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Abstract – Several tables have been given due to −a minimal sets. Our main aim in this paper is to 
complete these tables by employing several examples. 
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PRELIMINARIES 
 

Let X  be a compact Hausdorff topological space, S  be a topological discrete semigroup with 
identity e  and XSX →×π :  ( ),(),( SsXxxssx ∈∀∈∀=π ) be a continuous map such that for 
all Xx ∈  and for all Sts ∈, , we have xxe =  and txsstx )()( = , then the triple ),,( πSX  or 
simply ),( SX  is called a transformation semigroup. In a transformation semigroup ),( SX  we have 
the following definitions: 
1. For each Ss ∈ , define the continuous map XXs →π :  by xsx s =π  ( Xx ∈∀ ), then ),E( SX  
or simply )E(X  is the closure of }|{ Sss ∈π  in XX  with pointwise convergence, moreover, it is 
called the enveloping semigroup (or Ellis semigroup) of ),( SX . )E(X  has a semigroup structure 
[1]. A nonempty subset K  of )E(X  is called a right ideal if KXK ⊆)E( , and it is called a 
minimal right ideal if none of the right ideals of )E(X  is a proper subset of K . The set of all 
minimal right ideals of )E(X  will be denoted by ))Min(E(X . 
2. A nonempty subset Z of X  is called invariant if ZZS ⊆ . Furthermore, it is called minimal if it is 
closed and none of the closed invariant subsets of X  is a proper subset of Z . The element Xa ∈  is 
called almost periodic if )E(Xa  is a minimal subset of X . 
3. Let Xa ∈ , A  be a nonempty subset of X , C  be a nonempty subset of )E(X , and K  be a right 
ideal of )E(X , then for each )E(Xp ∈ , )E()E(:L XXp →  such that pqqp =)(L  
( )E(Xq ∈∀ ) is a continuous map. The following sets are introduced: 

 
}bijective is :L|{)B( KKKpK p →∈= ,  }|{),F( aapCpCa =∈= , 

 
}surjective is :L|{)S( KKKpK p →∈= ,       I

Ab

CbCA
∈

= ),F(),F( , 

 
}injective is :L|{)I( KKKpK p →∈= ,   }|{),(F AApCpCA =∈= , 
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}|{)J( 2 ppCpC =∈= . 
 
4. Let Xa ∈ , A  be a nonempty subset of X , and K  be a closed right ideal of )E(X , then: 
• K  is called an −a minimal set if: 
 

                                 )E(XaaK = , 
 
K  does not have any proper subset like L , such that L  is a closed right ideal of 

)E(X  and  
 

                                   )E(XaaL = , 
 
the set of all −a minimal sets is denoted by )M(a  and it is nonempty; 
• K  is called an minimal−A  set if: 
 

                                 )E(XbbKAb =∈∀ , 
 
K  does not have any proper subset like L , such that L  is a closed right ideal of 

)E(X  and )E(XbbL =  for all Ab ∈ , 
the set of all minimal−A  sets is denoted by )(M A  and is nonempty; 
• K  is called an minimal−A  set if: 
 

                                 )E(XAAK = , 
 
K  does not have any proper subset like L , such that L  is a closed right ideal of 

)E(X  and  
 

                                )E(XAAL = , 
 
the set of all minimal−A  sets is denoted by )(M A . 
5. The following sets are introduced: 
 

)})),J(F()(M(|{),( ∅≠∈∀∧∅≠⊆= KAAKAXASXM , 
 

)})),(FJ()(M()(M|{),( ∅≠∈∀∧∅≠∧∅≠⊆= KAAKAAXASXM . 
 

6. Let Xa ∈  and A  be a nonempty subset of X , then: 
• ),( SX  is called −a distal if )M()E( aX ∈ , 
• ),( SX  is called )(−A distal (or simply −A distal) if ),( SX  be −b distal for each Ab ∈ , 
• ),( SX  is called )M(A distal if )(M)E( AX ∈ , 
• ),( SX  is called )M(A distal if )(M)E( AX ∈ . 
7. Let A  and B  be nonempty subsets of X  and }M,M{QR, ∈ , then: 
• B  is called ),( −−A almost periodic if: 
 

KLbLBbaKAa ⊆∈∃∈∀∈∀∈∀ )M()M( , 
 

• B  is called )(R,−A almost periodic if: 
 

KLBLaKAa ⊆∈∃∈∀∈∀ )R()M( , 
 

• B  is called Q),(−A almost periodic if ∅≠)Q(A  and: 
•  
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KLbLBbAK ⊆∈∃∈∀∈∀ )M()Q( , 
 

• B  is called Q)(R,A almost periodic if ∅≠)Q(A  and: 
 

KLBLAK ⊆∈∃∈∀ )R()Q( . 
 
Example 1. Let ]1,1[1 −=X  (with the induced topology of R ) and 1S  be the group of all 
homeomorphisms like 11: XXf →  ( 1S  has the discrete topology), then in the transformation 
semigroup ),( 11 SX  we have: 
1. If ]1,1[−∈a , and: 

 





≤≤+−
≤≤−++

=
10)1(

01)1(
xaxa

xaxa
xsa , 





<<−
−=

=η
11

1,1
xa

xx
x a , 





=∨≤<
≠∧≤≤−−

=µ
111

111
xxa

xax
x a , 

 
then 1Ssa ∈ , )E(, 1Xaa ∈µη , 11 µ=η  and 11 −− µ=η . 
2. We have: 
i. Using the connectness of ]1,1[− , for all 1Ss ∈  we have }1,1{}1,1{ −=− s  and 1Ss ∈− , moreover, 

for all }1,1{, 1 −−∈ Xba  there exists 1St ∈  such that bat = , 
 

ii. 




−∈=−
−∈−

=
)1,1(]1,1[
}1,1{}1,1{

1
1 xX

x
xS , 

 
iii. },{)E( 11 xxx XXx µµ−=µ∈∀ , 

 
iv. }2,1,|)1{()E()1,1( 11 =∈η−=η−∈∀ kXyXx y

k
x . 

 
3. We have: 
i. Only 1 and 1−  are almost periodic points of ),( 11 SX , 
ii. }1,1{−  is the unique minimal subset of ),( 11 SX , 
iii. for 1Xx ∈ , },{ xx µµ−  is a minimal right ideal of )E( 1X , 
iv. },{ 11 ηη− , },{ 11 −− ηη− , },{},{ 1111 ηη−∪ηη− −−  are the only proper subsets of 

}2,1,|)1{( 1 =∈η− kXyy
k  which are right ideals of )E( 1X . 

So:  
v. }|},{{ 1Xxxx ∈µµ−  is a subset of }))1,1({M})1,1({M)1M()(1M( −=−=−= , 
 

vi. )M(}2,1,|)1{()E()1,1( 11 xkXyXx y
k

x ∈=∈η−=η−∈∀ , 
 

vii. ))(M}2,1,|)1{()1,1(( 11 AkXyAXA y
k ∈=∈η−⇒∅≠−∩⊆∀ . 

 
4. Let }2,1,|)1{( 1 =∈η−= kXyK y

k , it is easy to see that: 
 

i. }|{)J( 1XyK y ∈η= , },,,{)I()B()S( 1111 ηη−ηη−−=== −−KKKK , 
 

ii. 




−∈∈η
−∈η−η

= −

}1,1{}|{
)1,1(},{

),F(
1 xXy

x
Kx

y

xx , 

 
iii. }{}),J({}),{,F(}1,1{1 xxxxxaaXx µ=µµ−=µµ−−∈∀∈∀ , 
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iv.  },{}),B({}),I({}),S({1 xxxxxxxxXx µµ−=µµ−=µµ−=µµ−∈∀ . 
 
