where f = g + ih. We have $T_0(f_1 * f_2) = T_0((g_1 + ih_1) * (g_2 + ih_2))$ $= T_0(g_1 * g_2 + ih_1 * g_2 + ig_1 * h_2 - h_1 * h_2)$ $= T_0(g_1 * g_2 - h_1 * h_2) + iT(h_1 * g_2 + g_1 * h_2)$ (25) $= g_1 * Tg_2 - h_1 * Th_2 + ih_1 * Tg_2 + ig_1 * Th_2$ $= (g_1 + ih_1) * (Tg_2 + iTh_2)$ $= f_1 * T_0 f_2.$ Hence, T_0 is a left multiplier on $L^1(G)$. Therefore, by [7] there exists a unique $\mu \in M(G, \tau)$ such that $T_0 h = h * \mu$ for every h in $L^1(G)$ and $||T_0|| = |\mu|(G)$. Consequently, $Tf = f * \mu$ for every $L^1(G, \tau)$ and $||T|| \le ||T_0|| = |\mu|(G)$. Now, since $f * \mu \in L^1(G, \tau)$ for all $f \in L^1(G, \tau)$, $\mu \in M(G, \tau)$ by Lemma 4.2. But by the proof of [7, Theorem 1] we have $\mu = \omega^* - \lim_{\alpha} T_0 e_{\alpha} = \omega^* - \lim_{\alpha} Te_{\alpha}$. Now, since $||Te_{\alpha}|| \le ||T||$,

$$\|\mu\|(G) \le \|T\|. \tag{26}$$

Therefore, $||T|| = ||\mu||$.

REFERENCES

- 1. Ingelstam, L. (1964). Real Banach algebras, Ark. Math. 5, 239-270.
- 2. Kulkarni, S. H. & Limaye, B. V. (1992). "Real function algebras" Marcel Dekker, Inc.
- 3. Hewitt, E. & Ross, K. A. (1963) & (1970). Abstract harmonic analysis, Vols, I, II Springer-Verlag, Berlin.
- 4. Bonsall, F. F. & Duncan, J. (1973). "Complete normed algebras", Springer-Verlag, New.
- 5. Johnson, B. E. (1972). Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127.
- 6. Johnson, B. E. (1991). Weak amenability of group algebras, Bull. London. Math. Soc. 23, 281-284.
- 7. Wendel, J. G. (1952). Left centralizers and isomorphism of group algebras, Pacific. J.Math. 2, 251-261.