COUNTEREXAMPLES IN \mathcal{A} – MINIMAL SETS^{*}

F. AYATOLLAH ZADEH SHIRAZI^{1**} AND M. SABBAGHAN²

Department of Mathematics, Faculty of Science, Tehran University, Enghelab Ave., Tehran, I. R. of Iran ¹E-mail: fatemah@khayam.ut.ac.ir ²E-mail: sabbagh@khayam.ut. ac.ir

Abstract – Several tables have been given due to a – minimal sets. Our main aim in this paper is to complete these tables by employing several examples.

Keywords-a – minimal set, distal, enveloping semigroup, proximal relation, trasformation semigroup

PRELIMINARIES

Let X be a compact Hausdorff topological space, S be a topological discrete semigroup with identity e and $\pi: X \times S \to X$ ($\pi(x,s) = xs$ ($\forall x \in X, \forall s \in S$)) be a continuous map such that for all $x \in X$ and for all $s, t \in S$, we have xe = x and x(st) = (xs)t, then the triple (X, S, π) or simply (X, S) is called a transformation semigroup. In a transformation semigroup (X, S) we have the following definitions:

1. For each $s \in S$, define the continuous map $\pi^s : X \to X$ by $x\pi^s = xs$ ($\forall x \in X$), then E(X,S) or simply E(X) is the closure of { $\pi^s | s \in S$ } in X^X with pointwise convergence, moreover, it is called the enveloping semigroup (or Ellis semigroup) of (X,S). E(X) has a semigroup structure [1]. A nonempty subset K of E(X) is called a right ideal if $K E(X) \subseteq K$, and it is called a minimal right ideal if none of the right ideals of E(X) is a proper subset of K. The set of all minimal right ideals of E(X) will be denoted by Min(E(X)).

2. A nonempty subset Z of X is called invariant if $ZS \subseteq Z$. Furthermore, it is called minimal if it is closed and none of the closed invariant subsets of X is a proper subset of Z. The element $a \in X$ is called almost periodic if a E(X) is a minimal subset of X.

3. Let $a \in X$, A be a nonempty subset of X, C be a nonempty subset of E(X), and K be a right ideal of E(X), then for each $p \in E(X)$, $L_p: E(X) \to E(X)$ such that $L_p(q) = pq$ $(\forall q \in E(X))$ is a continuous map. The following sets are introduced:

$$B(K) = \{ p \in K \mid L_p : K \to K \text{ is bijective} \}, \quad F(a, C) = \{ p \in C \mid ap = a \},$$
$$S(K) = \{ p \in K \mid L_p : K \to K \text{ is surjective} \}, \quad F(A, C) = \bigcap_{b \in A} F(b, C),$$
$$I(K) = \{ p \in K \mid L_p : K \to K \text{ is injective} \}, \quad \overline{F}(A, C) = \{ p \in C \mid Ap = A \},$$

^{*}Received by the editor September 12, 2001 and in final revised form July 6, 2004

^{**}Corresponding author

$$J(C) = \{ p \in C \mid p^2 = p \}.$$

4. Let a ∈ X , A be a nonempty subset of X , and K be a closed right ideal of E(X), then:
K is called an a – minimal set if:

$$aK = a \operatorname{E}(X)$$
,

K does not have any proper subset like L , such that L is a closed right ideal of $\mathrm{E}(X)$ and

$$aL = a \operatorname{E}(X),$$

the set of all a – minimal sets is denoted by M(a) and it is nonempty;

• K is called an A – minimal set if:

$$\forall b \in A \quad bK = b \operatorname{E}(X),$$

K does not have any proper subset like L, such that L is a closed right ideal of E(X) and bL = b E(X) for all $b \in A$,

the set of all A – minimal sets is denoted by M(A) and is nonempty;

• *K* is called an *A* – minimal set if:

$$AK = A E(X)$$
,

K does not have any proper subset like L , such that L is a closed right ideal of $\mathrm{E}(X)$ and

$$AL = A \operatorname{E}(X),$$

the set of all A – minimal sets is denoted by M(A).

5. The following sets are introduced:

$$\mathbf{M}(X,S) = \{A \subseteq X \mid A \neq \emptyset \land (\forall K \in \mathbf{M}(A) \quad \mathbf{J}(\mathbf{F}(A,K)) \neq \emptyset)\},\$$
$$\overline{\mathbf{M}}(X,S) = \{A \subseteq X \mid A \neq \emptyset \land \overline{\mathbf{M}}(A) \neq \emptyset \land (\forall K \in \overline{\mathbf{M}}(A) \quad \mathbf{J}(\overline{\mathbf{F}}(A,K)) \neq \emptyset)\}\$$

- 6. Let $a \in X$ and A be a nonempty subset of X, then:
- (X,S) is called a distal if $E(X) \in M(a)$,
- (X,S) is called $A^{(-)}$ distal (or simply A distal) if (X,S) be b distal for each $b \in A$,
- (X,S) is called $A^{(\overline{M})}_{\overline{a}}$ distal if $E(X) \in \overline{M}(A)$,
- (X,S) is called $A^{\underline{(M)}}$ distal if $E(X) \in \overline{M}(A)$.
- 7. Let A and B be nonempty subsets of X and $R, Q \in {\overline{M}, \overline{M}}$, then:
- *B* is called $A^{(-,-)}$ almost periodic if:

$$\forall a \in A \quad \forall K \in \mathbf{M}(a) \quad \forall b \in B \quad \exists L \in \mathbf{M}(b) \quad L \subseteq K \,,$$

• *B* is called $A^{(R,-)}$ almost periodic if:

$$\forall a \in A \quad \forall K \in \mathbf{M}(a) \quad \exists L \in \mathbf{R}(B) \quad L \subseteq K \,,$$

• *B* is called $A^{(-,Q)}$ almost periodic if $Q(A) \neq \emptyset$ and:

٠

$$\forall K \in \mathbf{Q}(A) \quad \forall b \in B \quad \exists L \in \mathbf{M}(b) \quad L \subseteq K ,$$

B is called $A^{(\mathbb{R},\mathbb{Q})}$ almost periodic if $Q(A) \neq \emptyset$ and:

$$\forall K \in \mathbf{Q}(A) \quad \exists L \in \mathbf{R}(B) \quad L \subseteq K.$$

Example 1. Let $X_1 = [-1,1]$ (with the induced topology of **R**) and S_1 be the group of all homeomorphisms like $f: X_1 \to X_1$ (S_1 has the discrete topology), then in the transformation semigroup (X_1, S_1) we have:

1. If $a \in [-1,1]$, and:

$$xs_{a} = \begin{cases} (1+a)x + a & -1 \le x \le 0\\ (1-a)x + a & 0 \le x \le 1 \end{cases}, \ x\eta_{a} = \begin{cases} x & x = 1, -1\\ a & -1 < x < 1 \end{cases}, \ x\mu_{a} = \begin{cases} -1 & -1 \le x \le a \land x \ne 1\\ 1 & a < x \le 1 \lor x = 1 \end{cases},$$

then $s_a \in S_1$, $\eta_a, \mu_a \in E(X_1)$, $\eta_1 = \mu_1$ and $\eta_{-1} = \mu_{-1}$. 2. We have:

i. Using the connectness of [-1,1], for all $s \in S_1$ we have $\{-1,1\}s = \{-1,1\}$ and $-s \in S_1$, moreover, for all $a, b \in X_1 - \{-1,1\}$ there exists $t \in S_1$ such that at = b,

ii.
$$\overline{xS_1} = \begin{cases} \{-1,1\} & x \in \{-1,1\} \\ [-1,1] = X_1 & x \in (-1,1) \end{cases}$$

iii. $\forall x \in X_1 \quad \mu_x \operatorname{E}(X_1) = \{-\mu_x, \mu_x\},$
iv. $\forall x \in (-1,1) \quad \eta_x \operatorname{E}(X_1) = \{(-1)^k \eta_y \mid y \in X_1, k = 1,2\}.$

3. We have:

i. Only 1 and -1 are almost periodic points of (X_1, S_1) ,

ii. $\{-1,1\}$ is the unique minimal subset of (X_1, S_1) ,

iii. for $x \in X_1$, $\{-\mu_x, \mu_x\}$ is a minimal right ideal of $E(X_1)$,

iv. $\{-\eta_1, \eta_1\}, \{-\eta_{-1}, \eta_{-1}\}, \{-\eta_{-1}, \eta_{-1}\} \cup \{-\eta_1, \eta_1\}$ are the only proper subsets of $\{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\}$ which are right ideals of $E(X_1)$.

So:

v.

$$\{\{-\mu_x, \mu_x\} \mid x \in X_1\} \text{ is a subset of } M(1)(=M(-1) = M(\{-1,1\}) = M(\{-1,1\})),$$

vi. $\forall x \in (-1,1) \quad \eta_x E(X_1) = \{(-1)^k \eta_y \mid y \in X_1, k = 1,2\} \in M(x),$

vii.
$$\forall A \subseteq X_1 \quad (A \cap (-1,1) \neq \emptyset \Longrightarrow \{(-1)^k \eta_y \mid y \in X_1, k = 1,2\} \in \overline{\mathbf{M}}(A)).$$

4. Let $K = \{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\}$, it is easy to see that:

i.
$$J(K) = \{\eta_y \mid y \in X_1\}, S(K) = B(K) = I(K) = K - \{-\eta_{-1}, \eta_{-1}, -\eta_1, \eta_1\},\$$

ii.
$$F(x,K) = \begin{cases} \{\eta_x, -\eta_{-x}\} & x \in (-1,1) \\ \{\eta_y \mid y \in X_1\} & x \in \{-1,1\} \end{cases},$$

iii.

$$\forall x \in X_1 \quad \forall a \in \{-1, 1\} \quad F(a, \{-\mu_x, \mu_x\}) = J(\{-\mu_x, \mu_x\}) = \{\mu_x\},\$$

Summer 2004

iv.

238

$$\forall x \in X_1 \quad \mathbf{S}(\{-\mu_x, \mu_x\}) = \mathbf{I}(\{-\mu_x, \mu_x\}) = \mathbf{B}(\{-\mu_x, \mu_x\}) = \{-\mu_x, \mu_x\}$$

5.
$$\mathbf{M}(X_1, S_1) = \overline{\mathbf{M}}(X_1, S_1) = \{A \subseteq X_1 \mid A \neq \emptyset \land \operatorname{card}(A \cap (-1, 1)) \le 1\}.$$

(Caution: for each $p \in X_1^{X_1}$ by -p we mean x(-p) = -(xp) (for all $x \in X_1$).)

Proof.