                   5. }1))1,1(card(|{),(),( 11111 ≤−∩∧∅≠⊆== AAXASXSX MM . 
 
(Caution: for each 1

1
XXp ∈  by p−  we mean )()( xppx −=−  (for all 1Xx ∈ ).) 

 
Proof. 
1. We have the following cases: 
• 1,1−=a : For each N∈n , define: 
 









≤≤+−
−

−
+

−

+−≤≤−−+−
=

111
12
)22(

12

111)22()12(

ax
nn

an
n
x

n
axanxn

xfn . 

 

For each N∈n , 1Sfn ∈ , and ann
f η=

+∞→
lim , thus )E( 1Xaa ∈η=µ . 

• 11 <<− a : Choose N∈m  such that 






 ∈

+
+∪







 ∈

+
− NN n

mn
an

mn
a |1|1

 is a 

subset of )1,1(− . For each mn >  define: 
 














≤≤−+−+−+−

−≤≤+−+
−

+−≤≤−−++−+

=

1112)1(

1111
1

1112)1(

x
n

nnaxnna
n

x
n

a
n

x
n

xnnaxnna

xfn ,














≤≤+
+−
+−

+
+−

−

+≤≤
−+

+−

≤≤−
+

+−
+

+

=

11
1)1(
2)1(

1)1(

1)1)(12()22(

1
)1(

)1(1
)1(

x
n

a
an
an

an
x

n
axa

n
nannx

ax
an

an
an
x

xgn . 

 
For each mn > , 1, Sgf nn ∈ , and anmn

f η=
>

lim , anmn
g µ=

>
lim  thus )E(, 1Xaa ∈µη . 

2. 
iii. Let 1Xa ∈ . Each 1Ss ∈  is monotone, thus if s  is increasing we have aa s µ=µ  and if s  is 
decreasing, then aa s µ−=µ , so },{1 aaa S µµ−=µ  and },{)E( 11 aaaa SX µµ−=µ=µ . 
iv. Let 11 <<− a . Each 1Ss ∈  is monotone, thus if s  is increasing we have asa s η=η  and if s  is 
decreasing, then asa s −η−=η . On the other hand, for each 11 <<− b  there exists an increasing 

1Ss ∈  such 
that bas = , thus }2,1),1,1(|)1{(1 =−∈η−=η kyS y

k
a  and )E(}2,1],1,1[|)1{( 11 XSky aay

k η=η⊆=−∈η− . 
Now let Γ∈αα

η }{ y  be a convergent net in )E( 1Xaη . By compactness of ]1,1[−  there exists ]1,1[−∈y  
and a subnet of Γ∈αα}{y  like Ω∈βαβ

}{y  such that yy =
βαΩ∈β

lim , thus yy η=η
βαΩ∈β

lim , so 
}2,1],1,1[|)1{()E( 11 =−∈η−⊆η=η kySX y

k
aa , which completes the proof. 

3. 
i. Use (i) and (ii) in item (2). 
ii. Use (i) in item (2) and (i). 
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iii. Use (iii) in item (2). 
iv. By a similar argument as in (iv) in item (2), for }1,1{−∈a  we have 

},{)E( 1 aaa X ηη−=η . Now use (iv) in item (2). 
v. By (i) the elements 1−  and 1 are almost periodic, thus 

))Min(E(})1,1({M})1,1({M)1M()1M( 1X=−=−=−= ,on the other hand by (iii) we have  
 

                           ))Min(E(}|},{{ 11 XXxxx ⊆∈µµ− . 
 

vi. If 11 <<− a  by (ii) in item (2), 11 )E( XXa = , on the other hand by (iv) in item (2) we 
have 111 }2,1,|)1{()E( XkXyaXa y

k
a ==∈η−=η . Moreover, for each }1,1{−∈b  we have 

1}1,1{},{ Xa bb ≠−=ηη− , which completes the proof by (iv). 
vii. Use (vi). 
4. For each 11 <<− a  we have }{}))2,1,|)1{(,J(F( 1 ay

k kXya η==∈η− . Thus if 1))1,1(card( ≤−∩A  
(and ∅≠A ), then by (vii) and (v) in item (3), we have ),( 11 SXA M∈ , and if 2))1,1(card( ≥−∩A  we 
have ∅==∈η− }))2,1,|)1{(,J(F( 1 kXyA y

k , but by (vii) in item (3) )(M}2,1,|)1{( 1 AkXyy
k ∈=∈η− , 

thus ),( 11 SXA M∉ . Therefore }1))1,1(card(|{),( 111 ≤−∩∧∅≠⊆= AAXASXM . Now by a similar 
method described for (vi) in item (3), for each subset A  of 1X  such that ∅≠−∩ )1,1(A  we 
have )(M}2,1,|)1{( 1 AkXyy

k ∈=∈η− , moreover if 2))1,1(card( ≥−∩A ,        then 
 

          ∅==∈η−==∈η− }))2,1,|)1{(,J(F(}))2,1,|)1{(,(FJ( 11 kXyAkXyA y
k

y
k , 

 
which leads us to the desired result. 
 
Example 2. Let 2X  be an infinite fort space with the particular point b  (i.e., 2X  is infinite, 

2Xb ∈ , and 2X  is occupied with topology })card(|{ 022 ℵ<−∨∉⊆ UXUbXU ) 
22: XX →ξ  is a one to one map such that for each 2Xx ∈  and N∈n , xx n =ξ  if and only if 

bx = , and let }0|{2 ≥ξ= nS n  ( 2S  has the discrete topology), then in the transformation semi 
group ),( 22 SX  we have: 
1. 
 

i. }{)E( 22 bSX ∪= , 
 
ii. }{2 bbS = , b  is the unique almost periodic point of ),( 22 SX , and }{b  is the unique 

minimal right ideal of )E( 2X , 
iii. if L  is a right ideal of )E( 2X  and }{bL ≠ , then there exists 0≥n  such that 

)E( 2XL nξ= . 
2. If A  is a nonempty subset of 2X , then: 
 

i. }}{{)M( bb = , 
 
ii. )}{E()(M 2XA =  (i.e., ),( 22 SX  is )M(A distal) if and only if }{bA ≠ , 
iii. ),( 22 SX  is −A distal if and only if Ab ∉ , 
 

iv. }id,{))J(E(
22 XbX = , 22 ))I(E( SX = , }{id))B(E())S(E(

222 XXX == , 
 

v. }|{),( 222 ∅≠⊆= AXASXM . 
 
