THE CRYSTAL AND MOLECULAR STRUCTURE OF N, N^{\prime}-3, 6-DIOXA-1, 8-OCTANEBIS (SALICYLALDIMINE), $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{24}{ }^{*}$

B. ETEMADI ${ }^{1 * *}$, A.TAEB ${ }^{2}$, H.SHARGHI ${ }^{3}$, A. TAJARODI ${ }^{4}$ AND H. NAEIMI ${ }^{5}$
${ }^{1}$ Dept. of Earth Sciences, Shiraz University, Shiraz, I. R. of Iran
${ }^{2,4}$ Dept. of Chemical Engineering, Iran University of Science and Technology, Tehran, I. R. of Iran
${ }^{3,5}$ Dept. of Chemistry, Shiraz University, Shiraz, I. R. of Iran

Abstract

The crystal structure of the compound $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{24}$ was determined by direct methods. The crystals are monoclinic, space group $\mathrm{P}_{1} / \mathrm{n}$, and unit cell parameters are: $\mathrm{a}=10.2342$ (9), $\mathrm{b}=4.8763$ (5), $\mathrm{c}=19.3578$ (11) $\mathrm{A}, \beta=98.9632(10)^{\circ}, \mathrm{V}=956.6$ (5) $\mathrm{A}^{3}, \mathrm{Z}=2, \mathrm{D}_{\mathrm{c}}=1.239 \mathrm{grm}^{-3}, \mathrm{D}_{\mathrm{m}}=1.22 \mathrm{grm}^{-3}$. The final Rfactors are converged to $\mathrm{R}=0.059$ and $\mathrm{R}_{\mathrm{w}}=0.056$ for 553 independent observed reflections. The molecules are linked by van der Waals forces and an intramolecular hydrogen bond is present between O_{2} and N_{1} atoms. The ring system displays a deviation from planarity.

Keywords - Crystal structure, salen, schiff bases, salicyladi-mine

1. INTRODUCTION

The ability of Schiff bases derived from salicylaldehyde as poly-dentate ligands to form very stable complexes with different cations is well known [1]. Their complexes have been known since the midnineteenth century [2], and before the general preparation of Schiff base ligands themselves [3]. Transition metal complexes of Schiff base ligands have contributed significantly to the development of transition metal chelate chemistry [4-7], and complexes of these ligands with some cations play a major role as speculative models in bio-inorganic chemistry, enzsymatic studies [8] and selective membrane electrodes [9].

In this paper we report the molecular structure of a new Schiff base, $N, N^{\prime}-3,6$ - dioxa-1, 8 octanebis (salicylaldimine) in order to investigate the nature of molecular conformation and chemical bondings.

2. EXPERIMENTAL

- Synthesis of Schiff Base 46:

2, 2- [3, 6-Dioxa-1, 8-octandiylbis (nitrilomethylidyne)]-bis-phenol (46): A solution of 1, 8-diamino3, 6-dioxaoctan ($0.01 \mathrm{~mol}, 1.48 \mathrm{~g}$) in methanol (15 ml) was added to a solution of salicylaldehyde $(0.02 \mathrm{~mol}, 2.44 \mathrm{~g})$, in methanol $(10 \mathrm{ml})$. The reaction mixture was then refluxed with stirring for about 15 hours. The mixture was cooled and the solvent was evaporated to give a yellow oil, which

