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Abstract – In the analysis of spatial point patterns, complete spatial randomness (CSR) hypothesis, 
which is a restriction of a homogenous Poisson process to study region A, operates as a dividing 
hypothesis between “regular” and “aggregated” patterns. Meanwhile, many alternatives to CSR in 
aggregated patterns are extensions of homogenous Poisson processes themselves. Therefore, when the 
CSR hypothesis is rejected, results related to Poisson processes may be used to formulate plausible 
alternatives to CSR. In this paper, we propose a new statistic for testing CSR and then by applying it in 
conjunction with a notion of kernels of a point pattern, we determine the “parents” of a Poisson cluster 
process when the CSR hypothesis is rejected and a Neyman-Scott process is assumed for the point 
pattern under alternative hypothesis. We have made power studies for our test statistic by simulation, and 
have also surveyed the performance of our method on a certain point pattern. Finally, the whole method 
is carried on certain real life data.  

           
Keywords – Spatial point patterns, complete spatial randomness, poisson processes, Neyman-Scott processes, 
cluster analysis 
 

1. INTRODUCTION 
 

A spatial point pattern is a set of locations, irregularly distributed within a region of interest, which 
have been generated by some unknown mechanism. These locations are usually referred to as events 
to distinguish them from arbitrary points of the region in question. A main approach in the analysis of 
spatial point patterns is the formulation of an explicit model of the underlying mechanism. 

Most available methods of analysis are “space-domain” techniques that involve the examination 
of inter-event distances, but the potential of applying spectral techniques in the study of spatial point 
patterns is also gaining recognition, at least in relation to the exploratory stages of analysis, [1]. 

Most analysis begins with a test of complete spatial randomness (hereafter CSR). The hypothesis 
of CSR for a spatial point pattern asserts that: (i) the number of events in any planar region A with 
area |A| (|A|, the Lebesgue measure of the Borel set A), follows a Poisson distribution with mean |A|; 
(ii) given n points xi in a region A, the xi’s are an independent sample from the uniform distribution 
on A. 

There are at least three reasons for beginning an analysis with a test of CSR: 1. rejection of CSR 
is a minimal prerequisite for any serious attempt to model an observed pattern; 2. tests are used to 
explore a set of data to assist in the formulation of plausible alternatives to CSR; 3. CSR operates as a 
dividing hypothesis between regular and aggregated patterns, (Diggle [2]). 
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In emphasizing more on the role of CSR tests, and in order to introduce the method presented in 
this paper, we note that any alternative to CSR in aggregated models is an extension of an 
homogeneous Poisson process to more general processes. A large class of such processes useful in 
modeling spatial point patterns is the Poisson cluster process, introduced by Neyman and Scott [3]. In 
such a process, a set of parent “events” are generated by a homogeneous Poisson process, after which 
each parent produces a random number S of offspring, realized independently and identically for each 
parent according to a probability distribution {ps, s = 0,1,2, ...}. The positions of the offspring relative 
to their parents being independently and identically distributed according to a bivariate probability 
distribution function (PDF) h(.). 

Here, in this paper, we propose a method for testing CSR against a particular Poisson cluster 
process by identifying the parent events based on a set of data in a region A of the plane.  We are not 
identifying h(.), the PDF of the positions of offspring relative to their parents explicitly, but only 
mention that our method assumes that h(.) is of any general type, and that the probability of an 
offspring being at a distance d is proportional to d. 

Our method rests solely on tests of CSR, and since these tests have a central role in the method, 
we offer a new procedure for CSR tests based on the projection of higher dimensional data on certain 
lines and forming a one-dimensional data set, which under CSR hypothesis is a restriction of a one-
dimensional homogeneous Poisson process to an interval. A short account of this idea for testing CSR 
is reported by one of the authors (Vahidi-Asl [4]), where Theorem 2 in subsection 2.1 below is 
applied to the three data sets given by Diggle [2] as real life prototypes of regular, random, and 
aggregated patterns, and is led to the same conclusions obtained by Diggle using Monte Carlo tests, 
(Barnard [5]). In the present work, the proof of Theorem 1 of subsection 2.1 is improved and an 
explicit formula is given for the distribution of respective statistic. 