Proof. First note that 22: XX →ξ  is continuous. For this aim let U  be an open subset of 2X  if 

Ub ∉ , then )(1 Ub −ξ∉  and )(1 U−ξ  is an open subset of 2X , also if UX −2  is finite since ξ  is 
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11− , so )(1
2 UX −ξ−  is finite too and )(1 U−ξ  is an open subset of 2X , thus 22: XX →ξ  is 

continuous. 
1. 
i. We claim that bn

n
=ξ

∈N
lim . Let 2Xa ∈  and U  be an open neighborhood of b , then 

UX −2  is finite, by the hypothesis on ξ  the set )}(|{ 2 UXam m −∈ξ∈ N  is finite and for each 
)}(|max{ 2 UXamk m −∈ξ∈> N , Ua k ∈ξ , thus ba n

n
=ξ

∈N
lim  and bn

n
=ξ

∈N
lim , so 

)E(}{ 22 XbS ⊆∪ . Moreover if )E( 2X∈ϑ , then there exists a net Γ∈α
αξ }{ n  such that 

ϑ=ξ α

Γ∈α

nlim , if b≠ϑ  there exists ba ≠  such that ba ≠ϑ  and ϑ=ξ α

Γ∈α
aa nlim . The set 

}{ ϑa  is an open neighborhood of ϑa , thus there exists Γ∈β  such that for each β≥α  we have 
}{ ϑ∈ξ α aa n  and ϑ=ξ α aa n , thus for each β≥α  we have βα = nn  (by our hypothesis on ξ  and 

ba ≠ϑ ) thus βξ=ϑ n , so }{)E( 22 bSX ∪⊆ . Therefore }{)E( 22 bSX ∪= . 
ii. }{2 bbS =  thus b  is almost periodic. If ba ≠  then 2aSb ∈  (by (i)) and }{2 bbSa =∉  
thus a  is not almost periodic. Moreover, if I  is a right ideal of )E( 2X , then 

IbbXbbSb ⊇=∪= )E(}){(}{ 22 , thus Ibb =}{  is a subset of I . Moreover )E(}){(}{ 22 XbbSbb =∪= , 
thus }{b  is a minimal right ideal of )E( 2X , so }{b  is the unique minimal right ideal of )E( 2X . 
iii. Let }|min{ Lmn m ∈ξ= , thus by (i) }{}|{)E( 2 bnmXL mn ∪≥ξ=ξ⊆ . On the 
other hand, let nm >  thus Lnmnm ∈ξξ=ξ −  (since Ln ∈ξ  and L  is a right ideal of )E( 2X ) 
therefore Lnmm ⊆≥ξ }|{ , thus Lbnmm ⊆∪≥ξ }{}|{  (by the argument in (ii)). Therefore 

)E( 2XL nξ= . 
2. Let A  be a nonempty subset of 2X . 
i. Use (ii) in item (1). 
ii. If )}{E()(M 2XA = , then by (i) }{bA ≠ . If }{bA ≠  choose }{bAa −∈  and 

)(M AK ∈  so aKXa =)E( 2 , by (i) in item (1) there exists 0≥n  such that aa n =ξ  and Kn ∈ξ . 
By our hypothesis on ξ  we have 0=n  so KX ∈

2
id  and )E( 2XK = . 

iii, v. Use (ii). 
 

Example 3. Let }0{|1
3 ∪







 ∈= Nn

n
X  (with the induced topology of R ), 33: XX →ξ  by 

1+
=ξ

x
xx  ( 3Xx ∈ ) and let }0|{3 ≥ξ= nS n  ( 3S  has the discrete topology), then in the 

transformation semigroup ),( 33 SX , }|{),(),( 33333 ∅≠⊆== AXASXSX MM , and for each 

nonempty subset A  of 3X  we have )(M)(M AA =  (this example is a special case of Example 2). 
 
Proof. By Example 2 we have }|{),( 333 ∅≠⊆= AXASXM . Now let ),(}0{ 33 SXA M∈≠  
and K  be a closed right ideal of )E( 3X  such that )E( 3XAAK = . As }0{≠A  we have }0{≠K , 
thus by (iii) of item (1) in Example 2 there exists 0≥n  such that )E( 3XK nξ=  we have: 
 







 ξ∈=+







 ∈ )E(1|min)E(1|min 33 XA

m
mnXA

m
m n  

 







 ∈=







 ∈= )E(1|min1|min 3XA

m
mAK

m
m  

 
thus 0=n , )E( 3XK =  and )}{E()(M 3XA = . So )}{E()(M 3XA =  if and only if }0{≠A  and 

}|{),( 333 ∅≠⊆= AXASXM . Using (ii) in item (2) of Example 2 will complete the proof. 
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Example 4. Let }0{|1

4 ∪






 ∈= Nn

n
X  (with the induced topology of R ). Define 44: XX →ξ  

by: 
 







=

−∈
−=ξ

10

}1{
1 4

x

Xx
x

x
x . 

 
Take }0|{4 ≥ξ= nS n  ( 4S  with the discrete topology), then in the transformation semigroup 

),( 44 SX  we have: 
1. 
 

i. }0{)E( 44 ∪= SX , 
 
ii. 0  is the unique almost periodic point of the transformation semigroup ),( 44 SX  and }0{  
is the unique minimal right ideal of )E( 4X , 
 

iii. }}0{{)0M( = . 
 
2. If A  is a nonempty subset of 4X , then: 
 

i. 






=
≠=

}0{}}0{{
)distal is ),((}0{)}{E()(M

)M(
444

A
ASXAXA ,  

 

ii. 








=
ℵ=∅

=

)distal is ),((otherwise)}{E(
}0{}}0{{
)card(

)(M
)M(

444

0

ASXX
A

A
A , 

 
iii. ),( 44 SX  is −A distal if and only if A∉0 . 
 
Proof. 
1. 

i. We have 0lim =ξ
∈

n

n N
, so )E(}0{ 44 XS ⊆∪ . Moreover, for )E( 4X∈ϑ , there exists a 

net Γ∈α
αξ }{ n  such that ϑ=ξ α

Γ∈α

nlim  and if 0≠ϑ , there exists N∈n  such that 01
≠ϑ

n
 and 

ϑ=ξ α

Γ∈α nn
n 11lim , thus there exists Γ∈β  such that for each β≥α  we have ϑ=ξ α

nn
n 11 , therefore 

for β≥α  we have 0111
≠ϑ=ξ=ξ βα

nnn
nn  thus 

βα −
=

− nnnn
11

, i.e., βα = nn  (for all β≥α ), 

thus βξ=ϑ n  and }0{)E( 44 ∪⊆ SX . Therefore }0{)E( 44 ∪= SX . 

ii. }0{)E(0 4 =X , therefore 0  is almost periodic. For each N∈n  we have 

})0{|1}0{|11)(E(10 44 ∪






 ≤=∪







 ≤==∈ nm

m
nm

m
S

n
X

n
, but })0{)(E(01

4 =∉ X
n

, 

therefore 
n
1

 is not almost periodic. Moreover, if I  is a right ideal of )E( 4X , then 

IXII ⊆⊆= )E(0}0{ 4 , thus }0{  is the unique minimal right ideal of )E( 4X . 

iii. Use (ii). 
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2. 

i. If }0{≠A  choose N∈n  such that A
n

∈
1

 and )(M AK ∈ . As )E(11
4X

n
K

n
=  there 

exists 0≥m  such that Km ∈ξ  and 
nn

m 11
=ξ , therefore 0=m , KX ∈

4
id  and )E( 4XK = . Using 

(iii) in item (1) will complete the proof. 

ii. If 0)card( ℵ<A  and }0{≠A , let 






 ∈= A

n
nm 1|max  and let K  be a closed right 

ideal of )E( 4X  such that )E( 4XAAK = , (thus AKA ⊆ ) so there exist N∈q  and }0{∪∈ Np  

such that A
q

∈
1

, Kp ∈ξ  and p

qm
ξ=

11
 by qm ≥  we get 0=p , KX ∈

4
id  and )E( 4XK = , 

thus ∅≠)(M A . If 0)card( ℵ=A , then for each N∈n  we have 444 )E()E( XXAXA n ==ξ , 

and if K  be a closed right ideal of )E( 4X  such that )E( 4XAAK =  we have }0{≠K . Let 

}|min{ Knm n ∈ξ=  then )E( 4
1 Xm+ξ  is a proper subset of K  and a closed right ideal of )E( 4X , 

moreover )E()E( 44
1 XAXA m =ξ + . 

iii. Use (i). 
 