[^0]was crystallized by petroleum ether (60-80 C) to give 2 , 2 -[3, 6-dioxa-1, 8 -octandiylbis (nitrilomethylidyne)] -bis-phenol 46 as yellow crystalline solid in 94% yield (3.34 g) . m. p. $=46 \mathrm{C}, \mathrm{R}_{\mathrm{f}}=$ 0.56 (n-Hexane- $\left.\mathrm{CH}_{3} \mathrm{OH} / 94: 4\right)$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 250 \mathrm{Mhz}\right) \delta 3.59(\mathrm{~s}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 8 \mathrm{H}), 6.87(\mathrm{dt}, 2 \mathrm{H}$, $\mathrm{J}_{1}=7.5 \mathrm{~Hz}, \mathrm{~J}_{2}=1.0 \mathrm{~Hz}$, $6.93(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.25 \mathrm{~Hz}), 7.23(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.5 \mathrm{~Hz}), 7.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{1}=3.25 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{2}=1.5 \mathrm{~Hz}\right), 7.31\left(\mathrm{dd}, 2 \mathrm{H}, \mathrm{J}_{1}=7.25 \mathrm{~Hz}, \mathrm{~J}_{2}=1.63 \mathrm{~Hz}\right), 8.32(\mathrm{~s}, 2 \mathrm{H}), 13.39(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}, 62.9\right.$ $\mathrm{MHz}) \delta 59.01,70.56,96.12,116.97,118.65,131.31,132.17,161.19,166.36$; IR (KBr), $650(\mathrm{~m})$, $742(\mathrm{~W}), 765(\mathrm{vs}), 850(\mathrm{~s}), 870(\mathrm{w}), 925(\mathrm{~m}), 970(\mathrm{~m}), 1040(\mathrm{~s}), 1062(\mathrm{~s}), 1125(\mathrm{vs}),. 1162(\mathrm{~s}), 1235(\mathrm{~m})$, $1255(\mathrm{w}), 1280(\mathrm{~s}), 1325(\mathrm{~m}), 1342(\mathrm{~m}), 1408(\mathrm{w}), 1450(\mathrm{~s}), 1470(\mathrm{~m}), 1500(\mathrm{~m}), 1510(\mathrm{~s}), 1587(\mathrm{~m})$, 1615(m), 1645(vs.), 2890(s), 2920(s), 3020(m), 3450(br, s) $\mathrm{Cm}^{-1} ; \mathrm{Ms}, \mathrm{m} / \mathrm{z}=358\left(\mathrm{M}^{+}+2,3.5\right), 357\left(\mathrm{M}^{+}\right.$ $+1,12.6), 356\left(\mathrm{M}^{+}, 23.2\right), 210(23.0), 192(18.9), 164(19.4), 150(18.0), 149(72.1), 148(41.3)$, 135(53.1), 121(44.3), 107 (base peak), 91 (25.4), 78 (24.3), 77(74.8), 65(33.7), 51 (38.5), 43(24.0), 41(19.1); UV (CHCl_{3}): $\lambda_{\text {max }}(\varepsilon), 258$ (33160), 313 (11787), 406 (680) nm.

Crystals of the $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{24}$ suitable for x-ray analysis were grown from a concentrated ether solution using a slow evaporation technique. The D_{m} was measured by flotation.

a) Crystal data:

```
\(\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{24}\)
\(\mathrm{M}_{\mathrm{r}}=356.42\)
Monoclinic
\(\mathrm{a}=10.2342\) (9) \(\mathrm{A}^{\circ}\)
\(\mathrm{b}=4.8763(5) \mathrm{A}^{\circ}\)
\(\mathrm{c}=19.3578(11) \mathrm{A}^{\circ}\)
\(\beta=98.9632(10)^{\circ}\)
\(\mathrm{V}=956.6(5) \mathrm{A}^{3}\)
P2 \({ }_{1} / n\)
\(\mathrm{Z}=2\)
\(\mathrm{D}_{\mathrm{c}}=1.239 \mathrm{grm}^{-3}, \mathrm{D}_{\mathrm{m}}=1.22 \mathrm{grm}^{-3}\)
\(0.36 \times 0.30 \times 0.10 \mathrm{~mm}^{3}\)
pale yellow
MoK \(\alpha\) radiation, \(\lambda=0.71069 \mathrm{~A}^{\circ}\)
\(\mathrm{T}=293 \mathrm{~K}\)
```


b) Data collection:

Enraf-Nonius CAD-4 diffractometer
W/2 2 Scans
$2.1^{\circ} \leq \theta \leq 26.32^{\circ}$
$\mathrm{h}=-11 \rightarrow 11$
$\mathrm{k}=-5 \rightarrow 0$
$1=-21 \rightarrow 0$
3 standard reflections monitored every 200 reflections.
Intensity decay: none
970 independent reflections measured.
553 observed reflections, $\mathrm{I} \geq 2 \sigma(\mathrm{I})$.

c) Refinement:

Refinement on F

Absorption $0.08 \mathrm{~mm}^{-1}$
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV).
H -atoms positioned geometrically and not refined.
$\mathrm{R}=(|\mathrm{Fo}|-|\mathrm{Fc}| / \mathrm{Fo} \mid)=0.059$
$\mathrm{R}_{\mathrm{w}}=\mathrm{w}(|\mathrm{Fo}|-|\mathrm{Fc}| / \mathrm{w}|\mathrm{Fo}|)=0.056$
$\mathrm{W}=1.851 / \sigma^{2}|\mathrm{Fo}|$
$\Delta P_{\text {max }}=0.103 \mathrm{e}^{-3}$
Structure determination program: Multan

3. RESULTS AND DISCUSSION

A plot of molecular conformation along with non-hydrogen atom labeling is given in Fig 1. Crystal packing diagram along b axis is given in Fig 2. Table 1 shows the final positional parameters for all non-hydrogen atoms. The bond lengths and bond angles for all non-H atoms are given in Table 2.

Fig. 1. Molecular configuration with atomic numbering scheme

Fig. 2. Crystal packing viewed down b-axis

Table 1. Positional parameters and their
Estimated Standard Deviations

Atom		$\underline{\mathrm{x}}$	$\underline{\mathrm{Z}}$	$\mathrm{B}(\mathrm{A} 2)$
N 1	$0.6024(3)$	$0.344(2)$	$0.9169(4)$	$6.9(3)$
C7	$0.623(1)$	$0.311(2)$	$0.8541(5)$	$5.9(3)$
O2	$0.8690(7)$	$0.239(2)$	$0.9777(4)$	$7.1(2)$
C6	$0.5448(9)$	$0.105(2)$	$0.8089(4)$	$5.1(3)$
C5	$0.586(1)$	$0.074(2)$	$0.7430(5)$	$6.4(3)$
O1	$0.4122(7)$	$-0.012(2)$	$0.8912(3)$	$8.3(2)$
C2	$0.374(1)$	$-0.253(2)$	$0.7782(6)$	$8.0(3)$
C8	$0.684(1)$	$0.548(3)$	$0.9598(6)$	$7.9(4)$
C1	$0.4397(8)$	$-0.066(3)$	$0.8253(5)$	$6.5(3)$
C3	$0.417(1)$	$-0.273(2)$	$0.7114(5)$	$6.9(3)$
C4	$0.523(1)$	$-0.113(3)$	$0.6950(6)$	$7.5(4)$
C10	$0.962(1)$	$0.078(2)$	$1.0255(5)$	$7.2(4)$
C9	$0.774(1)$	$0.382(3)$	$1.0150(5)$	$7.6(4)$

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as:
$(4 / 3) *[a 2 * B(1,1)+\mathrm{b} 2 * \mathrm{~B}(2,2)+\mathrm{c} 2 * \mathrm{~B}(3,3)+\mathrm{ab}(\cos$ gamma $) * \mathrm{~B}(1,2)+\mathrm{ac}$ (cos beta)*B $(1,3)+\mathrm{bc}(\cos$ alpha)*B $(2,3)]$

Table 2. Bond Distances (in Angstroms) and Bond Angles (in degrees)

Atom	Atom		Distance	Atom 1	Atom 2	Distance
N1	C7		1.27(1)	C5	C4	1.39 (2)
N1	C8		1.47(2)	O1	C1	1.37(1)
C7	C6		1.49(1)	C2	C1	1.39(2)
O2	C10		1.46(1)	C2	C3	1.43(2)
O2	C9		1.47(1)	C8	C9	1.53(2)
C6	C5		1.41(1)	C3	C4	1.41(2)
C6	C1		1.43(1)			
C7	N1	C8	117.6(9)	N1	C8	C9 105.7(9)
N1	C7	C6	119.8(9)	C6	C1	O1 111.0(9)
C10	O2	C9	$111.6(7)$	C6	C1	C2 122.8(9)
C7	C6	C5	113.5(9)	O1	C1	C2 126.2(9)
C7	C6	C1	128.3(8)	C2	C3	C4 121(1)
C5	C6	C1	118.2(9)	C5	C4	C3 121(1)
C6	C5	C4	120. (1)	O2	C9	C8 106.2(8)
C1	C2	C3	117. (1)			