The paper is organized as follows:  in Section 2 we introduce a statistic that is used throughout 
this paper for our CSR tests.  Section 3 is devoted to a power study by simulation in which the power 
of our test statistic is compared to the power of a test statistic known to be powerful.  In Section 4 we 
introduce a concept called “average concentration level”, which is used to identify the parent events 
in some alternative hypothesis to CSR. In the final section we apply the methods introduced in this 
paper to a real life data, that of longleaf pine data described in [6]. 
 

2.  TESTING FOR COMPLETE SPATIAL RANDOMNESS 
 

The standard against which spatial point patterns are often compared is (a realization from) a 
completely spatially random point process.  In this paper, following [6], CSR is synonymous with a 
homogeneous Poisson process in Rd with the definition given in the introduction. 

Several different approaches are usually taken to quantify different types of spatial point 
patterns. One type of descriptive statistic is based on quadrats. Another type of statistic is based on 
distances between events, or between randomly sampled points (of the study region A, not of the point 
pattern) and events. 

Many of these statistics, based on distances, have explicit, exact or asymptotic distributions, a 
summary of which is presented in Table 8.6 of [6]. 

We are taking a new approach here and introduce a test statistic whose exact and asymptotic 
distribution is readily obtained in the next section. 
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2.1 Theoretical results  
 

Since the statistics to be introduced are based upon points distributed along a line with 
exponential distribution for the distance between two consecutive points, we consider the one-
dimensional case first. 

Let the points 11 +n, X, X K  be distributed randomly along the stretch of a line so that the 
random variables  
 

 , XXT iii −= +1         ,n,,i K21=  
 

are independent and exponentially distributed random variables with mean λ−1. We place line 
segments of length c on every point Xi along the supporting line of the Xi’s so that Xi is the midpoint 
of this line segment. These lines either overlap or there is a gap between two consecutive line 
segments.  If we denote the gap between line segments centered on Xi and Xi+1 by Yi, then we have  
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from which we conclude that Un has a mixed distribution with a discrete part, which is a point mass at 
0, and an absolutely continuous part with density 
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The following result is obtained by a straightforward application of the central limit theorem. 

 

Theorem 2. Let T1,…,Tn be iid random  variables  with  a common exponential distribution with 

mean λ-1. Then the random variable +

=

−=∑ c)(TU i

n

i 1
 has an asymptotic normal distribution with 

mean  1 c--
n en]-c)n.E[(T λλ=+  and variance ( )c-c--

n een]-c)n.Var[(T λλλ −=+ 22 .  
For large n, the computational time in using the exact distribution in later applications is 

somewhat long, but these computations for asymptotic distribution is immediate.  So for large n, 
using asymptotic distribution is preferred.    

To obtain a rough idea of how large n should be in order to use the asymptotic distribution, the 
quantiles of the exact and asymptotic distributions have been compared for different values of n (5, 
20, 30, 40, 60 and 70). The results are shown in Fig. 1. The averaged absolute values of differences 
between asymptotic and exact quantiles decrease by increasing n, and for n≥40 this average is less 
than 0.0099. Hence, it seems that for n≥40 the asymptotic distribution would be applicable. 
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Fig. 1. Comparing quantities of exact and asymptotic distributions for different n.  

The x and y axes represent exact and asymptotic quantiles, respectively 
 
2.2 Adapting to planar data 
 

Our method for testing for CSR rests solely on data distributed on a line segment so that the 
distances between consecutive points are iid random variables with common exponential distribution. 
This is true, for example in case n points belonging to a one-dimensional homogeneous Poisson 
process with “edge effects” due to confinement to a line segment completely ignored. The idea of 
exploiting the statistic Un above is very simple. If the n+1 events are almost regularly distributed 
along their supporting line, and c is chosen close to the average distance between all of the events, 
then Un will be small. For events randomly distributed under CSR hypothesis, the value of Un should 
be moderate and for aggregated data or events somehow showing clustering, the value of Un should 
be large. In the sequel, the value of c is taken as the range of values of xi divided by n-1. 