Example 5. Let }0{|1

5 ∪






 ∈= Nn

n
X  (with the induced topology of R ), for each N∈n , define 

the following maps: 
 









=

≠
=ρ

n
xx

n
x

x n 1

10
,  









=

≠
=ϑ

n
x

n
xx

x n 10

1

,  














=

=

≠

=ψ

1
2
1

2
11

2
1,1

x

x

xx

x . 

 
Let 5S  be the semigroup generated by }id,{}|{

5Xn n ψ∪∈ϑ N  ( 5S  with the discrete topology), 
then in the transformation semigroup ),( 55 SX  we have: 
 
1.                  }2,1)),000|id|((|{)E(

555 ==∧=∧=⊆∃ψ= − ipppXApX AXAA
i . 

2. 0  is the unique almost periodic point of the transformation semigroup ),( 55 SX  and }0{  is the 
unique minimal right ideal of )E( 5X . 
 

3.                                        














≥=ρ

==ψρρ

=

=

3,1}}0,{{

2,1,1}}0,,{{

0}}0{{

)M(

n
n

x

n
n

x

x

x

n

nn . 

 

4.                               }2,1|}0,,{{)
2
1M()1M()

2
1,1(M =ψρρ=∪=







 nnn . 
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5.                )}0{2,1,1|)(M)card(0( 05








∪






 =∈ψρ=⇒ℵ<<⊆∀ iA

n
AAXA i

n . 

 
Proof. Let N∈n , for nk >  define knnk ϑϑϑϑ=η +− LL 111 , then we have knkn η=ρ

>
lim , thus 

)E( 5Xn ∈ρ . 
1. Use the fact that for each 55: XXp → , there exists a finite subset A  of 5X  such that 

AXAXp −− =
55

id|  and 0| =Ap  if and only if there exists N∈nkk ,...,1  such that 
nkkp ϑϑ= L

1
. 

Moreover 
5

id2
X=ψ . For 3≥n  we have ψϑ=ψϑ nn  and for N∈mn,  we have nmmn ϑϑ=ϑϑ , 

21 ψϑ=ψϑ  and 12 ψϑ=ψϑ . 

2. )E(0}0{ 5X=  thus 0  is almost periodic, for each N∈n  we have )E(110 5X
nn n ∈ϑ= , but 

)E(0}0{1
5X

n
=∉  thus 

n
1

 is not quite periodic. Moreover for each right ideal I  of )E( 5X  we 

have IXIIX ⊆⊆== )E(0}0{)E(0 55 , thus }0{  is the unique minimal right ideal of )E( 5X . 

3. Using (2) we have }}0{{)0M( = . For each N∈n  we have }0,,{)E()E( 55 ψρρ=ψρ=ρ nnnn XX , thus 

}0,,{ ψρρ nn  is a closed right ideal of )E( 5X , moreover }0,,{10,1,1)E(1
5 ψρρ=







 ψ= nnnnn

X
n

. On 

the other hand, }0{  is the only proper subset of }0,,{ ψρρ nn  such that it is a right ideal of )E( 5X , 

but }0,,}{0{0,1,1}0{}0{1
ψρρ=







 ψ≠= nnnnn

 thus )1M(}0,,{
nnn ∈ψρρ . Conversely, if 

)1M(
n

K ∈ , then K
n

X
n

1)E(1
5 =  thus there exists Kp ∈  such that 

n
p

n
11

= , therefore 

nn n
p

n
ρ=ρ

11
. It is easy to verify that nnp ρ=ρ . But Kp n ∈ρ  thus Kn ∈ρ , so 

KXnnn ⊆ρ=ψρρ )E(}0,,{ 5 . As )1M(},0,,{
n

Knn ∈ψρρ  we get }0,,{ ψρρ= nnK  and 

}}0,,{{)1M( ψρρ= nnn
. Now if 3≥n , then ψρ=ρ nn  so }}0,{{)1M( nn

ρ= . 

4. By the argument in (3) we have }}0,,{{)1M( 11 ψρρ=  and }}0,,{{)
2
1M( 22 ψρρ= , moreover 

}0,,{
2
1,1)E(

2
1,11,

2
1,0}0,,{

2
1,1 11522 ψρρ







=







=







=ψρρ







 X  which shows )

2
1,1(M)

2
1M()1M(







⊆∪ . On 

the other hand, if )
2
1,1(M







∈K , then 







=







=







 1,

2
1,0)E(

2
1,1

2
1,1 5XK  thus there exists Kp ∈  such 

that 11 =p  or 1
2
1

=p  thus 111 11 =ρ=ρp  or 222 2
1

2
11

2
1

ρ==ψρ=ψρp , therefore 11 ρ=ρp  or 

22 ρ=ψρp , since Kp ∈  we have K∈ρ1  or K∈ρ2 , thus KX ⊆ρ=ψρρ )E(}0,,{ 5111  or 

KX ⊆ρ=ψρρ )E(}0,,{ 5222 . Since )
2
1,1(M}0,,{ 11







∈ψρρ  and )

2
1,1(M}0,,{ 22







∈ψρρ , we have 

}0,,{ 11 ψρρ=K  or }0,,{ 22 ψρρ=K . Therefore )
2
1M()1M(}}0,,{},0,,{{)

2
1,1(M 2211 ∪=ψρρψρρ=







 . 

5. Let A  be a nonempty finite subset of 5X . Then for each N∈m  with A
m

∈
1

 we have (by (3)) 

)E(1})0{2,1,1|(1}0,,{1)E(1
55 X

m
iA

nmm
X

m
i

nmm ⊆∪






 =∈ψρ⊆ψρρ= , thus for each Aa∈  we 

have })0{2,1,1|()E( 5 ∪






 =∈ψρ= iA

n
aXa i

n . Since A  is finite, }0{2,1,1| ∪






 =∈ψρ iA

n
i

n  is 

finite and closed, hence 
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}0{2,1,1|

1|}0,,{

1|)E(}0,,{)E(})0{2,1,1|( 55

∪






 =∈ψρ=







 ∈ψρρ⊆







 ∈ψρρ=∪







 =∈ψρ

iA
n

A
n

A
n

XXiA
n

i
n

nn

nn
i

n

U

U

 

 
thus }0{2,1,1| ∪







 =∈ψρ iA

n
i

n  is a closed right ideal of )E( 5X . Let K  be a closed right ideal 

of )E( 5X  such that )E( 5XaaK =  for each Aa ∈ , thus there exists )(M AL ∈  such that KL ⊆ . 

By (3) we have KiA
n

i
n ⊆∪







 =∈ψρ }0{2,1,1|  , therefore  

 

)(M}0{2,1,1| AKiA
n

i
n ∈=∪







 =∈ψρ  and  

 









∪






 =∈ψρ= }0{2,1,1|)(M iA

n
A i

n . 

 
Example 6. Let }0{|1

6 ∪






 ∈= Nn

n
X  (with the induced topology of R ), define 66: XX →τ  by 

 














=

=

≠

=τ

3
1

4
1

4
1

3
1

4
1,

3
1

x

x

xx

x . 