- 1. We have the following cases:
- a = -1,1: For each $n \in \mathbf{N}$, define:

$$xf_{n} = \begin{cases} (2n-1)x + (2n-2)a & -1 \le ax \le -1 + \frac{1}{n} \\ \frac{x}{2n-1} + \frac{(2n-2)a}{2n-1} & -1 + \frac{1}{n} \le ax \le 1 \end{cases}$$

For each $n \in \mathbf{N}$, $f_n \in S_1$, and $\lim_{n \to +\infty} f_n = \eta_a$, thus $\mu_a = \eta_a \in \mathbf{E}(X_1)$. • -1 < a < 1: Choose $m \in \mathbf{N}$ such that $\left\{ a - \frac{1}{n+m} \mid n \in \mathbf{N} \right\} \cup \left\{ a + \frac{1}{n+m} \mid n \in \mathbf{N} \right\}$ is a subset of (-1,1). For each n > m define:

$$xf_{n} = \begin{cases} (na+n-1)x + na+n-2 & -1 \le x \le -1 + \frac{1}{n} \\ \frac{x}{n-1} + a & -1 + \frac{1}{n} \le x \le 1 - \frac{1}{n}, \\ (-na+n-1)x + na-n+2 & 1 - \frac{1}{n} \le x \le 1 \\ (-na+n-1)x + na-n+2 & 1 - \frac{1}{n} \le x \le 1 \end{cases}$$

$$xg_{n} = \begin{cases} \frac{x}{n(a+1)} + \frac{1-n(a+1)}{n(a+1)} & -1 \le x \le a \\ x(2n-2) + \frac{(2an+1)(1-n)}{n(a+1)} & a \le x \le a + \frac{1}{n}, \\ \frac{-x}{n(a-1)+1} + \frac{n(a-1)+2}{n(a-1)+1} & a + \frac{1}{n} \le x \le 1 \end{cases}$$

For each n > m, $f_n, g_n \in S_1$, and $\lim_{n > m} f_n = \eta_a$, $\lim_{n > m} g_n = \mu_a$ thus $\eta_a, \mu_a \in E(X_1)$. 2.

iii. Let $a \in X_1$. Each $s \in S_1$ is monotone, thus if s is increasing we have $\mu_a s = \mu_a$ and if s is decreasing, then $\mu_a s = -\mu_a$, so $\mu_a S_1 = \{-\mu_a, \mu_a\}$ and $\mu_a E(X_1) = \overline{\mu_a S_1} = \{-\mu_a, \mu_a\}$.

iv. Let -1 < a < 1. Each $s \in S_1$ is monotone, thus if s is increasing we have $\eta_a s = \eta_{as}$ and if s is decreasing, then $\eta_a s = -\eta_{-as}$. On the other hand, for each -1 < b < 1 there exists an increasing $s \in S_1$ such that as = b, thus $\eta_a S_1 = \{(-1)^k \eta_v \mid v \in (-1,1), k = 1,2\}$ and $\{(-1)^k \eta_v \mid v \in [-1,1], k = 1,2\} \subseteq \overline{\eta_a S_1} = \eta_a E(X_1)$. Now let $\{\eta_{y_a}\}_{a\in\Gamma}$ be a convergent net in $\eta_a E(X_1)$. By compactness of [-1,1] there exists $y \in [-1,1]$ and a subnet of $\{y_{\alpha}\}_{\alpha\in\Gamma}$ like $\{y_{\alpha_{\beta}}\}_{\beta\in\Omega}$ such that $\lim_{\beta\in\Omega}y_{\alpha_{\beta}} = y$, thus $\lim_{\beta\in\Omega}\eta_{y_{\alpha_{\beta}}} = \eta_{y}$, so $\eta_a E(X_1) = \overline{\eta_a S_1} \subseteq \{(-1)^k \eta_v \mid v \in [-1,1], k = 1,2\}$, which completes the proof. 3.

Use (i) and (ii) in item (2). i.

ii. Use (i) in item (2) and (i).

iii. Use (iii) in item (2).

iv. By a similar argument as in (iv) in item (2), for $a \in \{-1,1\}$ we have $\eta_a E(X_1) = \{-\eta_a, \eta_a\}$. Now use (iv) in item (2).

v. By (i) the elements -1 and 1 are almost periodic, thus

 $M(1) = M(-1) = \overline{M}(\{-1,1\}) = M(\{-1,1\}) = Min(E(X_1))$, on the other hand by (iii) we have

$$\{\{-\mu_x,\mu_x\} \mid x \in X_1\} \subseteq \operatorname{Min}(\operatorname{E}(X_1))$$
.

vi. If -1 < a < 1 by (ii) in item (2), $a E(X_1) = X_1$, on the other hand by (iv) in item (2) we have $a\eta_a E(X_1) = a\{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\} = X_1$. Moreover, for each $b \in \{-1, 1\}$ we have $a\{-\eta_b, \eta_b\} = \{-1, 1\} \neq X_1$, which completes the proof by (iv). vii. Use (vi).

4. For each -1 < a < 1 we have $J(F(a, \{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\})) = \{\eta_a\}$. Thus if $card(A \cap (-1,1)) \le 1$ (and $A \ne \emptyset$), then by (vii) and (v) in item (3), we have $A \in \overline{\mathbf{M}}(X_1, S_1)$, and if $card(A \cap (-1,1)) \ge 2$ we have $J(F(A, \{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\})) = \emptyset$, but by (vii) in item (3) $\{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\} \in \overline{\mathbf{M}}(A)$, thus $A \notin \overline{\mathbf{M}}(X_1, S_1)$. Therefore $\overline{\mathbf{M}}(X_1, S_1) = \{A \subseteq X_1 \mid A \ne \emptyset \land card(A \cap (-1,1)) \le 1\}$. Now by a similar method described for (vi) in item (3), for each subset A of X_1 such that $A \cap (-1,1) \ne \emptyset$ we have $\{(-1)^k \eta_y \mid y \in X_1, k = 1, 2\} \in \overline{\mathbf{M}}(A)$, moreover if $card(A \cap (-1,1)) \ge 2$, then

$$J(F(A, \{(-1)^{k} \eta_{y} \mid y \in X_{1}, k = 1, 2\})) = J(F(A, \{(-1)^{k} \eta_{y} \mid y \in X_{1}, k = 1, 2\})) = \emptyset,$$

which leads us to the desired result.

Example 2. Let X_2 be an infinite fort space with the particular point b (i.e., X_2 is infinite, $b \in X_2$, and X_2 is occupied with topology $\{U \subseteq X_2 \mid b \notin U \lor \operatorname{card}(X_2 - U) < \aleph_0\}$) $\xi : X_2 \to X_2$ is a one to one map such that for each $x \in X_2$ and $n \in \mathbb{N}$, $x\xi^n = x$ if and only if x = b, and let $S_2 = \{\xi^n \mid n \ge 0\}$ (S_2 has the discrete topology), then in the transformation semi group (X_2, S_2) we have:

1.

i.
$$E(X_2) = S_2 \cup \{b\}$$
,

ii. $\overline{bS_2} = \{b\}$, b is the unique almost periodic point of (X_2, S_2) , and $\{b\}$ is the unique minimal right ideal of $E(X_2)$,

- iii. if L is a right ideal of $E(X_2)$ and $L \neq \{b\}$, then there exists $n \ge 0$ such that $L = \xi^n E(X_2)$.
- 2. If A is a nonempty subset of X_2 , then:

.
$$M(b) = \{\{b\}\},\$$

ii. $\overline{\mathbf{M}}(A) = \{ \mathbf{E}(X_2) \}$ (i.e., (X_2, S_2) is $A^{\underline{(M)}}$ distal) if and only if $A \neq \{b\}$,

iii. (X_2, S_2) is A – distal if and only if $b \notin A$,

iv.
$$J(E(X_2)) = \{b, id_{X_2}\}, I(E(X_2)) = S_2, S(E(X_2)) = B(E(X_2)) = \{id_{X_2}\},\$$

v.
$$\overline{\mathbf{M}}(X_2, S_2) = \{A \subseteq X_2 \mid A \neq \emptyset\}$$

Proof. First note that $\xi: X_2 \to X_2$ is continuous. For this aim let U be an open subset of X_2 if $b \notin U$, then $b \notin \xi^{-1}(U)$ and $\xi^{-1}(U)$ is an open subset of X_2 , also if $X_2 - U$ is finite since ξ is

1-1, so $X_2 - \xi^{-1}(U)$ is finite too and $\xi^{-1}(U)$ is an open subset of X_2 , thus $\xi: X_2 \to X_2$ is continuous.

1.

i. We claim that $\lim_{n \in \mathbb{N}} \xi^n = b$. Let $a \in X_2$ and U be an open neighborhood of b, then $X_2 - U$ is finite, by the hypothesis on ξ the set $\{m \in \mathbb{N} \mid a\xi^m \in (X_2 - U)\}$ is finite and for each $k > \max\{m \in \mathbb{N} \mid a\xi^m \in (X_2 - U)\}$, $a\xi^k \in U$, thus $\lim_{n \in \mathbb{N}} a\xi^n = b$ and $\lim_{n \in \mathbb{N}} \xi^n = b$, so $S_2 \cup \{b\} \subseteq \mathbb{E}(X_2)$. Moreover if $9 \in \mathbb{E}(X_2)$, then there exists a net $\{\xi^{n_a}\}_{\alpha \in \Gamma}^{n \in \mathbb{N}}$ such that $\lim_{\alpha \in \Gamma} \xi^{n_\alpha} = 9$, if $9 \neq b$ there exists $a \neq b$ such that $a9 \neq b$ and $\lim_{\alpha \in \Gamma} a\xi^{n_\alpha} = a9$. The set $\{a9\}$ is an open neighborhood of a9, thus there exists $\beta \in \Gamma$ such that for each $\alpha \geq \beta$ we have $a\xi^{n_\alpha} \in \{a9\}$ and $a\xi^{n_\alpha} = a9$, thus for each $\alpha \geq \beta$ we have $n_\alpha = n_\beta$ (by our hypothesis on ξ and $a9 \neq b$) thus $9 = \xi^{n_\beta}$, so $\mathbb{E}(X_2) \subseteq S_2 \cup \{b\}$. Therefore $\mathbb{E}(X_2) = S_2 \cup \{b\}$. ii. $\overline{bS_2} = \{b\}$ thus b is almost periodic. If $a \neq b$ then $b \in aS_2$ (by (i)) and $a \notin bS_2 = \{b\}$

ii. $\overline{bS_2} = \{b\}$ thus *b* is almost periodic. If $a \neq b$ then $b \in \overline{aS_2}$ (by (i)) and $a \notin \overline{bS_2} = \{b\}$ thus *a* is not almost periodic. Moreover, if *I* is a right ideal of $E(X_2)$, then $\{b\} = (S_2 \cup \{b\})b = E(X_2)b \supseteq Ib$, thus $\{b\} = Ib$ is a subset of *I*. Moreover $\{b\} = b(S_2 \cup \{b\}) = b E(X_2)$, thus $\{b\}$ is a minimal right ideal of $E(X_2)$, so $\{b\}$ is the unique minimal right ideal of $E(X_2)$.

iii. Let $n = \min\{m \mid \xi^m \in L\}$, thus by (i) $L \subseteq \xi^n \operatorname{E}(X_2) = \{\xi^m \mid m \ge n\} \cup \{b\}$. On the other hand, let m > n thus $\xi^m = \xi^n \xi^{m-n} \in L$ (since $\xi^n \in L$ and L is a right ideal of $\operatorname{E}(X_2)$) therefore $\{\xi^m \mid m \ge n\} \subseteq L$, thus $\{\xi^m \mid m \ge n\} \cup \{b\} \subseteq L$ (by the argument in (ii)). Therefore $L = \xi^n \operatorname{E}(X_2)$.

