"Research Note"

CONFORMAL VECTOR FIELDS ON TANGENT BUNDLE OF A RIEMANNIAN MANIFOLD*

S. HEDAYATIAN AND B. BIDABAD**

Faculty of Mathematics, Amir-Kabir University of Technology, Hafez Ave. 15914, Tehran, I. R. of Iran Emails: s_hedayatian@aut.ac.ir, bidabad@aut.ac.ir

Abstract – Let M be an n-dimensional Riemannian manifold and TM its tangent bundle. The conformal and fiber preserving vector fields on TM have well-known physical interpretations and have been studied by physicists and geometricians. Here we define a Riemannian or pseudo-Riemannian lift metric \tilde{g} on TM, which is in some senses more general than other lift metrics previously defined on TM, and seems to complete these works. Next we study the lift conformal vector fields on (TM, \tilde{g}) and prove among the others that, every complete lift conformal vector field on TM is homothetic, and moreover, every horizontal or vertical lift conformal vector field on TM is a Killing vector.

Keywords - Complete lift metric, Conformal, Homothetic, Killing and Fiber-preserving vector fields.

1. INTRODUCTION

Let M be an n-dimensional differential manifold with a Riemannian metric g and ϕ be a transformation on M. Then ϕ is called a conformal (resp. projective) transformation if it preserves the angles (resp. geodesics). Let V be a vector field on M and $\{\varphi_t\}$ be the local one-parameter group of local transformations on M generated by V. Then V is called an infinitesimal conformal (resp. projective) transformation on M if each φ_t is a local conformal (resp. projective) transformation of M. It is well known that V is an infinitesimal conformal transformation or transformation or transformation or transformation or transformation on transformation or transformation

Let TM be the tangent bundle over M, and Φ be a transformation on TM. Then Φ is called a fiber preserving transformation if it preserves the fibers. Fiber preserving transformations have well known applications in Physics. Let X be a vector field on TM and $\{\Phi_t\}$ the local one parameter group of local transformation on TM generated by X. Then X is called an infinitesimal fiber preserving transformation or fiber preserving vector field on TM if each Φ_t is a local fiber preserving transformation of TM.

Let \tilde{g} be a Riemannian or pseudo-Riemannian metric on TM. The conformal vector field X on TM is said to be *essential* if the scalar function Ω on TM in $\pounds_{\chi}\tilde{g} = 2\Omega\tilde{g}$ depends only on (y^h) (with

^{*}Received by the editor August 29, 2004 and in final revised form August 20, 2005

^{**}Corresponding author

respect to the induced coordinates (x^i, y^i) on TM), and is said to be *inessential* if Ω depends only on (x^h) . In other words, Ω is a function on M.

There are some lift metrics on TM as follows:

complete lift metric or g_2 , diagonal lift metric or g_1+g_3 , lift metric g_2+g_3 and lift metric g_1+g_2 .

In this area the following results are well known:

Let (M,g) be a Riemannian manifold. If we consider TM with metrics $g_1 + g_3$ or $g_2 + g_3$, then every infinitesimal fiber preserving conformal transformation on TM is homothetic, and induces a homothetic vector field on M [1].

Let (M,g) be a complete, simply connected Riemannian manifold. If we consider TM with metric $g_1 + g_2$, and TM admits an essential infinitesimal conformal transformation, then M is isometric to the standard sphere [2].

Let (M,g) be a Riemannian manifold and V a vector field on M and let X^C , X^V , X^H be complete, vertical and horizontal lifts of V to TM respectively. If we consider TM with metric g_2 , then X^C is a conformal vector field on TM if and only if V is homothetic on M. Moreover, if V is a Killing vector on M, then X^C and X^V are Killing vectors on TM [3].

Let (M,g) be a Riemannian manifold. If we consider TM with metric $g_1 + g_3$, then

- I) X^C is a conformal vector field if and only if X is homothetic.
- II) X^V is a conformal vector field if and only if X is Killing vector field with vanishing second covariant derivative in M.
- III) X^H is a conformal vector field if and only if X is parallel [3], [4].

In this paper we are going to replace the cited lift Riemannian or pseudo-Riemannian metrics on TM by $\tilde{g}=ag_1+bg_2+cg_3$, that is a combination of diagonal lift and complete lift metrics, where a, b and c are certain positive real numbers. More precisely, we prove the following Theorems.