Numbers in parentheses are estimated standard deviations in the least significant digits
The geometry of the molecular structure indicates that the molecule as a whole has an inversion center (c) between $\mathrm{C}_{10}-\mathrm{C}^{*}{ }_{10}$ bond, and therefore lie on special positions with two formula units per unit cell (Fig 1). The ring system has average bond lengths and bond angles of $1.41(2) \mathrm{A}^{\circ}$ and $120(1)^{\circ}$. The $\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}$ and $\mathrm{C}_{1}-\mathrm{C}_{6}-\mathrm{C}_{5}$ bond angles are smaller than the average value. The $\mathrm{C}_{6}-\mathrm{C}_{7}$ bond length of 1.49 (1) A° can be considered as single $\mathrm{C}_{\left(\mathrm{SP}^{2}\right)}{ }^{2}-\mathrm{C}_{\left(\mathrm{SP}^{2}\right)}{ }^{2}$ bond distance. A calculated least square plane through ring system displayed a deviation form planarity, and was found to adopt a puckered conformation: The maximum out- of- plane deviations are $-0.59,-0.5,0.54$ and 0.68 A for $\mathrm{C}_{1}, \mathrm{C}_{6}, \mathrm{C}_{3}$ and C_{4}, respectively.

In this molecule, $\mathrm{C}-\mathrm{O}$ bond lengths are of two different types. $\mathrm{O}_{2}-\mathrm{C}_{10}$ and $\mathrm{O}_{2}-\mathrm{C}_{9}$ bond lengths are comparable [1.46(1) and $1.47(1) \mathrm{A}^{\circ}$, respectively], while $\mathrm{O}_{1}-\mathrm{C}_{1}$ is significantly shorter [1.37(1) A°]. The latter is similar to those of some double bond characters reported by Tenon et. al [10], and Ondracek et al [11]. The N-C bond lengths around N are very dissimilar [1.29(1) A° and $1.49(2)$ $\left.A^{\circ}\right]$. The $N_{1}-C_{7}$ is typical of a double bond and $N_{1}-C_{8}$ is single. These values are in agreement with those reported elsewhere [11-13]. Therefore the chain is likely to correspond to $\mathrm{C}_{6}-\mathrm{C}_{7}=\mathrm{N}_{1}-\mathrm{C}_{8}-\mathrm{C}_{9}-\mathrm{O}_{2-}$ C_{10}, and approximately adopts the extended conformation. All other bond lengths and angles are within the expected ranges.

The compound is stabilized by an intramolecular hydrogen bond distance of 2.601 A between O_{1} and N_{1} atoms. All intermolecular contacts correspond to normal van der Waals interactions.

Acknowledgements- The authors would like to thank Shiraz University and the University of Science and Technology for their support of this work.

REFERENCES

1. Tajmir-Riahi., H. A. (1983). Polyhedron, 3, 723.
2. Ettling, C., Ann. Chem. (1840). Pharm., 35, 241.
3. Schiff, H., Ann. Chem. (1864). Pharm. Suppl., 3, 343.
4. Dzugan, S. J. \& Goedken, V. L. (1986). Inorg. Chem., 25, 2858.
5. Atwood, D. A., Jegier, J. A., Martin, K. J. \& Rutherford, D. (1995). Organometallics, 14, 1453.
6. Holm, R. H., Everett, G. W. \& Chakravorty, Jr., A. (1966). Prog. Inorg. Chem., 7, 83.
7. Shomsipur, M., Ghiasvand, A. R., Sharghi, H. \& Naeimi, H. (2000). Analytica Chimica Acta 408, 271.
8. Rossi, Av., Megalhaes, MEA. \& Tubino, M. (1994). Analysis, 22, 465.
9. Shamsipur, M., Sadeghi, S., Naeimi, H. \& Sharghi, H. (2000). Polish J., 74, 231.
10. Tenon, J. A., Carles Et., M. \& Aycard, J. P. (1995). Acta. Cryst. C51, 2603-2606.
11. Ondracek, J., Kovarova. Z., Maixner, J. \& Jursik, F. (1997). Acta Cryst. C49, 1948-1949.
12. Elmali, A., Atakol, O., Svoboda, I. \& Fuess, H. (1995). Acta Cryst. C51, 2520-2522.
13. Lyubchova, A. Cosse-Barbi, Doucet, J. P., Robert, F., Souron, J. P. \& Quarton, M. (1995). Acta Cryst. C51, 1893-1895.

[^0]: *Received by the editors Junuary 6, 2001 and in final revised form Junuary 19, 2003
 ${ }^{* *}$ Corresponding author