2. Let A be a nonempty subset of X_2 .

i. Use (ii) in item (1).

ii. If $M(A) = \{E(X_2)\}$, then by (i) $A \neq \{b\}$. If $A \neq \{b\}$ choose $a \in A - \{b\}$ and $K \in \overline{M}(A)$ so $a E(X_2) = aK$, by (i) in item (1) there exists $n \ge 0$ such that $a\xi^n = a$ and $\xi^n \in K$. By our hypothesis on ξ we have n = 0 so $id_{X_2} \in K$ and $K = E(X_2)$. iii, v. Use (ii).

Example 3. Let $X_3 = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ (with the induced topology of \mathbb{R}), $\xi : X_3 \to X_3$ by $x\xi = \frac{x}{x+1}$ ($x \in X_3$) and let $S_3 = \{\xi^n \mid n \ge 0\}$ (S_3 has the discrete topology), then in the transformation semigroup (X_3, S_3), $\overline{\mathbb{M}}(X_3, S_3) = \overline{\mathbb{M}}(X_3, S_3) = \{A \subseteq X_3 \mid A \ne \emptyset\}$, and for each nonempty subset A of X_3 we have $\overline{\mathbb{M}}(A) = \overline{\mathbb{M}}(A)$ (this example is a special case of Example 2).

Proof. By Example 2 we have $\overline{\mathbf{M}}(X_3, S_3) = \{A \subseteq X_3 \mid A \neq \emptyset\}$. Now let $\{0\} \neq A \in \overline{\mathbf{M}}(X_3, S_3)$ and K be a closed right ideal of $E(X_3)$ such that $AK = AE(X_3)$. As $A \neq \{0\}$ we have $K \neq \{0\}$, thus by (iii) of item (1) in Example 2 there exists $n \ge 0$ such that $K = \xi^n E(X_3)$ we have:

$$\min\left\{m \mid \frac{1}{m} \in A \operatorname{E}(X_3)\right\} + n = \min\left\{m \mid \frac{1}{m} \in A\xi^n \operatorname{E}(X_3)\right\}$$
$$= \min\left\{m \mid \frac{1}{m} \in AK\right\} = \min\left\{m \mid \frac{1}{m} \in A \operatorname{E}(X_3)\right\}$$

thus n = 0, $K = E(X_3)$ and $\overline{M}(A) = \{E(X_3)\}$. So $\overline{M}(A) = \{E(X_3)\}$ if and only if $A \neq \{0\}$ and $\overline{M}(X_3, S_3) = \{A \subseteq X_3 \mid A \neq \emptyset\}$. Using (ii) in item (2) of Example 2 will complete the proof.

Example 4. Let $X_4 = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ (with the induced topology of **R**). Define $\xi: X_4 \to X_4$ by:

$$x\xi = \begin{cases} \frac{x}{1-x} & x \in X_4 - \{1\} \\ 0 & x = 1 \end{cases}$$

Take $S_4 = \{\xi^n \mid n \ge 0\}$ (S_4 with the discrete topology), then in the transformation semigroup (X_4, S_4) we have:

i.
$$E(X_4) = S_4 \cup \{0\}$$
,

ii. 0 is the unique almost periodic point of the transformation semigroup (X_4, S_4) and $\{0\}$ is the unique minimal right ideal of $E(X_4)$,

iii.
$$M(0) = \{\{0\}\}.$$

2. If A is a nonempty subset of X_4 , then:

 (X_4, S_4) is A – distal if and only if $0 \notin A$.

i.
$$\overline{M}(A) = \begin{cases} \{E(X_4)\} & A \neq \{0\} \quad ((X_4, S_4) \text{ is } A^{(\overline{M})} \text{ distal}) \\ \{\{0\}\} & A = \{0\} \end{cases},$$

ii.
$$\overline{\overline{M}}(A) = \begin{cases} \emptyset & \operatorname{card}(A) = \aleph_0 \\ \{\{0\}\} & A = \{0\} \\ \{E(X_4)\} & \operatorname{otherwise} \quad ((X_4, S_4) \text{ is } A^{(\overline{M})} \text{ distal}) \end{cases}$$

iii.

Proof.

1.

i. We have $\lim_{n \in \mathbb{N}} \xi^n = 0$, so $S_4 \cup \{0\} \subseteq E(X_4)$. Moreover, for $\vartheta \in E(X_4)$, there exists a net $\{\xi^{n_\alpha}\}_{\alpha \in \Gamma}$ such that $\lim_{\alpha \in \Gamma} \xi^{n_\alpha} = \vartheta$ and if $\vartheta \neq 0$, there exists $n \in \mathbb{N}$ such that $\frac{1}{n} \vartheta \neq 0$ and $\lim_{\alpha \in \Gamma} \frac{1}{n} \xi^{n_\alpha} = \frac{1}{n} \vartheta$, thus there exists $\beta \in \Gamma$ such that for each $\alpha \ge \beta$ we have $\frac{1}{n} \xi^{n_\alpha} = \frac{1}{n} \vartheta$, therefore for $\alpha \ge \beta$ we have $\frac{1}{n} \xi^{n_\alpha} = \frac{1}{n} \xi^{n_\beta} = \frac{1}{n} \vartheta \neq 0$ thus $\frac{1}{n-n_\alpha} = \frac{1}{n-n_\beta}$, i.e., $n_\alpha = n_\beta$ (for all $\alpha \ge \beta$), thus $\vartheta = \xi^{n_\beta}$ and $E(X_4) \subseteq S_4 \cup \{0\}$.

ii.
$$0 \in (\underline{X}_4) = \{0\}$$
, therefore 0 is almost periodic. For each $n \in \mathbb{N}$ we have $0 \in \frac{1}{n} E(X_4) (= \frac{1}{n} S_4 = \{\frac{1}{m} | m \le n\} \cup \{0\} = \{\frac{1}{m} | m \le n\} \cup \{0\})$, but $\frac{1}{n} \notin 0 E(X_4) (= \{0\})$, therefore $\frac{1}{n}$ is not almost periodic. Moreover, if *I* is a right ideal of $E(X_4)$, then $\{0\} = I0 \subseteq I E(X_4) \subseteq I$, thus $\{0\}$ is the unique minimal right ideal of $E(X_4)$.
iii. Use (ii).

2.

i. If $A \neq \{0\}$ choose $n \in \mathbb{N}$ such that $\frac{1}{n} \in A$ and $K \in \overline{\mathbb{M}}(A)$. As $\frac{1}{n}K = \frac{1}{n}\mathbb{E}(X_4)$ there exists $m \ge 0$ such that $\xi^m \in K$ and $\frac{1}{n}\xi^m = \frac{1}{n}$, therefore m = 0, $\operatorname{id}_{X_4} \in K$ and $K = \mathbb{E}(X_4)$. Using (iii) in item (1) will complete the proof.

ii. If $\operatorname{card}(A) < \aleph_0$ and $A \neq \{0\}$, let $m = \max\left\{n \mid \frac{1}{n} \in A\right\}$ and let K be a closed right ideal of $\operatorname{E}(X_4)$ such that $AK = A\operatorname{E}(X_4)$, (thus $A \subseteq AK$) so there exist $q \in \mathbb{N}$ and $p \in \mathbb{N} \cup \{0\}$ such that $\frac{1}{q} \in A$, $\xi^p \in K$ and $\frac{1}{m} = \frac{1}{q} \xi^p$ by $m \ge q$ we get p = 0, $\operatorname{id}_{X_4} \in K$ and $K = \operatorname{E}(X_4)$, thus $\overline{\operatorname{M}}(A) \ne \emptyset$. If $\operatorname{card}(A) = \aleph_0$, then for each $n \in \mathbb{N}$ we have $A\xi^n \operatorname{E}(X_4) = A\operatorname{E}(X_4) = X_4$, and if K be a closed right ideal of $\operatorname{E}(X_4)$ such that $AK = A\operatorname{E}(X_4)$ we have $K \ne \{0\}$. Let $m = \min\{n \mid \xi^n \in K\}$ then $\xi^{m+1} \operatorname{E}(X_4)$ is a proper subset of K and a closed right ideal of $\operatorname{E}(X_4)$, iii. Use (i).

Example 5. Let $X_5 = \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\}$ (with the induced topology of **R**), for each $n \in \mathbf{N}$, define the following maps:

$$x\rho_{n} = \begin{cases} 0 & x \neq \frac{1}{n} \\ x & x = \frac{1}{n} \end{cases}, \quad x\vartheta_{n} = \begin{cases} x & x \neq \frac{1}{n} \\ 0 & x = \frac{1}{n} \end{cases}, \quad x\psi = \begin{cases} x & x \neq 1, \frac{1}{2} \\ 1 & x = \frac{1}{2} \\ \frac{1}{2} & x = 1 \end{cases}$$

Let S_5 be the semigroup generated by $\{\vartheta_n \mid n \in \mathbb{N}\} \cup \{\psi, \mathrm{id}_{X_5}\}$ (S_5 with the discrete topology), then in the transformation semigroup (X_5, S_5) we have:

1.
$$E(X_5) = \{ p \psi^i \mid (\exists A \subseteq X_5 \quad (p \mid_A = id_A \land p \mid_{X_5 \land A} = 0 \land 0p = 0)), i = 1, 2 \}$$

2. 0 is the unique almost periodic point of the transformation semigroup (X_5, S_5) and $\{0\}$ is the unique minimal right ideal of $E(X_5)$.