Theorem 1. Let M be a connected n-dimensional Riemannian manifold and let TM be its tangent bundle with metric \tilde{g} . Then every complete lift conformal vector field on TM is homothetic, and moreover, every horizontal or vertical lift conformal vector field on TM is a Killing vector.

Theorem 2. Let M be a connected n-dimensional Riemannian manifold and TM be its tangent bundle with metric \tilde{g} . Then every inessential fiber preserving conformal vector field on TM is homothetic.

2. PRELIMINARIES

Let (M,g) be a real n-dimensional Riemannian manifold and (U,x) a local chart on M, where the induced coordinates of the point $p \in U$ are denoted by its image on IR^n , x(p) or briefly (x^i) . Using the induced coordinates (x^i) on M, we have the local field of frames $\{\frac{\partial}{\partial x_i}\}$ on T_pM . Let ∇ be a Riemannian connection on M with coefficients Γ^k_{ij} , where the indices a,b,c,h,i,j,k,m,... run over the range 1,2,...n. The Riemannian curvature tensor is defined by

$$K(X,Y)Z = \nabla_Y \nabla_X Z - \nabla_X \nabla_Y Z + \nabla_{[X,Y]} Z, \forall X,Y,Z \in X(M).$$

Locally we have

$${K_{ijk}}^m = \partial_i \Gamma^m_{jk} - \partial_j \Gamma^m_{ik} + \Gamma^m_{ia} \Gamma^a_{jk} - \Gamma^m_{ja} \Gamma^a_{ik} \,,$$

where $\partial_i = \frac{\partial}{\partial x^i}$ and $K(\partial_i, \partial_j, \partial_k) = K_{ijk}^m \partial_m$.

3. NON-LINEAR CONNECTION

Let TM be the tangent bundle of M and π the natural projection from TM to M. Consider $\pi_*: TTM \mapsto TM$ and let us put

$$ker\pi_*^v = \{z \in TTM \mid \pi_*^v(z) = 0\}, \forall v \in TM.$$

Then the vertical vector bundle on M is defined by $VTM = \bigcup_{v \in TM} ker \pi_*^v$. A non-linear connection or a horizontal distribution on TM is a complementary distribution HTM for VTM on TTM. The non-linear nomination arise from the fact that HTM is spanned by a basis which is completely determined by non-linear functions. These functions are called coefficients of non-linear connection and will be noted in the sequel by N_i^j . It is clear that HTM is a horizontal vector bundle. By definition, we have decomposition $TTM = VTM \oplus HTM$ [5].

Using the induced coordinates (x^i,y^i) on TM, where x^i and y^i are called respectively position and direction of a point on TM, we have the local field of frames $\{\frac{\partial}{\partial x_i},\frac{\partial}{\partial y_i}\}$ on TTM. Let $\{dx^i,dy^i\}$ be the dual basis of $\{\frac{\partial}{\partial x^i},\frac{\partial}{\partial y^i}\}$. It is well known that we can choose a local field of frames $\{X_i,\frac{\partial}{\partial y_i}\}$ adapted to the above decomposition, i.e. $X_i\in X(HTM)$ and $\frac{\partial}{\partial y_i}\in X(VTM)$ are sections of horizontal and vertical sub-bundle on HTM and VTM, defined by $X_i=\frac{\partial}{\partial x_i}-N_i^j\frac{\partial}{\partial y_j}$, where $N_i^j(x,y)$ are functions on TM and have the following coordinate transformation rule in local coordinates (x^i,y^i) and $(x^{i'},y^{i'})$ on TM.

$$N_{i'}^{h'} = \frac{\partial x^{h'}}{\partial x^h} (\frac{\partial x^i}{\partial x^{i'}} N_i^h + \frac{\partial^2 x^h}{\partial x^{i'} \partial x^{a'}} y^{a'}).$$

To see a relation between linear and non-linear connections let Γ_{ji}^{k} be the coefficients of the Riemannian connection of (M,g). Then it is easy to check that $y^a\Gamma_{ai}^{k}$ satisfies the above relation and thus can be regarded as coefficients of the non-linear connection on TM in the sequel.

