The largest class of algebraic hyper structures satisfying the module like axioms is the v H - module. In this paper, we consider the category of v H -modules and prove that the direct limit always exists in this category. Direct limits are defined by a universal property, and so are unique. The most powerful tool in order to obtain a module from a given v H - module is the quotient out procedure. To use this method we consider the fundamental equivalence relationε * , and then prove some of the results about the connection between the fundamental modules, direct systems and direct limits.
GHADIRI, M., & DAVVAZ, B. (2004). DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES. Iranian Journal of Science, 28(2), 267-275. doi: 10.22099/ijsts.2004.2876
MLA
M. GHADIRI; B. DAVVAZ. "DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES", Iranian Journal of Science, 28, 2, 2004, 267-275. doi: 10.22099/ijsts.2004.2876
HARVARD
GHADIRI, M., DAVVAZ, B. (2004). 'DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES', Iranian Journal of Science, 28(2), pp. 267-275. doi: 10.22099/ijsts.2004.2876
VANCOUVER
GHADIRI, M., DAVVAZ, B. DIRECT SYSTEM AND DIRECT LIMIT OF v H -MODULES. Iranian Journal of Science, 2004; 28(2): 267-275. doi: 10.22099/ijsts.2004.2876