 
With the same assumptions as in Example 5 let 6S  be the semigroup generated by 

}id,{}|{
6Xn n ψτ∪∈ϑ N  ( 6S  with the discrete topology), and let 6S ′  be the semigoup generated by 

}id,,{}|{
6Xn n τψ∪∈ϑ N  ( 6S ′  with the discrete topology), then in the transformation semigroups 

),( 66 SX  and ),( 66 SX ′  we have 
 

1. }2,1),,E(|{),E(),E( 556666 =∈τ=′⊆ iSXppSXSX i . 
 

2. In the transformation semigroup ),( 66 SX  we have 
i. 0  is the unique, almost periodic point of the transformation semigroup ),( 66 SX , and 

}0{  is the unique minimal right ideal of )E( 6X , 
 

ii. 















≥=ρ

==τρρ

==ψρρ

=

=

5,1}}0,{{

4,3,1}}0,,{{

2,1,1}}0,,{{

0}}0{{

)M(

n
n

x

n
n

x

n
n

x

x

x

n

nn

nn

, 

 
iii. if A  is a nonempty finite subset of 6X , then  
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iv. 








∪






 ∈∈τψρ= }0{}2,1{,,1|)(M jiA

n
A ji

n ,    

 

v. )
1

1M()1M()
1

1,1(M}3,1{
+

∪=








+
∈∀

nnnn
n , 

 

vi. }}0,,,,{{)1,1(M}4,3{}2,1{ ψρρτρρ=






∈∀∈∀ mmnnmn

nm , 

 

vii. }}4,3{},2,1{|}0,,,,{{)41|1(M ∈∈ψρρτρρ=






 ≤≤ nmn

n mmnn . 

 
Proof. Use a similar method described in Example 5. 
 

Example 7. Let }0{|1)1(,,|11
7 ∪







 ∈∪







 −>∈+= NN n

n
nnmmn

mn
X  (with the induced 

topology of R ), consider the following maps on 7X : 
 





 +=−>∈

+
+=ϑ

otherwise

11),1(,,
1

11

x
mn

xnnmmn
mnx N , 





 +=−>∈=ψ

otherwise

11),1(,,1

x
mn

xnnmmn
nx N  

 
and let }0|{7 ≥ϑ= nS n  ( 7S  with the discrete topology), then in the transformation semigroup 

),( 77 SX  we have 
 
1.                                                              }{)E( 77 ψ∪= SX . 

 

2.                  










+=−>∈






∪







 ≥∈+

∪






 ∈∈

=

mn
xnnmmn

n
mkk

kn

n
n

xx
xS

11),1(,,1,|11

}0{|1}{
7

NN

N
. 

 
3. }0{|1

∪






 ∈ Nn

n
 is the set of almost all periodic points of ),( 77 SX  and }{ψ  is the unique 

minimal right ideal of )E( 7X . 
4. If A  is a nonempty subset of 7X , then: 
 

i. 










∪






 ∈⊄

∪






 ∈⊆ψ

=
distal) is ),((}0{|1)E(

}0{|1}}{{
)(M

)M(
777 ASXn

n
AX

n
n

A
A

N

N
 

 

ii. }}){{)(M(})0{|1( ψ=⇔∪






 ∈⊆ An

n
A N , 
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iii. ∅=∪






 ∈∩ })0{|1( Nn

n
A  if and only if ),( 77 SX  is −A distal. 

 
 
Proof. 
1. Since ψ=ϑ

∈

n

n N
lim , )E(}{ 77 XS ⊆ψ∪ . On the other hand, let )E( 7Xp ∈  and Γ∈α

αϑ }{ n  be a 
net such that pn =ϑ α

Γ∈α
lim . We have 

 

• xxxxpn
n

x n ==ϑ=∪






 ∈∈∀

Γ∈αΓ∈α

α limlim}0{|1 N , 

 
• for all N∈nm,  such that )1( −> nnm  we have 
 
 

),|11)11((






 ≥∈+∈ϑ+Γ∈α∀ α mkk

knmn
n N  

 

)1,|11)11((






∪







 ≥∈+∈ϑ+Γ∈α∀⇒ α

n
mkk

knmn
n N  







∪







 ≥∈+∈ϑ+⇒ α

Γ∈α n
mkk

knmn
n 1,|11)11(lim N  

 







∪







 ≥∈+∈+⇒

n
mkk

kn
p

mn
1,|11)11( N . 

 
Whenever ψ≠p  there exist N∈knm ,,  such that )1( −>≥ nnmk  and 

knmn
n 11)11(lim +=ϑ+ α

Γ∈α
, further,  

 

knmn
n 11)11(lim +=ϑ+ α

Γ∈α
 

 

))11)11(((
knmn

n +=ϑ+⇒β≥αΓ∈α∀Γ∈β∃⇒ α  

 
))(( βα =⇒β≥αΓ∈α∀Γ∈β∃⇒ nn  

 
)lim( pnn =ϑ=ϑΓ∈β∃⇒ αβ

Γ∈α
 

 
7Sp ∈⇒  

 
thus }{)E( 77 ψ∪⊆ SX . 

4. i. Let A  be a nonempty subset of 7X  such that }0{|1
∪







 ∈⊄ Nn

n
A  and )(M AK ∈ . Let 

})0{|1( ∪






 ∈−∈ Nn

n
Ax , thus )E( 7XxxK = , therefore, ∅≠)),J(F( Kx . Using 

},{id))J(E(
77 ψ= XX , we have KX ∈

7
id  and )E( 7XK = . Therefore )}{E()(M 7XA = . 
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Example 8. Let }0{|1)1(,,|11
8 ∪







 ∈∪







 −>∈+= NN n

n
nnmmn

mn
X  (with the induced 

topology of R ) and let 8S  be the group of all homeomorphisms on 8X  ( 8S  with the discrete 

topology), then in the transformation semigroup ),( 88 SX  we have 
1. 0  is the unique almost periodic point of the transformation semigroup ),( 88 SX , }0{  is the 

unique minimal right ideal of )E( 8X  and }}0{{)0M( = . 
 

2.                            })0{2,|112( 8 ∪






 ≥∈=⇒≥∈∀ mm

m
S

n
nn NN . 

 

3.                                 888 })0{2,|1( XxSmm
n

Xx =∪






 ≥∈−∈∀ N . 

 
4. If A  is a nonempty subset of 8X , then ),( 88 SX  is not −A distal. 
 
Proof. For each N∈nm,  define 
 


















+=−>∈
−+−−

+

+=−>∈
−+−−

+

=

=

=η

otherwise

11),1(,
)1()1(

11

11),1(,
)1()1(

11

11

11

,

x
km

xmmkk
nnmmkn

kn
xnnkk

mmnnkm

n
x

m

m
x

n

x nm

N

N , 

 














+=−>∈

=

=η

otherwise

11),1(,0

10

x
kn

xnnkk
n

x

x n N , 

 
8, Snm ∈η ; and for each N∈n , nnmm

η=η
∈ ,lim

N
. Now use a similar method described for the 

previous examples. 
 
Since the following examples will not be used to complete the tables, we have omitted their 
proofs. 
 