We now try to adapt it to planar data. Considering a rectangle A with sides a and b so that the 
hypothesis of CSR is valid in this rectangular region, we divide the sides of lengths a and b into l and 
m equal parts, respectively, and draw lines parallel to the sides so that the original rectangle is 
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subdivided into m rectangles with sides a and b/m and l rectangles with sides b and a/l. Now consider 
the horizontal rectangles first.  If we denote these rectangles by A1, A2 ,…,Am, we project all the 
events inside Aj; j=1,2,…,m on the base of the rectangle, i.e., the side with length a. If we denote two 
consecutive projections in the rectangle Aj by Xij and Xi+1,j and the distance between the events Xij 
and Xi+1,j by Tij, then under CSR  
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and therefore, Tij’s are independent and each Tij has an exponential distribution with mean m(λb)-1, 
and hence we are back to the one-dimensional case again.  Of course the edge effects are completely 
ignored again.  Doing the same on all the strips A1,…, Am, we may consider the statistic 
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which is the sum of n-m iid random variables with a common exponential distribution with mean 
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correspond to the regular data, and large values of U and V correspond to aggregated data.  Therefore 

we will reject the CSR hypothesis unless  
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Rephrasing, if we denote the two-dimensional statistic (U, V) by W, then we reject the CSR 
hypothesis if W is not in the rectangle ).,v(v),u(u 2121 ×  
 
Remark. There remains the choice of m and l in applications. We have chosen ]/[ anbm =  and 

]/[ mnl = , where [x] is the integer part of the real number x. In practice we have used the y-range for 
b and x-range for a where (x, y) is the coordinate of a typical event. 

In the sequel, ignoring the edge effects, we have pieced together the horizontal strips in 
consecution and made up a single strip. The same has been done for vertical strips too.  Necessary 
modifications are made in the values of m and l in applying the above theory. We also mention that, 
due to the rotational invariance of the homogenous Poisson process, we may project the events on any 
two sets of equidistant parallel lines intersecting the study region A, but in that case we need to 
discard some non-rectangular subregions at both ends of the strips between two parallel lines before 
piecing together the consecutive strips. Therefore, because of the rectangular shape of the study 
region A, using lines parallel to the sides of A will result in no loss of data. 
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wherever needed (for more details, see Karr [8]). 
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2.3 An application 
 

We now apply our method for testing CSR to a real life data, that is to longleaf-pine data 
(Cressie [6], page 579). These data consist of coordinates of all longleaf pine trees at least 2 cm in 
diameter at breast height in 4 ha of forest in 1979, making a total of 584 such trees. 

Using the W statistic of subsection 2.2, we obtain a p-value of 0.0003. Thus rejecting the CSR 
hypothesis [to be compared with table 8.7 of Cressie [6] (page 608)]. 
 

3.  A POWER STUDY BY SIMULATION 
 
To give an idea of the performance of this method, we make a comparison of the relative frequencies 
of rejections by two test statistics on a certain point pattern to be described below.  One of the test 
statistics, denoted as K in Cressie [6] (page 608), is due to Diggle [9] whose value is  
  

( ){ } ( )[ ] ( ),n/ZD/nZDn iiii 1132log2log48 2222 ++−+ ∑∑  
 
where Di is the distance between the ith sample point to the nearest event and Zi is the distance 
between that nearest event to the nearest event in half plane not containing the sample point i (Cressie 
[6], page 602). The other test statistic is, of course, the W statistic described at the end of section 2.2. 

As for our point pattern, using some of Matern’s idea [10], we generate each data set for 
simulation in two stages: in the first stage, we generate 40 points (events) in a square of side one 
under CSR hypothesis. In other words, these 40 events are distributed uniformly and independently in 
the unit square, and these are called the parent events. In the second stage, corresponding to each 
parent event, 7 additional points called daughter events are generated uniformly and independently 
inside a circle of a radius of 0.05 drawn around parent events. Parent and daughter events are both 
present in our point pattern, although we distinguish between them in our records for later uses.  