3.

$$M(x) = \begin{cases} \{\{0\}\} & x = 0 \\ \{\{\rho_n, \rho_n \psi, 0\}\} & x = \frac{1}{n}, n = 1, 2. \\ \{\{\rho_n, 0\}\} & x = \frac{1}{n}, n \ge 3 \end{cases}$$
4.

$$\overline{M}(\{1, \frac{1}{2}\}) = M(1) \cup M(\frac{1}{2}) = \{\{\rho_n, \rho_n \psi, 0\} \mid n = 1, 2\}.$$

5.
$$\forall A \subseteq X_5 \quad (0 < \operatorname{card}(A) < \aleph_0 \Rightarrow \overline{M}(A) = \left\{ \left\{ \rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2 \right\} \cup \{0\} \right\} \right\}.$$

Proof. Let $n \in \mathbb{N}$, for k > n define $\eta_k = \vartheta_1 \cdots \vartheta_{n-1} \vartheta_{n+1} \cdots \vartheta_k$, then we have $\rho_n = \lim_{k > n} \eta_k$, thus $\rho_n \in \mathrm{E}(X_5)$.

1. Use the fact that for each $p: X_5 \to X_5$, there exists a finite subset A of X_5 such that $p|_{X_5-A} = \operatorname{id}_{X_5-A}$ and $p|_A = 0$ if and only if there exists $k_1, \dots, k_n \in \mathbb{N}$ such that $p = \mathfrak{P}_{k_1} \cdots \mathfrak{P}_{k_n}$. Moreover $\psi^2 = \operatorname{id}_{X_5}$. For $n \ge 3$ we have $\psi \vartheta_n = \vartheta_n \psi$ and for $n, m \in \mathbb{N}$ we have $\vartheta_n \vartheta_m = \vartheta_m \vartheta_n$, $\vartheta_1 \psi = \psi \vartheta_2$ and $\vartheta_2 \psi = \psi \vartheta_1$.

2. $\{0\} = 0 \operatorname{E}(X_5)$ thus 0 is almost periodic, for each $n \in \mathbb{N}$ we have $0 = \frac{1}{n} \vartheta_n \in \frac{1}{n} \operatorname{E}(X_5)$, but $\frac{1}{n} \notin \{0\} = 0 \operatorname{E}(X_5)$ thus $\frac{1}{n}$ is not quite periodic. Moreover for each right ideal I of $\operatorname{E}(X_5)$ we have $0 \to \mathbb{E}(X_5) = \{0\} = I0 \stackrel{n}{\subseteq} I \to \mathbb{E}(X_5) \subseteq I$, thus $\{0\}$ is the unique minimal right ideal of $\mathbb{E}(X_5)$.

3. Using (2) we have $M(0) = \{\{0\}\}$. For each $n \in \mathbb{N}$ we have $\rho_n E(X_s) = \rho_n \Psi E(X_s) = \{\rho_n, \rho_n \Psi, 0\}$, thus $\{\rho_n, \rho_n \psi, 0\}$ is a closed right ideal of $E(X_5)$, moreover $\frac{1}{n}E(X_5) = \left\{\frac{1}{n}, \frac{1}{n}\psi, 0\right\} = \frac{1}{n}\{\rho_n, \rho_n\psi, 0\}$. On the other hand, {0} is the only proper subset of { ρ_n , $\rho_n \psi$, 0} such that it is a right ideal of E(X₅), but $\frac{1}{n}\{0\} = \{0\} \neq \left\{\frac{1}{n}, \frac{1}{n}\psi, 0\right\} = \{0\}\{\rho_n, \rho_n\psi, 0\}$ thus $\{\rho_n, \rho_n\psi, 0\} \in \mathbf{M}(\frac{1}{n})$. Conversely, if $K \in \mathbf{M}(\frac{1}{n})$, then $\frac{1}{n} E(X_s) = \frac{1}{n}K$ thus there exists $p \in K$ such that $\frac{1}{n}p = \frac{1}{n}$, therefore $\frac{1}{n}p\rho_n = \frac{1}{n}\rho_n$. It is easy to verify that $p\rho_n = \rho_n$. But $p\rho_n \in K$ thus $\rho_n \in K$, so ${}^{n}_{\{\rho_{n},\rho_{n}\psi,0\}} = \rho_{n} \operatorname{E}(X_{5}) \subseteq K \text{ As } \{\rho_{n},\rho_{n}\psi,0\}, K \in \operatorname{M}(\frac{1}{n}) \text{ we get } K = \{\rho_{n},\rho_{n}\psi,0\} \text{ and}$ $M(\frac{1}{n}) = \{\{\rho_n, \rho_n \psi, 0\}\} \text{ . Now if } n \ge 3 \text{ , then } \rho_n = \rho_n \psi \text{ so } M(\frac{1}{n}) = \{\{\rho_n, 0\}\}.$

4. By the argument in (3) we have $M(1) = \{\{\rho_1, \rho_1 \psi, 0\}\}\$ and $M(\frac{1}{2}) = \{\{\rho_2, \rho_2 \psi, 0\}\}\$, moreover $\left\{1, \frac{1}{2}\right\}\{\rho_2, \rho_2\psi, 0\} = \left\{0, \frac{1}{2}, 1\right\} = \left\{1, \frac{1}{2}\right\} E(X_5) = \left\{1, \frac{1}{2}\right\}\{\rho_1, \rho_1\psi, 0\} \text{ which shows } M(1) \cup M(\frac{1}{2}) \subseteq \overline{\overline{M}}(\left\{1, \frac{1}{2}\right\}). \text{ On } M(1) = \left\{1, \frac{1}{2}\right\} E(X_5) = \left\{1, \frac{1}{2}\right\}\{\rho_1, \rho_1\psi, 0\} \text{ which shows } M(1) \cup M(\frac{1}{2}) \subseteq \overline{\overline{M}}(\left\{1, \frac{1}{2}\right\}). \right\}$ the other hand, if $K \in \overline{M}(\{1, \frac{1}{2}\})$, then $\{1, \frac{1}{2}\}K = \{1, \frac{1}{2}\}E(X_5) = \{0, \frac{1}{2}, 1\}$ thus there exists $p \in K$ such that 1p = 1 or $\frac{1}{2}p = 1$ thus $1p\rho_1 = 1\rho_1 = 1$ or $\frac{1}{2}p\psi\rho_2 = 1\psi\rho_2 = \frac{1}{2} = \frac{1}{2}\rho_2$, therefore $p\rho_1 = \rho_1$ or $p\psi\rho_2 = \rho_2$, since $p \in K$ we have $\rho_1 \in K$ or $\rho_2 \in K$, thus $\{\rho_1, \rho_1\psi, 0\} = \rho_1 E(X_5) \subseteq K$ or $\{\rho_2, \rho_2 \psi, 0\} = \rho_2 \operatorname{E}(X_5) \subseteq K \text{ Since } \{\rho_1, \rho_1 \psi, 0\} \in \overline{\overline{M}}(\left\{1, \frac{1}{2}\right\}) \text{ and } \{\rho_2, \rho_2 \psi, 0\} \in \overline{\overline{M}}(\left\{1, \frac{1}{2}\right\}), \text{ we have } \{\rho_1, \rho_2 \psi, 0\} \in \overline{\overline{M}}(\left\{1, \frac{1}{2}\right\})$ $K = \{\rho_1, \rho_1 \psi, 0\} \text{ or } K = \{\rho_2, \rho_2 \psi, 0\}. \text{ Therefore } \overline{\overline{M}}(\left\{1, \frac{1}{2}\right\}) = \{\{\rho_1, \rho_1 \psi, 0\}, \{\rho_2, \rho_2 \psi, 0\}\} = M(1) \cup M(\frac{1}{2}).$ 5. Let A be a nonempty finite subset of X_5 . Then for each $m \in \mathbb{N}$ with $\frac{1}{m} \in A$ we have (by (3)) $\frac{1}{m} \mathbb{E}(X_5) = \frac{1}{m} \{ \rho_m, \rho_m \psi, 0 \} \subseteq \frac{1}{m} \left(\left\{ \rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2 \right\} \cup \{0\} \right) \subseteq \frac{1}{m} \mathbb{E}(X_5), \text{ thus for each } a \in A \text{ we}$ have $a E(X_5) = a(\{\rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2\} \cup \{0\})$. Since *A* is finite, $\{\rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2\} \cup \{0\}$ is finite and closed, hence

$$\left(\left\{\rho_{n}\psi^{i} \mid \frac{1}{n} \in A, i = 1, 2\right\} \cup \{0\}\right) \mathbb{E}(X_{5}) = \bigcup\left\{\left\{\rho_{n}, \rho_{n}\psi, 0\right\} \mathbb{E}(X_{5}) \mid \frac{1}{n} \in A\right\}$$
$$\subseteq \bigcup\left\{\left\{\rho_{n}, \rho_{n}\psi, 0\right\} \mid \frac{1}{n} \in A\right\}$$
$$= \left\{\rho_{n}\psi^{i} \mid \frac{1}{n} \in A, i = 1, 2\right\} \cup \{0\}$$

thus $\left\{ \rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2 \right\} \cup \{0\}$ is a closed right ideal of $E(X_5)$. Let K be a closed right ideal of $E(X_5)$ such that $aK = a E(X_5)$ for each $a \in A$, thus there exists $L \in \overline{M}(A)$ such that $L \subseteq K$. By (3) we have $\left\{ \rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2 \right\} \cup \{0\} \subseteq K$, therefore

$$\left\{\rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2\right\} \cup \{0\} = K \in \overline{\mathcal{M}}(A) \text{ and}$$

$$\mathbf{M}(A) = \left\{ \left\{ \rho_n \psi^i \mid \frac{1}{n} \in A, i = 1, 2 \right\} \cup \{0\} \right\}.$$

Example 6. Let $X_6 = \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ (with the induced topology of **R**), define $\tau: X_6 \to X_6$ by

$$x\tau = \begin{cases} x & x \neq \frac{1}{3}, \frac{1}{4} \\ \frac{1}{3} & x = \frac{1}{4} \\ \frac{1}{4} & x = \frac{1}{3} \end{cases}$$

With the same assumptions as in Example 5 let S_6 be the semigroup generated by $\{\vartheta_n \mid n \in \mathbb{N}\} \cup \{\psi\tau, \mathrm{id}_{X_6}\}$ (S_6 with the discrete topology), and let S'_6 be the semigoup generated by $\{\vartheta_n \mid n \in \mathbb{N}\} \cup \{\psi, \tau, \mathrm{id}_{X_6}\}$ (S'_6 with the discrete topology), then in the transformation semigroups (X_6, S_6) and (X_6, S'_6) we have

1.
$$E(X_6, S_6) \subseteq E(X_6, S_6') = \{p\tau^i \mid p \in E(X_5, S_5), i = 1, 2\}$$
.

