The largest class of algebraic hyper structures satisfying the module like axioms is the v H - module. In this paper, we consider the category of v H -modules and prove that the direct limit always exists in this category. Direct limits are defined by a universal property, and so are unique. The most powerful tool in order to obtain a module from a given v H - module is the quotient out procedure. To use this method we consider the fundamental equivalence relationε * , and then prove some of the results about the connection between the fundamental modules, direct systems and direct limits.
GHADIRI, M. and DAVVAZ, B. (2004). DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES. Iranian Journal of Science, 28(2), 267-275. doi: 10.22099/ijsts.2004.2876
MLA
GHADIRI, M. , and DAVVAZ, B. . "DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES", Iranian Journal of Science, 28, 2, 2004, 267-275. doi: 10.22099/ijsts.2004.2876
HARVARD
GHADIRI, M., DAVVAZ, B. (2004). 'DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES', Iranian Journal of Science, 28(2), pp. 267-275. doi: 10.22099/ijsts.2004.2876
CHICAGO
M. GHADIRI and B. DAVVAZ, "DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES," Iranian Journal of Science, 28 2 (2004): 267-275, doi: 10.22099/ijsts.2004.2876
VANCOUVER
GHADIRI, M., DAVVAZ, B. DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES. Iranian Journal of Science, 2004; 28(2): 267-275. doi: 10.22099/ijsts.2004.2876