Example 9. Let }0{)
12

1,
2
1(9 ∪





−
=

∈
U

Nn nn
X  (with the induced topology of R ), let 9S  be the 

group of all homeomorphisms on 9X  ( 9S  with the discrete topology), for each N∈nm,  define 
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−
<≤

−

−
=

=

otherwise0
12

1
2
1

12
1

12
1

2
1

, n
x

nm

n
x

m
xp mn

,   














−
<≤

−
=

−

=

otherwise0
12

1
2
1

2
1

12
1

12
1

, n
x

nm

n
x

m
xq mn

, 

then in the transformation semigroup ),( 99 SX  we have 
1. 0  is the unique almost periodic point of the transformation semigroup ),( 99 SX , }0{  is the 

unique minimal right ideal of )E( 9X  and }}0{{)0M( = . 
2. For each N∈n  we have: 

 

i. }0{|11|11
99 ∪







 ∈=∧







 ∈= NN m

m
S

n
m

m
S

n
, 

 
ii. }0{}|{}|{)E()E( ,,9,9, ∪∈∪∈== NN mqmpXqXp mnmnnnnn , 

 
iii. }0,,{)E( ,,,9, nnnnnnnn qppXp = , 

 

iv. )
12

1M()
2
1M()E( 9, −

∩∈
nn

Xp nn , },0{))E(J( ,9, nnnn qXp = , 

 

v. }{))E(,
12

1F())E(,
2
1F( ,9,9, nnnnnn qXp

n
Xp

n
=

−
= , 

 
vi. },{))E(I())E(B())E(S( ,,9,9,9, nnnnnnnnnn qpXpXpXp === . 

 
3. Let







 ∈= Nn

n
A |1

, }0{},|{},|{ ,, ∪∈∪∈= NN mnqmnpK mnmn , and for each N∈ji,  

define 0=δ ij  if ji ≠  and 1=δ ij , thus we have 
 

i. rnmkrkmn pppknm ,,,,, δ=∈∀ N , 
 

ii. )(M AK ∈ , ∅===== ),(F),F()I()B()S( KAKAKKK . 
 

Example 10. Let N∈n : 
 







 −+−−∈+≤≤−−−=∈= },1,...,1,{,

2
1

2
1,)(41|),( 22

10 nnnnmmxmmxyyxX R  

 
(with the induced topology of 2R ) and let 10S  be the group of all homeomorphisms like 

1010: XXf →  such that 






 +−−=







 +−− )0,

2
1(),0,

2
1()0,

2
1(),0,

2
1( nnfnn  ( 10S  with the 

discrete topology), then in the transformation semigroup ),( 1010 SX  we have 
 

1.                   






 −−=−++−−∈∀ )0,

2
1(),0,

2
1()0,

2
1(}1,,...,1,{ 10 mmSmnnnnm . 

 
2. 







 ++−−∈− }1,,...,1,{|)0,

2
1( nnnnmm  is the set of all almost periodic points in the 

transformation semigroup ),( 1010 SX . 
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3. ),( 1010 SX  has 22 +n  almost periodic point and 1+n  minimal subset, moreover each of its 
minimal subsets has 2 elements. 
4. For each },...,1,{ nnnm +−−∈  and 10),( Xyx ∈  if 

2
1

2
1

+<<− mxm , then  
 

                






 +−≤≤−−∨+≤≤−∈= )

2
1

2
1()

2
1

2
1(|),(),( 1010 mummumXvuSyx . 

 
1. Let nmnmm yx ≤≤−)},{(  and nmnmm yx ≤≤−′′ )},{(  be finite sequences in 10X , such that for each 

nmn ≤≤−  we have 
2
1

2
1

+≤≤− mxm m , 
2
1

2
1

+≤′≤− mxm m , 0≥my , and 0≤′my , choose 
10

10
XXp ∈  such that for each nmn ≤≤− , 







 +−⊆′′ )0,

2
1(),0,

2
1()},(),,{( mmpyxyx mmmm  and 

 









+=∨≤∧+≤<′∨≥∧+≤<+

−=∨≤∧′<≤−∨≥∧<≤−−
=

2
1)0

2
1()0

2
1()0,

2
1(

2
1)0

2
1()0

2
1()0,

2
1(

),(
mxymxxymxxm

mxyxxmyxxmm
pyx

mm

mm
 

 
then )E( 10Xp ∈ , },{ pp−  is a minimal right ideal of )E( 10X . In addition, each minimal right ideal 
of )E( 10X  has a similar structure, so ))card(()))(card(Min(E 10 R== cX . 
2. For each nonempty subset A  of 10X , ),( 1010 SX  is not −A distal. 
3. ),( 1010 SX  is not point transitive. 
 
Example 11. Let N∈n : 
 

}}1,...,1,{,1),)()((2|),{( 22
11 −+−−∈+≤≤−−−=∈= nnnmmxmmxmxyyxX R  

 
(with the induced topology of 2R ) and let 11S  be the group of all homeomorphisms like 

1111: XXf →  such that )}0,(),0,{()}0,(),0,{( nnfnn −=−  ( 11S  with the discrete topology), then 
in the transformation semigroup ),( 1111 SX  we have 
 
1.                        )}0,(),0,{()0,()0,(},...,1,{ 1111 mmSmSmnnnm −==+−−∈∀ . 

 
2. }},...,1,{|)0,{( nnnmm +−−∈  is the set of nearly all periodic points in the transformation 
semigroup ),( 1111 SX  
3. ),( 1111 SX  has 12 +n  almost periodic point and 1+n  minimal subset ( n  minimal subset with two 
elements and a singleton minimal subset). 
4. For each }1,...,1,{ −+−−∈ nnnm  and 11),( Xyx ∈  if 1+<< mxm , then  

 
)}1()1(|),{(),( 1111 mummumXvuSyx −≤≤−−∨+≤≤∈= . 

 
5. Let 1)},{( −≤≤− nmnmm yx  and 1)},{( −≤≤−′′ nmnmm yx  be finite sequences in 11X ,  such that for each 

1−≤≤− nmn  we have 1+≤≤ mxm m , 1+≤′≤ mxm m , 0≥my , and 0≤′my . Choose 
11

11
XXp ∈  such that for each 1−≤≤− nmn , )}0,1(),0,{()},(),,{( +⊆′′ mmpyxyx mmmm  and 

 





+=∨≤∧+≤<′∨≥∧+≤<+
=∨≤∧′<≤∨≥∧<≤

=
1)01()01()0,1(

)0()0()0,(
),(

mxymxxymxxm
mxyxxmyxxmm

pyx
mm

mm  
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then )E( 11Xp ∈ , },{ pp−  is a minimal right ideal of )E( 11X . In addition, each minimal right ideal 
of )E( 11X  has a similar structure (therefore has two elements), so ))card(()))(card(Min(E 10 R== cX . 
1. For each nonempty subset A  of 11X , ),( 1111 SX  is not −A distal. 
2. ),( 1111 SX  is not point transitive. 
 

Example 12. In Example 11, let 
)}0,(),0,0{(

])1,1[],0([11
12 n

nX
X

−×∩
=  (with the quotient topology), for each 

])1,1[],0([),( 11 −×∩∈ nXyx  the image of ),( yx  under the quotient map is denoted by π],[ yx , 

and let 12S  be the group of all homeomorphisms like 1212: XXf →  ( 12S  with the discrete 

topology), then in the transformation semigroup ),( 1212 SX  we have 
 

1. }},...,1{|]0,{[]0,[]0,[}1,...,1{ 1212 nkkSmSmnm ∈==−∈∀ πππ . 
 

2. }},...,1{|]0,{[],[ 12 nkkXyx ∈−∈∀ ππ  
 

)],[}},...,1{|]0,{[],([ 12121212 XSyxnkkXSyx =∧∈−= πππ . 
 

3. }},...,1{|]0,{[ nkk ∈π  is the set of all almost periodic points, the unique minimal subset and the 
unique proper closed invariant subset of ),( 1212 SX . 