2. In the transformation semigroup (X_6, S_6) we have

i. 0 is the unique, almost periodic point of the transformation semigroup (X_6, S_6) , and $\{0\}$ is the unique minimal right ideal of $E(X_6)$,

$$M(x) = \begin{cases} \{\{0\}\} & x = 0\\ \{\{\rho_n, \rho_n \psi, 0\}\} & x = \frac{1}{n}, n = 1, 2\\ \{\{\rho_n, \rho_n \tau, 0\}\} & x = \frac{1}{n}, n = 3, 4\\ \{\{\rho_n, 0\}\} & x = \frac{1}{n}, n \ge 5 \end{cases}$$

iii.

ii.

if A is a nonempty finite subset of X_6 , then

$$\overline{\mathbf{M}}(A) = \left\{ \left\{ \rho_n \psi^i \tau^j \mid \frac{1}{n} \in A, i, j \in \{1, 2\} \right\} \cup \{0\} \right\},\$$

 $\forall n \in \{1,3\} \quad \overline{M}(\left\{\frac{1}{n}, \frac{1}{n+1}\right\}) = M(\frac{1}{n}) \cup M(\frac{1}{n+1}),$

v.

vi.
$$\forall m \in \{1,2\} \quad \forall n \in \{3,4\} \quad \overline{\overline{\mathbf{M}}}(\left\{\frac{1}{n}, \frac{1}{m}\right\}) = \left\{\left\{\rho_n, \rho_n \tau, \rho_m, \rho_m \psi, 0\right\}\right\},$$

vii.
$$\overline{\overline{M}}(\left\{\frac{1}{n} \mid 1 \le n \le 4\right\}) = \{\{\rho_n, \rho_n \tau, \rho_m, \rho_m \psi, 0\} \mid m \in \{1, 2\}, n \in \{3, 4\}\}.$$

Proof. Use a similar method described in Example 5.

iv.

Example 7. Let $X_7 = \left\{ \frac{1}{n} + \frac{1}{m} \mid n, m \in \mathbb{N}, m > n(n-1) \right\} \cup \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\}$ (with the induced topology of **R**), consider the following maps on X_7 :

$$x \mathfrak{P} = \begin{cases} \frac{1}{n} + \frac{1}{m+1} & n, m \in \mathbf{N}, m > n(n-1), x = \frac{1}{n} + \frac{1}{m}, \\ x & \text{otherwise} \end{cases}$$
$$x \psi = \begin{cases} \frac{1}{n} & n, m \in \mathbf{N}, m > n(n-1), x = \frac{1}{n} + \frac{1}{m} \\ x & \text{otherwise} \end{cases}$$

and let $S_7 = \{9^n \mid n \ge 0\}$ (S_7 with the discrete topology), then in the transformation semigroup (X_7, S_7) we have

 $\mathrm{E}(X_{\tau}) = S_{\tau} \cup \{\psi\}.$

1.

2.
$$\overline{xS_7} = \begin{cases} \{x\} & x \in \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\} \\ \left\{\frac{1}{n} + \frac{1}{k} \mid k \in \mathbf{N}, k \ge m\right\} \cup \left\{\frac{1}{n}\right\} & n, m \in \mathbf{N}, m > n(n-1), x = \frac{1}{n} + \frac{1}{m} \end{cases}$$

3. $\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\}$ is the set of almost all periodic points of (X_7, S_7) and $\{\psi\}$ is the unique minimal right ideal of $E(X_7)$.

4. If A is a nonempty subset of X_7 , then:

i.
$$\overline{\mathbf{M}}(A) = \begin{cases} \{\{\Psi\}\} & A \subseteq \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\} \\ \mathbb{E}(X_7) & A \not\subset \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\} \quad ((X_7, S_7) \text{ is } A^{(\overline{\mathbf{M}})} \text{ distal}) \end{cases}$$
ii.
$$(A \subseteq \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\}) \Leftrightarrow (\overline{\mathbf{M}}(A) = \{\{\Psi\}\}),$$

Summer 2004

iii.
$$A \cap \left\{ \left\{ \frac{1}{n} \mid n \in \mathbb{N} \right\} \cup \{0\} \right\} = \emptyset$$
 if and only if (X_7, S_7) is A -distal

Proof.

1. Since $\lim_{\eta \in \mathbb{N}} \mathfrak{P}^n = \psi$, $S_7 \cup \{\psi\} \subseteq \mathbb{E}(X_7)$. On the other hand, let $p \in \mathbb{E}(X_7)$ and $\{\mathfrak{P}^{n_\alpha}\}_{\alpha \in \Gamma}$ be a net such that $\lim_{\alpha \in \Gamma} \mathfrak{P}^{n_\alpha} = p$. We have

$$\forall x \in \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \cup \{0\} \quad xp = \lim_{\alpha \in \Gamma} x \vartheta^{n_{\alpha}} = \lim_{\alpha \in \Gamma} x = x ,$$

for all $m, n \in \mathbb{N}$ such that m > n(n-1) we have •

•

$$(\forall \alpha \in \Gamma \quad (\frac{1}{n} + \frac{1}{m}) \vartheta^{n_{\alpha}} \in \left\{ \frac{1}{n} + \frac{1}{k} \mid k \in \mathbf{N}, k \ge m \right\})$$

$$\Rightarrow (\forall \alpha \in \Gamma \quad (\frac{1}{n} + \frac{1}{m}) \vartheta^{n_{\alpha}} \in \left\{ \frac{1}{n} + \frac{1}{k} \mid k \in \mathbf{N}, k \ge m \right\} \cup \left\{ \frac{1}{n} \right\})$$

$$\Rightarrow \lim_{\alpha \in \Gamma} (\frac{1}{n} + \frac{1}{m}) \vartheta^{n_{\alpha}} \in \left\{ \frac{1}{n} + \frac{1}{k} \mid k \in \mathbf{N}, k \ge m \right\} \cup \left\{ \frac{1}{n} \right\}$$

$$\Rightarrow (\frac{1}{n} + \frac{1}{m}) p \in \left\{ \frac{1}{n} + \frac{1}{k} \mid k \in \mathbf{N}, k \ge m \right\} \cup \left\{ \frac{1}{n} \right\}.$$

Whenever $p \neq \psi$ there exist $m, n, k \in \mathbb{N}$ such that $k \ge m > n(n-1)$ $\lim_{\alpha \in \Gamma} (\frac{1}{n} + \frac{1}{m}) \vartheta^{n_{\alpha}} = \frac{1}{n} + \frac{1}{k}$, further, and

$$\lim_{\alpha \in \Gamma} \left(\frac{1}{n} + \frac{1}{m}\right) \vartheta^{n_{\alpha}} = \frac{1}{n} + \frac{1}{k}$$
$$\Rightarrow (\exists \beta \in \Gamma \quad \forall \alpha \in \Gamma \quad (\alpha \ge \beta \Rightarrow (\frac{1}{n} + \frac{1}{m}) \vartheta^{n_{\alpha}} = \frac{1}{n} + \frac{1}{k}))$$
$$\Rightarrow (\exists \beta \in \Gamma \quad \forall \alpha \in \Gamma \quad (\alpha \ge \beta \Rightarrow n_{\alpha} = n_{\beta}))$$
$$\Rightarrow (\exists \beta \in \Gamma \quad \vartheta^{n_{\beta}} = \lim_{\alpha \in \Gamma} \vartheta^{n_{\alpha}} = p)$$
$$\Rightarrow p \in S_{7}$$

thus $E(X_7) \subseteq S_7 \cup \{\psi\}$. 4. i. Let A be a nonempty subset of X_7 such that $A \not\subset \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ and $K \in \overline{\mathbb{M}}(A)$. Let $x \in A - \left(\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}\right)$, thus $xK = x E(X_7)$, therefore, $J(F(x, K)) \neq \emptyset$. Using $J(E(X_7)) = \{\operatorname{id}_{X_7}, \psi\}$, we have $\operatorname{id}_{X_7} \in K$ and $K = E(X_7)$. Therefore $\overline{\mathbb{M}}(A) = \{E(X_7)\}$.

246

Example 8. Let $X_8 = \left\{\frac{1}{n} + \frac{1}{m} \mid n, m \in \mathbb{N}, m > n(n-1)\right\} \cup \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$ (with the induced topology of **R**) and let S_8 be the group of all homeomorphisms on X_8 (S_8 with the discrete topology), then in the transformation semigroup (X_8, S_8) we have

1. 0 is the unique almost periodic point of the transformation semigroup (X_8, S_8) , {0} is the unique minimal right ideal of $E(X_8)$ and $M(0) = \{\{0\}\}$.

2.
$$\forall n \in \mathbf{N} \quad (n \ge 2 \Longrightarrow \overline{\frac{1}{n}S_8} = \left\{\frac{1}{m} \mid m \in \mathbf{N}, m \ge 2\right\} \cup \{0\}).$$

3.
$$\forall x \in X_8 - \left(\left\{\frac{1}{n} \mid m \in \mathbb{N}, m \ge 2\right\} \cup \{0\}\right) \quad \overline{xS_8} = X_8.$$

4. If A is a nonempty subset of X_8 , then (X_8, S_8) is not A – distal.

Proof. For each $m, n \in \mathbb{N}$ define

$$x\eta_{m,n} = \begin{cases} \frac{1}{n} & x = \frac{1}{m} \\ \frac{1}{m} & x = \frac{1}{n} \\ \frac{1}{m} + \frac{1}{k - n(n-1) + m(m-1)} & k \in \mathbf{N}, k > n(n-1), x = \frac{1}{n} + \frac{1}{k} \\ \frac{1}{n} + \frac{1}{k - m(m-1) + n(n-1)} & k \in \mathbf{N}, k > m(m-1), x = \frac{1}{m} + \frac{1}{k} \\ x & \text{otherwise} \end{cases}$$

$$x\eta_n = \begin{cases} 0 & x = \frac{1}{n} \\ 0 & k \in \mathbf{N}, k > n(n-1), x = \frac{1}{n} + \frac{1}{k}, \\ x & \text{otherwise} \end{cases}$$

 $\eta_{m,n} \in S_8$; and for each $n \in \mathbb{N}$, $\lim_{m \in \mathbb{N}} \eta_{m,n} = \eta_n$. Now use a similar method described for the previous examples.

Since the following examples will not be used to complete the tables, we have omitted their proofs.