A typical realization of such a process is shown in Fig. 2(a). Fig. 2(b) represents the set of parent 
events generated by S-plus.  

 
Fig. 2. Examples of simulated events 

 
At each simulation, we generate the above point pattern, and compute the p-values 

corresponding to the values of K and W statistics. Then we remove one of the daughter events relating 
to each parent event at random, and compute the p-values corresponding to the values of K and W 
statistics again for the new set of events with one daughter event removed (r=1, where r denotes the 
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number of removed daughter events). In the next step, we remove another daughter event relating to 
each parent event at random (r=2), and repeat the calculation for the p-values. We continue these 
steps until all daughter events are removed and only the parent events remain. 

We repeat the simulation 500 times, and using these p-values, we obtain the relative frequencies 
of rejection of H0 by K and W statistics compared to the values of α=0.01, 0.05, 0.1 as significance 
levels. So for a specific α, these relative frequencies can be plotted versus r for each statistic. 

The result is plotted in Fig. 3 and indicates that the test statistic W is more powerful than the K 
statistic, at least for the point pattern described above. We have singled out the K test statistic from 
Table 8.7 of Cressie [6] because of its better performance compared to many others listed in this 
table.  

  
Fig. 3. The power functions for W and K test statistics for 3 different  

significance levels, solid and dotted lines, respectively 

  
4.  AVERAGE CONCENTRATION LEVEL AND KERNEL IDENTIFICATION 

 
As mentioned in the introduction, many alternatives to the CSR hypothesis in aggregated models of 
point patterns are extensions of homogeneous Poisson processes. A notable case is the Neyman-Scott 
[3] process in which for each event (parent event), a random number of offspring (daughter events), 
are distributed independently of other parents, with locations according to some specified bivariate 
PDF h(.). The question is whether the parent events, or events assuming such a role, could be 
recaptured by some mechanism. Of course due to the interactions by daughter events, we do not 
expect to obtain the “exact parents”, but events that “dominate” others in some neighborhood. We 
will call such events “kernels” for reasons to be explained below. 

As a tool for distinguishing these kernels, we define the “average concentration level” of each 
event in A in the following manner: By assuming as before that there are n events in A, labeled by 
i=1,2,...,n,  let Ni(s) denote the number of events in a circle of radius s with center at i, i=1,2,...,n. Let 

( ) },...,,k,{t n
k  21 2=   denote the sequence of distances between all pairs of events in A arranged in an 

increasing order. To take into account the edge effects, we denote by Ai(s) the circle with center at the 
event labeled by i, i=1,2,...,n, and radius s. Define wi(s) as the weight in some s-neighborhood as  
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where |B| denotes the Lebesgue measure of the set B in R
2
. 

Now define the “average concentration level” at the event i with parameter p∈N as  
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In order to use ai(p) in finding the kernels, we compute ai(p) for all i and for some p, so that a 

maximum value is attained by ai(p) for some i. We call such an event a “kernel”. In theory, p should 
be taken equal to ( )n

2 , but for values of n that are not very small, this requires a large number of 
computations, let alone its usefulness in practice. Therefore we may use low to moderate “values” for 
p. In the present work, we have started with p=5 and have increased it by steps of 1 if no unique 
maximum values for ai(p)’s have been achieved. Obtaining values of ai(p) in this manner, we select 
the event with highest concentration level, i.e. with a maximum value of ai(p)’s. Specifically, the 
method is carried out according to the following algorithm:  
1. Take j=1 with j the stage number and form the kernel set S which is the whole set of events at the 
start.  
2. Perform CSR test and stop the algorithm if it is not rejected.  Otherwise go to the next step to find 
the kernels for the jth stage.  
3. Compute 

1
||
−

=
j

j n
Ac  where nj is the number of events in A, with n1=n.  