 
Completion 13. We have the following table (see [3], Conclusion 16, Table 1), where T1 is the 
affiliation: The mark “√” indicates that if ),( SX  is a transformation semigroup, Xa ∈  
and )M(aK ∈ , then Ω⊆Γ . The mark “+” indicates that a transformation semigroup ),( SX  exists, 

Xa ∈  and )M(aK ∈ , such that Ω⊆Γ . The mark “−” indicates that a transformation 
semigroup ),( SX , exists, Xa ∈  and )M(aK ∈ , such that Ω⊄Γ . The mark “±” indicates “+” and 
“−”. 
 

Table 1. In the corresponding case T1 is valid 
 

 
 
 

 
1st. 
column 
↓  

  
3rd. 
column 
↓  

  
5th. 
column 
↓  

            Ω  
Γ  

),F( Ka  )B( K  )S(K  )I(K  K  

),F( Ka   √  √  √  √  √ 
)B( K  ±  √  √  √  √ 
)S(K  ± +  √ +  √ 

)I(K  ± ± ±  √  √ 

K  ± ± ± ±  √ 
 
Proof. In Example 2 let ),(),( 22 SXSX = , ba =  and }{bK = , then )M(aK ∈ , and 

KKKKKa ==== )I()S()B(),F( , which follows “+” in all cells in Table 1. Now in order to 
obtain “−” items we have 
• 1st. column: In Example 1 let ),(),( 11 SXSX = , 1=a  and },{ 11 µµ−=K , then )M(aK ∈  

and ),F(}{},{)I()S()B( 111 KaKKKK =µ⊄µµ−==== . 
• 2nd., 3rd. and 4th. columns: In Example 2 let ),(),( 22 SXSX = , }{2 bXa −∈  and 

)E( 2XK = , then )M(aK ∈  and: 
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i. )I(}{)E( 222 KSbSXK =⊄∪== , 
 

ii.              )B()S(}{id}{)E(
222 KKbSXK X ==⊄∪== , 

 
iii.                    )B()S(}{id)I(

22 KKSK X ==⊄= . 
 
Completion 14. We have the following table (see [2], Corollary 5, Table 2), where T2 is the 
affiliation: The mark “√” indicates that if ),( SX  is a transformation semigroup, A  is a nonempty 
subset of X , and )(M AK ∈ , then Ω⊆Γ . The mark “+” indicates that a transformation semi group 

),( SX  exists, a nonempty subset A  of X  and )(M AK ∈ , such that Ω⊆Γ . The mark “−” 
indicates that a transformation semigroup ),( SX  exists, a nonempty subset A  of X  and 

)(M AK ∈ , such that Ω⊄Γ . The mark “±” indicates “+” and “−”. 
 

Table 2. In the corresponding case T2 is valid 
 

 1st. 
column 
↓  

 3rd. 
column 
↓  

 5th. 
column 
↓  

 7th. 
column 
↓  

                           Ω  
Γ  

),F( KA  )B(),(F KKA ∩ )S(),(F KKA ∩ ),(F KA )B( K  )S(K  )I(K  

),F( KA  √ √ √ √ √ √ √ 

)B(),(F KKA ∩  + √ √ √ √ √ √ 

)S(),(F KKA ∩  + + √ √ + √ + 

),(F KA  + + + √ + + + 

)B( K  ± ± ± ± √ √ √ 
)S(K  ± ± ± ± + √ + 

)I(K  ± ± ± ± ± ± √ 
 
Proof. Note that in the transformation semigroup ),( SX  for Xa ∈ , we have })({M)M( aa = . So 
using the above note and Table 1 (Completion 13) we are able to obtain “+” items and complete the 
7th., 6th. and 5th. columns in Table 2. In order to complete the remainder in Example 1, let 

),(),( 11 SXSX = , }1,1{−=A  and },{ 11 µµ−=K , then ))(M)((M AAK =∈  and 
 

. ),F(}{
},{)I()S()B(

),(F)B(),(F)S(),(F

1

11

KA
KKKK
KAKKAKKA

=µ⊄
µµ−=====

=∩=∩
 

 
Completion 15. We have the following table (see [2], Corollary 5, Table 2), where T3 is the 
affiliation: The mark “√” indicates that if ),( SX  is a transformation semigroup, A  is a nonempty 
subset of X , and )(M AK ∈ , then Ω⊆Γ . The mark “+” indicates that a transformation semigroup 

),( SX  exists, a nonempty subset A  of X  and )(M AK ∈ , such that Ω⊆Γ . The mark “−” 
indicates that a transformation semigroup ),( SX  exists, a nonempty subset A  of X  and 

)(M AK ∈ , such that Ω⊄Γ . The mark “±” indicates “+” and “−”. 
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Table 3. In the corresponding case T3 is valid 
 

 1st. 
column 
↓  

 3rd. 
column 
↓  

 5th. 
column 
↓  

             Ω    
Γ  

),F( KA  ),(F KA  )B( K  )S(K  )I(K  

),F( KA   √  √  √  √  √ 

),(F KA  ±  √  √  √  √ 

)B( K  ± ±  √  √  √ 
)S(K  ± ± +  √ + 

)I(K  ± ± ± ±  √ 
 
Proof. Use the argument in Completion 14 (Table 2) to conclude. 
 
Completion 16. We have the following table (see [2], Corollary 5, Table 3), where T4 is the 
affiliation: The mark “√” indicates that if ),( SX  is a transformation semigroup, A  is a nonempty 
subset of X , )(M AI ∈ , )(M AJ ∈  (existence of such a J  is not necessary) and K  is a right ideal 
of )E(X , then )J()J( Ω⊆Γ . The mark “+” indicates that a transformation semigroup ),( SX  exists, 
a nonempty subset A  of X , )(M AI ∈  (if it is mentioned in that item), )(M AJ ∈  (if it is 
mentioned in that item) and a right ideal K  of )E(X  (if it is mentioned in that item) such that 

)J()J( Ω⊆Γ . The mark “−” indicates that a transformation semigroup ),( SX  exists, a nonempty 
subset A  of X , )(M AI ∈  (if it is mentioned in that item), )(M AJ ∈  (if it is mentioned in that 
item) and a right ideal K  of )E(X  (if it is mentioned in that item) such that )J()J( Ω⊄Γ . The mark 
“±” indicates “+” and “−”. 
  

Table 4. In the corresponding case T4 is valid 
 

 
       Ω  

 
  

        Γ                           C )S(),(F

),B(),(F

),S(),F(
),B(),F(

CCA

CCA

CCA
CCA

∩

∩

∩
∩

 
),(F

),,F(

CA

CA
 

)I(
),S(
),B(

C
C
C

 

)S(),(F

),B(),(F

),S(),F(
),B(),F(

CCA

CCA

CCA
CCA

∩

∩

∩
∩

 

 
 

JIK ,,  

 
 
√ 

 
 
√ 

 
 
√ 

K  ± √ ± 

),(F

),,F(

CA

CA
 JI ,  √ √ √ 

)I(
),S(
),B(

C
C
C

 