Example 9. Let $X_9 = (\bigcup_{n \in \mathbb{N}} \left[\frac{1}{2n}, \frac{1}{2n-1} \right]) \cup \{0\}$ (with the induced topology of **R**), let S_9 be the group of all homeomorphisms on X_9 (S_9 with the discrete topology), for each $m, n \in \mathbb{N}$ define

$$xp_{n,m} = \begin{cases} \frac{1}{2m} & x = \frac{1}{2n-1} \\ \frac{1}{2m-1} & \frac{1}{2n} \le x < \frac{1}{2n-1}, \quad xq_{n,m} = \begin{cases} \frac{1}{2m-1} & x = \frac{1}{2n-1} \\ \frac{1}{2m} & \frac{1}{2n} \le x < \frac{1}{2n-1}, \\ 0 & \text{otherwise} \end{cases}$$

then in the transformation semigroup (X_9, S_9) we have

- 1. 0 is the unique almost periodic point of the transformation semigroup (X_9, S_9) , $\{0\}$ is the unique minimal right ideal of $E(X_9)$ and $M(0) = \{\{0\}\}$.
- 2. For each $n \in \mathbb{N}$ we have:

i.

$$\frac{1}{n}S_9 = \left\{\frac{1}{m} \mid m \in \mathbf{N}\right\} \land \frac{1}{n}S_9 = \left\{\frac{1}{m} \mid m \in \mathbf{N}\right\} \cup \{0\},$$

ii.

$$p_{n,n} \operatorname{E}(X_9) = q_{n,n} \operatorname{E}(X_9) = \{p_{n,m} \mid m \in \mathbf{N}\} \cup \{q_{n,m} \mid m \in \mathbf{N}\} \cup \{0\}$$
$$p_{n,n} \operatorname{E}(X_9) p_{n,n} = \{p_{n,n}, q_{n,n}, 0\},$$

iii.

$$p_{n,n} \operatorname{E}(X_9) \in \operatorname{M}(\frac{1}{2n}) \cap \operatorname{M}(\frac{1}{2n-1}), \ \operatorname{J}(p_{n,n} \operatorname{E}(X_9)) = \{0, q_{n,n}\},\$$

$$F(\frac{1}{2n}, p_{n,n} E(X_9)) = F(\frac{1}{2n-1}, p_{n,n} E(X_9)) = \{q_{n,n}\},\$$

vi.

v.

iv.

$$S(p_{n,n} E(X_9)) = B(p_{n,n} E(X_9)) = I(p_{n,n} E(X_9)) = \{p_{n,n}, q_{n,n}\}.$$

3. Let $A = \left\{ \frac{1}{n} \mid n \in \mathbf{N} \right\}$, $K = \{p_{n,m} \mid n, m \in \mathbf{N}\} \cup \{q_{n,m} \mid n, m \in \mathbf{N}\} \cup \{0\}$, and for each $i, j \in \mathbf{N}$ define $\delta_{ij} = 0$ if $i \neq j$ and $\delta_{ij} = 1$, thus we have

i.
$$\forall m, n, k \in \mathbb{N}$$
 $p_{n,m} p_{k,r} = \delta_{mk} p_{n,r}$,
 $K = \overline{M}(A) - \Sigma(K) - D(K) - \overline{L}(A, K) - \overline{\Sigma}(A, K)$

ii.
$$K \in M(A), S(K) = B(K) = I(K) = F(A, K) = F(A, K) = \emptyset$$

Example 10. Let $n \in \mathbb{N}$:

$$X_{10} = \left\{ (x, y) \in \mathbf{R}^2 \mid \left| y \right| = 1 - 4(x - m)^2, m - \frac{1}{2} \le x \le m + \frac{1}{2}, m \in \{-n, -n + 1, ..., n - 1, n\} \right\}$$

(with the induced topology of \mathbf{R}^2) and let S_{10} be the group of all homeomorphisms like $f: X_{10} \to X_{10}$ such that $\left\{ (-n - \frac{1}{2}, 0), (n + \frac{1}{2}, 0) \right\} f = \left\{ (-n - \frac{1}{2}, 0), (n + \frac{1}{2}, 0) \right\}$ (S_{10} with the discrete topology), then in the transformation semigroup (X_{10}, S_{10}) we have

1.
$$\forall m \in \{-n, -n+1, ..., n, n+1\}$$
 $(m-\frac{1}{2}, 0)S_{10} = \left\{(m-\frac{1}{2}, 0), (\frac{1}{2}-m, 0)\right\}.$

2. $\left\{ (m - \frac{1}{2}, 0) \mid m \in \{-n, -n + 1, ..., n, n + 1\} \right\}$ is the set of all almost periodic points in the transformation semigroup (X_{10}, S_{10}) .

3. (X_{10}, S_{10}) has 2n+2 almost periodic point and n+1 minimal subset, moreover each of its minimal subsets has 2 elements.

4. For each
$$m \in \{-n, -n+1, ..., n\}$$
 and $(x, y) \in X_{10}$ if $m - \frac{1}{2} < x < m + \frac{1}{2}$, then
$$\overline{(x, y)S_{10}} = \left\{ (u, v) \in X_{10} \mid (m - \frac{1}{2} \le u \le m + \frac{1}{2}) \lor (-m - \frac{1}{2} \le u \le -m + \frac{1}{2}) \right\}.$$

1. Let $\{(x_m, y_m)\}_{-n \le m \le n}$ and $\{(x'_m, y'_m)\}_{-n \le m \le n}$ be finite sequences in X_{10} , such that for each $-n \le m \le n$ we have $m - \frac{1}{2} \le x_m \le m + \frac{1}{2}, \ m - \frac{1}{2} \le x'_m \le m + \frac{1}{2}, \ y_m \ge 0$, and $y'_m \le 0$, choose $p \in X_{10}^{X_{10}}$ such that for each $-n \le m \le n$, $\{(x_m, y_m), (x'_m, y'_m)\} p \subseteq \{(m - \frac{1}{2}, 0), (m + \frac{1}{2}, 0)\}$ and $(x, y)p = \begin{cases} (m - \frac{1}{2}, 0) & (m - \frac{1}{2} \le x < x_m \land y \ge 0) \lor (m - \frac{1}{2} \le x < x'_m \land y \le 0) \lor x = m - \frac{1}{2} \\ (m + \frac{1}{2}, 0) & (x_m < x \le m + \frac{1}{2} \land y \ge 0) \lor (x'_m < x \le m + \frac{1}{2} \land y \le 0) \lor x = m + \frac{1}{2} \end{cases}$

then $p \in E(X_{10})$, $\{-p, p\}$ is a minimal right ideal of $E(X_{10})$. In addition, each minimal right ideal of $E(X_{10})$ has a similar structure, so $card(Min(E(X_{10}))) = c(= card(\mathbf{R}))$.

2. For each nonempty subset A of X_{10} , (X_{10}, S_{10}) is not A – distal.

3. (X_{10}, S_{10}) is not point transitive.

Example 11. Let $n \in \mathbb{N}$:

$$X_{11} = \{(x, y) \in \mathbf{R}^2 \mid |y| = 2((x - m) - (x - m)^2), m \le x \le m + 1, m \in \{-n, -n + 1, ..., n - 1\}\}$$

(with the induced topology of \mathbf{R}^2) and let S_{11} be the group of all homeomorphisms like $f: X_{11} \to X_{11}$ such that $\{(-n,0), (n,0)\}f = \{(-n,0), (n,0)\}$ (S_{11} with the discrete topology), then in the transformation semigroup (X_{11}, S_{11}) we have

1.
$$\forall m \in \{-n, -n+1, ..., n\}$$
 $(m, 0)S_{11} = \overline{(m, 0)S_{11}} = \{(m, 0), (-m, 0)\}$.

2. $\{(m,0) \mid m \in \{-n, -n+1, ..., n\}\}$ is the set of nearly all periodic points in the transformation semigroup (X_{11}, S_{11})

3. (X_{11}, S_{11}) has 2n + 1 almost periodic point and n + 1 minimal subset (*n* minimal subset with two elements and a singleton minimal subset).

4. For each $m \in \{-n, -n+1, ..., n-1\}$ and $(x, y) \in X_{11}$ if m < x < m+1, then

$$\overline{(x,y)S_{11}} = \{(u,v) \in X_{11} \mid (m \le u \le m+1) \lor (-m-1 \le u \le -m)\}.$$

5. Let $\{(x_m, y_m)\}_{-n \le m \le n-1}$ and $\{(x'_m, y'_m)\}_{-n \le m \le n-1}$ be finite sequences in X_{11} , such that for each $-n \le m \le n-1$ we have $m \le x_m \le m+1$, $m \le x'_m \le m+1$, $y_m \ge 0$, and $y'_m \le 0$. Choose $p \in X_{11}^{X_{11}}$ such that for each $-n \le m \le n-1$, $\{(x_m, y_m), (x'_m, y'_m)\} p \subseteq \{(m, 0), (m+1, 0)\}$ and

$$(x, y)p = \begin{cases} (m, 0) & (m \le x < x_m \land y \ge 0) \lor (m \le x < x'_m \land y \le 0) \lor x = m \\ (m+1, 0) & (x_m < x \le m+1 \land y \ge 0) \lor (x'_m < x \le m+1 \land y \le 0) \lor x = m+1 \end{cases}$$

then $p \in E(X_{11})$, $\{-p, p\}$ is a minimal right ideal of $E(X_{11})$. In addition, each minimal right ideal of $E(X_{11})$ has a similar structure (therefore has two elements), so $card(Min(E(X_{10}))) = c(= card(\mathbf{R}))$. 1. For each nonempty subset A of X_{11} , (X_{11}, S_{11}) is not A-distal. 2. (X_{11}, S_{11}) is not point transitive.

Example 12. In Example 11, let $X_{12} = \frac{X_{11} \cap ([0,n] \times [-1,1])}{\{(0,0),(n,0)\}}$ (with the quotient topology), for each $(x, y) \in X_{11} \cap ([0,n] \times [-1,1])$ the image of (x, y) under the quotient map is denoted by $[x, y]_{\pi}$, and let S_{12} be the group of all homeomorphisms like $f: X_{12} \to X_{12}$ (S_{12} with the discrete topology), then in the transformation semigroup (X_{12}, S_{12}) we have

- 1. $\forall m \in \{1,...,n-1\} \quad [m,0]_{\pi}S_{12} = \overline{[m,0]_{\pi}S_{12}} = \{[k,0]_{\pi} \mid k \in \{1,...,n\}\}.$ 2. $\forall [x,y]_{\pi} \in X_{12} - \{[k,0]_{\pi} \mid k \in \{1,...,n\}\}$ $([x,y]_{\pi}S_{12} = X_{12} - \{[k,0]_{\pi} \mid k \in \{1,...,n\}\} \land \overline{[x,y]_{\pi}S_{12}} = X_{12}).$
- 3. $\{[k,0]_{\pi} | k \in \{1,...,n\}\}$ is the set of all almost periodic points, the unique minimal subset and the unique proper closed invariant subset of (X_{12}, S_{12}) .