4. Take p=5.  
5. Compute ai(p) for all i =1, 2, ..., nj.  
6. If there is no unique i with a maximum value of ai(p)’s, then increase p by one and go to step 5.  
7. Take point i for which ai(p) is a maximum as kernel kj.  
8. Form a set, say Rj, of events other than kj which are inside a square with side jc  and the kernel 
kj as its center.  
9. Call all points in Rj the relatives of kj.  
10. Set jRSS −=  and then j=j+1.  
11. Start the next stage by going to step 2 and using the set of remaining events as the data set.  

After conducting this algorithm to the end, we will end up with the set of kernels S from which 
we can form the set of “relatives” to each “parent” by adjoining to each kernel the set of events 
eliminated on behalf of its kernel. Note that if any of the kernels 11   −jk...,,k at stage j is included in Rj, 
that kernel and its relatives will be included in Rj. Also some kernels in S may have no relatives. We 
call this algorithm the K-algorithm for later references. Also, we call the kernels found by using the 
K-algorithm the kernel set. 
 
Remark. The K-algorithm above may be regarded as an ad hoc method in cluster analysis.  In other 
words, the kernel set may be regarded as the “centers” of the clusters, to be called α-clusters to 
emphasize the role of significance of level α, and the set of daughters corresponding to each kernel as 
the data set belonging to that cluster. 
 
4.1 An example 
 

To demonstrate and examine the performance of the above method, we consider a Matern [10] 
point process with (M, λ, r) as parameters where M is the number of parent events uniformly and 
independently generated in the unit square, r is the radius of circles with centers at each parent event, 
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and λ is the mean of the Poisson number of daughter events in each circle. Evidently this is a special 
case of a Neyman-Scott point process. 

For our example we have chosen M=10, λ=6 and r=0.05. The original Matern process and the 
result after applying the K-algorithm is shown in Fig. 4 and Fig. 5. Unlike the common practice, here 
we have included the parent events in our point patterns everywhere.  
 

 
Fig. 4. A simulated Matern point process 

 

 
Fig. 5. The result of applying the K-algorithm to a simulated Matern point process 

   
Now the question remains about the “proximity” of the real parent events to the kernels found by 

our K-algorithm. This is especially crucial since because of the sequential nature of the tests leading 
to the kernel set-that assume the role of parent events-it is very difficult to give the overall size of the 
type 1 error. Therefore, for examining the performance of the K-algorithm over this particular point 
process, i.e. Matern’s, we find the Voronoi tessellation corresponding to the real parent events 
(Gordon [11]). We recall that each such parent event belongs to a region that is the set of all points of 
the region in question, here the unit square, which is closer to that event than to any other one.  We 
call this region a “face” of the Voronoi tessellation corresponding to the kernel set. 

Corresponding to each parent event, we say that a “hit” has occurred if one, and only one, event 
of the kernel set exists in the face of that event, otherwise we call it a “miss”. Now, the number of hits 
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is an appropriate, but a very strict criterion for examining the proximity of the real parents to the ones 
obtained by K-algorithm, i.e. the kernel set. The reason for its being strict is that when there is a miss, 
for example when there is no event of the kernel set in one of the faces, it is very likely that this event 
will appear in another face, thus causing another miss and reducing the number of hits. The results of 
applying the K-algorithm and the above criterion for examining the proximity is given for two 
different values of α- the significance level-and three different values of r-the radius parameter in the 
Matern process-in Fig. 6. These Figs. show the relative frequency of hits for 200 simulations.  

 

 
 

Fig. 6. The frequencies of different simulated hits 

 
5. AN APPLICATION 

 
As a final application, we have conducted the K-algorithm to longleaf pine data described in Section 
2.3. We have used four different values of α. The kernel set consists of 466, 426, 420, 420, 
corresponding to the values of 0.05, 0.10, 0.15, and 0.20 for α. Note the relative stability of the kernel 
set with respect to the increasing value of α. The result is shown in Fig. 7, the y-axis is labeled as 
frequency in the plots.  

  
Fig. 7. Kernel set for long-leaf pine data 
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