 
JIK ,,  

 
± 

 
± 

 
√ 

 
Proof. In Example 1 let ),(),( 11 SXSX =  and ))0M(}(2,1,|)1{( 1 ∈=∈η−= kXxK x

k , then 
))J(B())B()},1,1J(F({}}1,1{|{}|{))},1,1J(F({ 11 KKKXxXxK xx =∩−=−−∈η⊄∈η=−  

and )),0J(F())B(),0J(F(}{}}1,1{|{))J(B( 01 KKKXxK x =∩=η⊄−−∈η= . 
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Completion 17. We have the following table (see [2], Theorem 17, Table 5), where T5 is the 
affiliation: The mark “√” indicates that if ),( SX  is a transformation semigroup, A  and B  be 
nonempty subsets of X  such that B  is αA almost periodic, then B  is βA almost periodic. The 
mark “(√)” indicates that if ),( SX  is a transformation semigroup, A  and B  are nonempty subsets 
of X  such that A  is )M,M(A almost periodic, B  is )M,M(B almost periodic, B  is αA almost 
periodic, then B  is βA almost periodic. The mark “+” indicates that a transformation semigroup 

),( SX  exists, nonempty subsets A  and B of X , such that A  is )M,M(A almost periodic, B  is 
)M,M(B almost periodic, B  is αA almost periodic and B  is βA almost periodic. The mark “−” 

indicates that there exists a transformation semigroup ),( SX , nonempty subsets A and B of X , 
such that A  is )M,M(A almost periodic, B  is )M,M(B almost periodic, B  is αA almost periodic and 
B  is not βA almost periodic. The mark “(−)” indicates that a transformation ),( SX  exists, 
nonempty subsets A  and B of X , such that B  is αA almost periodic and B  is not βA almost 
periodic. The mark “±”indicates “+” and “−”. The mark “(±)” indicates “+” and “(−)”. 
 

Table 5. In the corresponding case T5 is valid 
 

 1st. 
column 
↓  

2nd. 
column 
↓  

3rd. 
column 
↓  

4th. 
column 
↓  

5th. 
column 
↓  

6th. 
column 
↓  

      β     
α  ),M(

),,(
−

−−
 

)M,M(
),M,(−

 
)M,M(

),M,(−
 

),M( −  )M,M(  )M,M(  

),M(
),,(

−
−−

 
√ √ + (√) 

(±) 
(√) 
(±) 

(±) 

)M,M(
),M,(−

 
± √ ± ± (√) 

(±) 
± 

)M,M(
),M,(−

 
± (√) 

+ 
√ ± (√) 

(±) 
(√) 
(±) 

),M( −  ± ± ± √ √ + 

)M,M(  ± ± ± ± √ ± 

)M,M(  ± ± ± ± (√) 
(±) 

√ 

 
Proof. 
• 1st. and 3rd. columns: 
In Example 7 let ),(),( 77 SXSX =  and })0{|1(7 ∪







 ∈−∈ Nn

n
Xx , then }}{{)0M( ψ= , 

)}{E(}),0({M}),0({M)M( 7Xxxx ===  and: 
1. },0{ x  is )M,M(},0{ x almost periodic, 
2. }{x  is )M,(},0{ −x almost periodic, 
3. }{x  is )M,(},0{ −x almost periodic, 
4. }{x  is )M,M(},0{ x almost periodic, 
5. }{x  is )M,M(},0{ x almost periodic, 
6. }{x  is not ),(},0{ −−x almost periodic. 
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In Example 5 let ),(),( 55 SXSX = ,  then }}0,,{{)1M( 11 ψρρ= , }}0,,{{)
2
1M( 22 ψρρ= , 

}}0,,{},0,,{{)1,
2
1(M 2211 ψρρψρρ=







 , and: 

1. 






 1,

2
1

 is )M,M(1,
2
1







 almost periodic, 

2. 






 1,

2
1

 is ),M(1,
2
1 −







 almost periodic, 

3. 






 1,

2
1

 is )M,M(1,
2
1







 almost periodic, 

4. 






 1,

2
1

 is )M,M(1,
2
1







 almost periodic, 

5. 






 1,

2
1

 is not ),(1,
2
1 −−







 almost periodic, 

6. 






 1,

2
1

 is not )M,(1,
2
1 −







 almost periodic. 

• 2nd. column: In Example 5 let ),(),( 55 SXSX = , then }}0,,,,{{)1,
2
1(M 2121 ψρψρρρ=







  

(other items have been described in the proof of 1st. and 3rd. columns). Also we have 

1. 






 1,

2
1

 is ),M(}1{ − almost periodic, 

2. 






 1,

2
1

 is )M,M(}1{ almost periodic, 

3. 






 1,

2
1

 is )M,M(}1{ almost periodic, 

4. 






 1,

2
1

 is not )M,(}1{ − almost periodic. 

• 4th. column: 

In Example 4 let ),(),( 44 SXSX = , then for each N∈k  we have 

)}{E()|1(M)1M( 4Xn
nk

=






 ∈= N , ∅=







 ∈ )|1(M Nn

n
, and 

1. 






 ∈ Nn

n
|1

 is ),(|1 −−







 ∈ Nn

n
almost periodic, 

2. 






 ∈ Nn

n
|1

 is not )M,M(|1






 ∈ Nn

n
almost periodic, 

3. 






 ∈ Nn

n
|1

 is not ),M(|1 −







 ∈ Nn

n
almost periodic. 

In Example 7 let ),(),( 77 SXSX =  and })0{|1(7 ∪






 ∈−∈ Nn

n
Xx ,  then }{x  is not 

),M(},0{ −x almost periodic. Considering the proof of the 1st. column completes the proof. 
• 5th. and 6th. columns: 
In Example 4 let ),(),( 44 SXSX = , then (consider the proof of the 4th. column): 
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1. 






 ∈ Nn

n
|1

 is ),(}1{ −− almost periodic, 

2. 






 ∈ Nn

n
|1

 is )M,(}1{ − almost periodic, 

3. 






 ∈ Nn

n
|1

 is )M,(}1{ − almost periodic, 

4. 






 ∈ Nn

n
|1

 is not )M,M(}1{ almost periodic, 

5. 






 ∈ Nn

n
|1

 is not )M,M(}1{ almost periodic. 

In Example 5 let ),(),( 55 SXSX = , then (consider the proof of the 1st. column): 

1. }1{  is )M,M(1,
2
1







 almost periodic, 

2. }1{  is not )M,M(1,
2
1







 almost periodic. 

 
Completion 18. We have the following table (see [2], Theorem 20, Table 6), where T6 is the 
affiliation: The mark “√” indicates that if ),( SX  is a transformation semigroup and A  is a nonempty 
subset of X  such that ),( SX  is αA distal, then ),( SX  is βA distal. The mark “+” indicates that 
there exists a transformation semigroup ),( SX  and a nonempty subset A  of X , such that ),( SX  is 

αA distal and βA distal. The mark “−” indicates that there exists a transformation semigroup ),( SX  
and a nonempty subset A  of X , such that ),( SX  is αA distal but it is not βA distal. The mark “±” 
indicates “+” and “−”. 

 
Table 6. In the corresponding case 

 
     β  
α  

)(−  )M(  )M(  

)(−  √ √ ± 

)M(  ± √ ± 

)M(  ± √ √ 

 
Proof.  

• In Example 4 let ),(),( 44 SXSX = , then (consider the proof of the 4th. column in Table 5 

(Completion 17)): 

1. ),( 44 SX  is )(|1 −







 ∈ Nn

n
distal, 

2. ),( 44 SX  is )M(|1






 ∈ Nn

n
distal, 

3. ),( 44 SX  is not )M(|1






 ∈ Nn

n
distal. 

• In Example 7 let ),(),( 77 SXSX = , then (consider the proof of the 1st. column in Table 5 
(Completion 17)): 

1. ),( 77 SX  is not )(},0{ −x distal, 
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2. ),( 77 SX  is )M(},0{ x distal, 
3. ),( 77 SX  is )M(},0{ x distal. 
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