Completion 13. We have the following table (see [3], Conclusion 16, Table 1), where T1 is the affiliation: The mark " $\sqrt{}$ " indicates that if (X,S) is a transformation semigroup, $a \in X$ and $K \in M(a)$, then $\Gamma \subseteq \Omega$. The mark "+" indicates that a transformation semigroup (X,S) exists, $a \in X$ and $K \in M(a)$, such that $\Gamma \subseteq \Omega$. The mark "-" indicates that a transformation semigroup (X,S), exists, $a \in X$ and $K \in M(a)$, such that $\Gamma \subseteq \Omega$. The mark "-" indicates that a transformation semigroup (X,S), exists, $a \in X$ and $K \in M(a)$, such that $\Gamma \not\subset \Omega$. The mark "+" and "-".

	1st. column ↓		3rd. column ↓		5th. column ↓
	F(a, K)	B(<i>K</i>)	S(K)	I(K)	K
F(a,K)					
B(<i>K</i>)	±	\checkmark	\checkmark	\checkmark	\checkmark
S(K)	±	+	\checkmark	+	\checkmark
I(K)	±	±	±		\checkmark
K	±	±	±	±	

Table 1. In the corresponding case T1 is valid

Proof. In Example 2 let $(X,S) = (X_2,S_2)$, a = b and $K = \{b\}$, then $K \in M(a)$, and F(a,K) = B(K) = S(K) = I(K) = K, which follows "+" in all cells in Table 1. Now in order to obtain "-" items we have

- 1st. column: In Example 1 let $(X, S) = (X_1, S_1)$, a = 1 and $K = \{-\mu_1, \mu_1\}$, then $K \in M(a)$ and $B(K) = S(K) = I(K) = K = \{-\mu_1, \mu_1\} \not\subset \{\mu_1\} = F(a, K)$.
- 2nd., 3rd. and 4th. columns: In Example 2 let $(X,S) = (X_2,S_2)$, $a \in X_2 \{b\}$ and $K = E(X_2)$, then $K \in M(a)$ and:

i.
$$K = E(X_2) = S_2 \cup \{b\} \not\subset S_2 = I(K)$$

ii.

iii.

$$K = E(X_2) = S_2 \cup \{b\} \not\subset \{id_{X_2}\} = S(K) = B(K)$$

$$I(K) = S_2 \not\subset \{ id_{X_2} \} = S(K) = B(K).$$

Completion 14. We have the following table (see [2], Corollary 5, Table 2), where T2 is the affiliation: The mark " $\sqrt{}$ " indicates that if (X,S) is a transformation semigroup, A is a nonempty subset of X, and $K \in \overline{M}(A)$, then $\Gamma \subseteq \Omega$. The mark "+" indicates that a transformation semi group (X,S) exists, a nonempty subset A of X and $K \in \overline{M}(A)$, such that $\Gamma \subseteq \Omega$. The mark "-" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X and $K \in \overline{M}(A)$, such that $\Gamma \subseteq \Omega$. The mark "-" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X and $K \in \overline{M}(A)$, such that $\Gamma \not\subset \Omega$. The mark "+" indicates "+" and "-".

	1st.		3rd.		5th.		7th.
	column		column		column		column
	\rightarrow		\rightarrow		\downarrow		\downarrow
Ω	F(A,K)	$\overline{F}(A,K) \cap B(K)$	$\overline{F}(A,K) \cap S(K)$	$\overline{F}(A,K)$	B(K)	S(K)	I(K)
Г							
F(A,K)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\overline{\mathrm{F}}(A,K) \cap \mathrm{B}(K)$	+	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\overline{\mathrm{F}}(A,K) \cap \mathrm{S}(K)$	+	+	\checkmark	\checkmark	+	\checkmark	+
$\overline{\mathrm{F}}(A,K)$	+	+	+	\checkmark	+	+	+
B(K)	±	±	±	±	\checkmark	\checkmark	\checkmark
S(K)	±	±	±	±	+		+
I(K)	±	±	±	±	±	±	\checkmark

Table 2. In the corresponding case T2 is valid

Proof. Note that in the transformation semigroup (X, S) for $a \in X$, we have $M(a) = \overline{M}(\{a\})$. So using the above note and Table 1 (Completion 13) we are able to obtain "+" items and complete the 7th., 6th. and 5th. columns in Table 2. In order to complete the remainder in Example 1, let $(X, S) = (X_1, S_1)$, $A = \{-1, 1\}$ and $K = \{-\mu_1, \mu_1\}$, then $K \in \overline{M}(A) (= \overline{M}(A))$ and

$$\overline{F}(A,K) \cap S(K) = \overline{F}(A,K) \cap B(K) = \overline{F}(A,K)$$
$$= B(K) = S(K) = I(K) = K = \{-\mu_1,\mu_1\}$$
$$\not\subset \{\mu_1\} = F(A,K).$$

Completion 15. We have the following table (see [2], Corollary 5, Table 2), where T3 is the affiliation: The mark " $\sqrt{2}$ " indicates that if (X,S) is a transformation semigroup, A is a nonempty subset of X, and $K \in \overline{M}(A)$, then $\Gamma \subseteq \Omega$. The mark "+" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X and $K \in \overline{M}(A)$, such that $\Gamma \subseteq \Omega$. The mark "-" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X and $K \in \overline{M}(A)$, such that $\Gamma \subseteq \Omega$. The mark "-" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X and $K \in \overline{M}(A)$, such that $\Gamma \subseteq \Omega$. The mark "+" indicates "+" and "-".

	1st. column		3rd. column		5th. column
	\downarrow		\downarrow		\downarrow
Ω	F(A,K)	$\overline{\mathrm{F}}(A,K)$	B(<i>K</i>)	S(K)	I(K)
F(A,K)					
$\overline{\mathrm{F}}(A,K)$	±	\checkmark	\checkmark	\checkmark	\checkmark
B(<i>K</i>)	±	±			
S(K)	±	±	+		+
I(K)	±	±	±	±	\checkmark

Table 3. In the corresponding case T3 is valid

Proof. Use the argument in Completion 14 (Table 2) to conclude.

Completion 16. We have the following table (see [2], Corollary 5, Table 3), where T4 is the affiliation: The mark " $\sqrt{}$ " indicates that if (X,S) is a transformation semigroup, A is a nonempty subset of X, $I \in \overline{M}(A)$, $J \in \overline{M}(A)$ (existence of such a J is not necessary) and K is a right ideal of E(X), then $J(\Gamma) \subseteq J(\Omega)$. The mark "+" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X, $I \in \overline{M}(A)$ (if it is mentioned in that item), $J \in \overline{M}(A)$ (if it is mentioned in that item) and a right ideal K of E(X) (if it is mentioned in that item) such that $J(\Gamma) \subseteq J(\Omega)$. The mark "-" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X, $I \in \overline{M}(A)$ (if it is mentioned in that item) such that item) and a right ideal K of E(X) (if it is mentioned in that item) for X, $I \in \overline{M}(A)$ (if it is mentioned in that item) and a right ideal K of E(X) (if it is mentioned in that item). The mark "-" indicates that a transformation semigroup (X,S) exists, a nonempty subset A of X, $I \in \overline{M}(A)$ (if it is mentioned in that item), $J \in \overline{M}(A)$ (if it is mentioned in that item) and a right ideal K of E(X) (if it is mentioned in that item) such that $J(\Gamma) \not\subset J(\Omega)$. The mark "+" indicates "+" and "-".

Table 4. In the corresponding case T4 is valid

	0	$\mathbf{F}(A,C) \cap \mathbf{B}(C),$	F(A,C),	B(<i>C</i>),
	$\sum \Omega$	$\mathbf{F}(A,C) \cap \mathbf{S}(C),$	$\overline{F}(A,C)$	S(<i>C</i>),
		$\overline{\mathrm{F}}(A,C) \cap \mathrm{B}(C),$		I(<i>C</i>)
С	Г	$\overline{\mathrm{F}}(A,C) \cap \mathrm{S}(C)$		
$\mathbf{F}(A,C) \cap \mathbf{B}(C),$				
$\mathbf{F}(A,C) \cap \mathbf{S}(C),$	K, I, J	\checkmark	\checkmark	\checkmark
$\overline{\mathrm{F}}(A,C) \cap \mathrm{B}(C),$				
$\overline{\mathrm{F}}(A,C) \cap \mathrm{S}(C)$				
F(A,C),	K	<u>±</u>		±
$\overline{\mathrm{F}}(A,C)$	I,J	\checkmark	\checkmark	\checkmark
B(<i>C</i>),				
S(<i>C</i>),	K, I, J	±	±	N
I(C)				

Proof. In Example 1 let $(X, S) = (X_1, S_1)$ and $K = \{(-1)^k \eta_x | x \in X_1, k = 1, 2\} (\in M(0))$, then $J(F(\{-1,1\}, K)) = \{\eta_x | x \in X_1\} \not\subset \{\eta_x | x \in X_1 - \{-1,1\}\} = J(F(\{-1,1\}, K) \cap B(K)) = J(B(K))$ and $J(B(K)) = \{\eta_x | x \in X_1 - \{-1,1\}\} \not\subset \{\eta_0\} = J(F(0, K) \cap B(K)) = J(F(0, K))$.

Completion 17. We have the following table (see [2], Theorem 17, Table 5), where T5 is the affiliation: The mark " $\sqrt{}$ " indicates that if (X,S) is a transformation semigroup, A and B be nonempty subsets of X such that B is $A^{\underline{\alpha}}$ almost periodic, then B is $A^{\underline{\beta}}$ almost periodic. The mark " $(\sqrt{})$ " indicates that if (X,S) is a transformation semigroup, A and B are nonempty subsets of X such that A is $A^{(\overline{M},\overline{M})}$ almost periodic, B is $B^{(\overline{M},\overline{M})}$ almost periodic, B is $A^{\underline{\alpha}}$ almost periodic, then B is $A^{\underline{\beta}}$ almost periodic. The mark "+" indicates that a transformation semigroup (X,S) exists, nonempty subsets A and B of X, such that A is $A^{(M,\overline{M})}$ almost periodic, B is $B^{(M,\overline{M})}$ almost periodic, B is $A^{\underline{\alpha}}$ almost periodic and B is $A^{\underline{\beta}}$ almost periodic. The mark "-" indicates that there exists a transformation semigroup (X,S), nonempty subsets A and B of X, such that A is $A^{(\overline{M},\overline{M})}$ almost periodic, B is $B^{(\overline{M},\overline{M})}$ almost periodic, B is $A^{\underline{\alpha}}$ almost periodic and B is not $A^{\frac{\beta}{2}}$ almost periodic. The mark "(-)" indicates that a transformation (X,S) exists, nonempty subsets A and B of X, such that B is $A^{\underline{\alpha}}$ almost periodic and B is not $A^{\underline{\beta}}$ almost periodic. The mark "±"indicates "+" and "-". The mark "(±)" indicates "+" and "(-)".

	1st. column ↓	2nd. column ↓	3rd. column ↓	4th. column ↓	5th. column ↓	6th. column ↓
β	(-,-), (M,-)	$(-,\overline{\overline{M}}), \\ (\overline{M},\overline{M})$	$(-,\overline{\overline{M}}), \\ (\overline{M},\overline{\overline{M}})$	(<u>M</u> ,-)	$(\overline{\overline{M}},\overline{\overline{M}})$	$(\overline{\overline{M}}, \overline{\overline{M}})$
(-,-), (<u>M</u> ,-)	\checkmark	\checkmark	+		(√) (±)	(±)
$(-,\overline{M}),$ $(\overline{M},\overline{M})$	±	\checkmark	±	±		±
$(\overline{-,\overline{M})}, \\ (\overline{M},\overline{\overline{M}})$	±	(√) +	V	±		
(<u></u> ,–)	±	±	±	\checkmark		+
$(\overline{\overline{M}},\overline{\overline{M}})$	±	±	±	±		±
$(\overline{\overline{M}},\overline{\overline{M}})$	±	±	±	±	() (±)	\checkmark

Table 5. In the corresponding	ig case T5 is	valid
-------------------------------	---------------	-------

Proof.

1st. and 3rd. columns: •

In Example 7 let $(X, S) = (X_7, S_7)$ and $x \in X_7 - \left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\}$, then $M(0) = \{\{\psi\}\}$, $M(v) = \overline{M}((0, v)) = \overline{M}((0, v)) = (\Gamma(X_7)) = 1$ $\mathbf{M}(x) = \overline{\mathbf{M}}(\{0, x\}) = \overline{\mathbf{M}}(\{0, x\}) = \{\mathbf{E}(X_7)\} \text{ and:} \\ 1. \qquad \{0, x\} \text{ is } \{0, x\} \xrightarrow{(\mathbf{M}, \mathbf{M})}{=} \text{ almost periodic,}$

- 1.
- {x} is $\{0, x\} \stackrel{(-,\overline{M})}{=}$ almost periodic, 2.
- $\{x\}$ is $\{0, x\} \xrightarrow{(-,M)}$ almost periodic, 3.
- $\{x\}$ is $\{0, x\} \xrightarrow{(\overline{M}, \overline{M})}$ almost periodic, 4
- $\{x\}$ is $\{0, x\}^{\underline{(M,M)}}$ almost periodic, 5.
- {x} is not $\{0, x\} \stackrel{(-,-)}{\longrightarrow}$ almost periodic. 6.

In Example 5 let
$$(X, S) = (X_5, S_5)$$
, then $M(1) = \{\{\rho_1, \rho_1 \psi, 0\}\}, M(\frac{1}{2}) = \{\{\rho_2, \rho_2 \psi, 0\}\}$
 $\overline{M}(\{\frac{1}{2}, 1\}) = \{\{\rho_1, \rho_1 \psi, 0\}, \{\rho_2, \rho_2 \psi, 0\}\}$, and:
1. $\{\frac{1}{2}, 1\}$ is $\{\frac{1}{2}, 1\}$ $\frac{(\overline{M}, \overline{M})}{(\overline{M}, -)}$ almost periodic,
2. $\{\frac{1}{2}, 1\}$ is $\{\frac{1}{2}, 1\}$ $\frac{(\overline{M}, \overline{M})}{(\overline{M}, \overline{M})}$ almost periodic,
3. $\{\frac{1}{2}, 1\}$ is $\{\frac{1}{2}, 1\}$ $\frac{(\overline{M}, \overline{M})}{(\overline{M}, \overline{M})}$ almost periodic,
4. $\{\frac{1}{2}, 1\}$ is $\{\frac{1}{2}, 1\}$ $\frac{(\overline{M}, \overline{M})}{(\overline{M}, \overline{M})}$ almost periodic,
5. $\{\frac{1}{2}, 1\}$ is not $\{\frac{1}{2}, 1\}$ $\frac{(-, -)}{(\overline{M}, \overline{M})}$ almost periodic,
6. $\{\frac{1}{2}, 1\}$ is not $\{\frac{1}{2}, 1\}$ $\frac{(-, -)}{(\overline{M}, \overline{M})}$ almost periodic.
• 2nd. column: In Example 5 let $(X, S) = (X_5, S_5)$, then $\overline{M}(\{\frac{1}{2}, 1\}) = \{\{\rho_1, \rho_2, \rho_1 \psi, \rho_2 \psi, 0\}\}$ (other items have been described in the proof of 1st. and 3rd. columns). Also we have

1.
$$\left\{\frac{1}{2}, 1\right\}$$
 is $\{1\} \xrightarrow{(\overline{M}, -)}$ almost periodic,
 $(1, -) = (\overline{M}, \overline{M})$

2.
$$\left\{\frac{1}{2},1\right\}$$
 is $\{1\}\frac{(M,M)}{2}$ almost periodic,

3.
$$\left\{\frac{1}{2},1\right\}$$
 is $\{1\}\frac{(\overline{M},\overline{M})}{2}$ almost periodic,

4.
$$\left\{\frac{1}{2},1\right\}$$
 is not $\{1\}\frac{(-,\overline{M})}{2}$ almost periodic.

• 4th. column:

In Example 4 let
$$(X, S) = (X_4, S_4)$$
, then for each $k \in \mathbb{N}$ we have
 $M(\frac{1}{k}) = \overline{M}(\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}) = \{E(X_4)\}, \overline{M}(\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}) = \emptyset$, and
1. $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}$ is $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \stackrel{(-,-)}{\longrightarrow}$ almost periodic,
 $(1, \dots, n) = -$

2.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \text{ is not } \left\{\frac{1}{n} \mid n \in \mathbf{N}\right\}^{(\overline{\mathbf{M}},\overline{\mathbf{M}})} \text{ almost periodic,}$$

3.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\}$$
 is not $\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \xrightarrow{(\overline{M}, -)}$ almost periodic.

In Example 7 let $(X, S) = (X_7, S_7)$ and $x \in X_7 - (\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\} \cup \{0\})$, then $\{x\}$ is not $\{0, x\}^{\frac{(\overline{M}, -)}{n}}$ almost periodic. Considering the proof of the 1st. column completes the proof. • 5th. and 6th. columns: In Example 4 let $(X, S) = (X, S_7)$ then (consider the proof of the 4th column).

In Example 4 let $(X, S) = (X_4, S_4)$, then (consider the proof of the 4th. column):

1.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\}$$
 is $\{1\}^{(-,-)}$ almost periodic,

2.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \text{ is } \{1\}^{(-,\overline{\mathsf{M}})} \text{ almost periodic,}$$

3.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\}$$
 is $\{1\}^{\frac{(-,\overline{M})}{2}}$ almost periodic,

4.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \text{ is not } \{1\}^{\frac{(\overline{\mathbf{M}},\overline{\mathbf{M}})}{n}} \text{ almost periodic,}$$

5.
$$\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\}$$
 is not $\{1\}^{\frac{\overline{(M,M)}}{\overline{(M,M)}}}$ almost periodic.

In Example 5 let $(X, S) = (X_5, S_5)$, then (consider the proof of the 1st. column):

1. {1} is
$$\left\{\frac{1}{2},1\right\} \xrightarrow{(\overline{M},\overline{M})}$$
 almost periodic,
2. {1} is not $\left\{\frac{1}{2},1\right\} \xrightarrow{(\overline{M},\overline{M})}$ almost periodic.

Completion 18. We have the following table (see [2], Theorem 20, Table 6), where T6 is the affiliation: The mark " $\sqrt{\gamma}$ " indicates that if (X,S) is a transformation semigroup and A is a nonempty subset of X such that (X,S) is $A^{\underline{\alpha}}$ distal, then (X,S) is $A^{\underline{\beta}}$ distal. The mark "+" indicates that there exists a transformation semigroup (X,S) and a nonempty subset A of X, such that (X,S) is $A^{\underline{\alpha}}$ distal and $A^{\underline{\beta}}$ distal. The mark "-" indicates that there exists a transformation semigroup (X,S) and a nonempty subset A of X, such that (X,S) is and a nonempty subset A of X, such that (X,S) is $A^{\underline{\alpha}}$ distal but it is not $A^{\underline{\beta}}$ distal. The mark "±" indicates "+" and "-".

Table 6. In the corresponding case

β	(-)	$(\overline{\mathrm{M}})$	$(\overline{\overline{M}})$
(-)	\checkmark	\checkmark	±
$(\overline{\mathrm{M}})$	±	\checkmark	±
$(\overline{\overline{M}})$	±	\checkmark	\checkmark

Proof.

•

In Example 4 let $(X,S) = (X_4,S_4)$, then (consider the proof of the 4th. column in Table 5 (Completion 17)):

1.
$$(X_4, S_4)$$
 is $\left\{\frac{1}{n} \mid n \in \mathbb{N}\right\}^{(-)}$ distal,

2.
$$(X_4, S_4)$$
 is $\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\} \stackrel{(\overline{\mathrm{M}})}{\longrightarrow}$ distal,

3.
$$(X_4, S_4)$$
 is not $\left\{\frac{1}{n} \mid n \in \mathbf{N}\right\}^{\frac{\overline{(M)}}{\overline{(M)}}}$ distal.

• In Example 7 let $(X, S) = (X_7, S_7)$, then (consider the proof of the 1st. column in Table 5 (Completion 17)):

1.
$$(X_7, S_7)$$
 is not $\{0, x\}^{(-)}$ distal,

2.	(X_7, S_7) is	$\{0, x\} \stackrel{(M)}{=} $ distal,
3.	(X_7, S_7) is	$\{0, x\}^{(M)}$ distal.

Acknowledgements- The authors are grateful to the Research Division of the University of Tehran for the grant which supported this research.

REFERENCES

- 1. Ellis, R. (1969). Lectures on Topological Dynamics, New York, W. A. Benjamin.
- 2. Sabbaghan, M., Ayatollah Zadeh Shirazi, F. (2001). *a* minimal sets and related topics in transformation semigroups (I), *International Journal of Mathematics and Mathematical Sciences*, vol. 2, 10, 637-654.
- 3. Sabbaghan, M., Ayatollah Zadeh Shirazi, F., Wu, T. S. (1997). *a* minimal sets, *Journal of Science of The* University of Tehran, 2, 1-12.

256