Let us put $X_h = \frac{\partial}{\partial x^h} - y^a \Gamma_{a\ h}^{\ m} \frac{\partial}{\partial y^m}$ and $X_{\overline{h}} = \frac{\partial}{\partial y^h}$. Then $\{X_h, X_{\overline{h}}\}$ is the adapted local field of frames of TM and let $\{dx^h, \delta y^h\}$ be the dual basis of $\{X_h, X_{\overline{h}}\}$, where $\delta y^h = dy^h + y^a \Gamma_a^{\ h} dx^i$ and the indices i, j, h, \ldots and $\overline{i}, \overline{j}, \overline{h}$... run over the range $1, 2, \ldots n$.

4. THE RIEMANNIAN OR PSEUDO-RIEMANNIAN METRIC \tilde{q} ON TANGENT BUNDLE

Let (M,g) be a Riemannian manifold. The Riemannian metric g has components g_{ij} , which are functions of variables x^i on M, and by means of the above dual basis it is well known that [3]; $g_1 := g_{ij} dx^i dx^j$, $g_2 := 2g_{ij} dx^i \delta y^j$ and $g_3 := g_{ij} \delta y^i \delta y^j$ are all bilinear differential forms defined globally on TM.

The tensor field:

$$\tilde{g} = ag_1 + bg_2 + cg_3,$$

on TM where a, b and c are certain positive real numbers, has components

$$\begin{pmatrix} ag_{ij} & bg_{ij} \\ bg_{ij} & cg_{ij} \end{pmatrix},$$

with respect to the dual basis of the adapted frame of TM. From linear algebra we have $det \tilde{g} = (ac - b^2)^n det g^2$. Therefore \tilde{g} is nonsingular if $ac - b^2 \neq 0$ and positive definite if $ac - b^2 > 0$ and define, respectively, pseudo-Riemannian or Riemannian lift metrics on T(M).

5. LIE DERIVATIVE

Let M be an n-dimensional Riemannian manifold, V a vector field on M, and $\{\phi_t\}$ any local group of local transformations of M generated by V. Take any tensor field S on M, and denote by $\phi_t^*(S)$ the pull-back of S by ϕ_t . Then Lie derivation of S with respect to V is a tensor field $\pounds_v S$ on M defined by

$$\mathcal{L}_{V}S = \frac{\partial}{\partial t}\phi_{t}^{*}(S)\mid_{t=0} = \lim_{t \longrightarrow 0} \frac{\phi_{t}^{*}(S) - (S)}{t},$$

on the domain of ϕ_t . The mapping \mathcal{L}_V which maps S to $\mathcal{L}_V(S)$ is called the Lie derivative with respect to V.

Suppose that S is a tensor field of type (n,m). Then the components $(\pounds_{_{V}}S)_{i_{1},\ldots,i_{m}}^{j_{1},\ldots,j_{n}}$ of $\pounds_{_{V}}S$ may be expressed as [6]

$$(\pounds_{V}S)_{i_{1},...,i_{m}}^{j_{1},...,j_{n}} = V^{a}\partial_{a}S_{i_{1},...,i_{m}}^{j_{1},...,j_{n}} + \sum_{k=1}^{m}\partial_{i_{k}}V^{a}S_{i_{1},...,a_{m},...,i_{m}}^{j_{1},...,j_{n}} - \sum_{k=1}^{n}\partial_{a}V^{j_{k}}S_{i_{1},...,i_{m}}^{j_{1},...,a_{m},...,j_{n}},$$

where $S_{i_1,...,i_n}^{j_1,...,j_n}$ and V^a denote the components of S and V.

The local expression of the Lie derivative $\mathcal{L}_{V}(S)$ in terms of covariant derivatives on a Riemannian manifold for a tensor field of type (1,2) is given by:

$$\mathcal{L}_{v} S_{i}^{h} = v^{a} \nabla_{a} S_{i}^{h} - S_{i}^{a} \nabla_{a} v^{h} + S_{a}^{h} \nabla_{i} v^{a} + S_{i}^{h} \nabla_{i} v^{a}, \tag{1}$$

where, S_{j}^{h} and v^{h} are components of S and V, and $\nabla_{a}S_{j}^{h}$, $\nabla_{a}v^{h}$ are components of covariant derivatives of S and V, respectively [1, 3, 6].

Lemma 1. [1], [7] The Lie bracket of adapted frame of TM satisfies the following relations

$$\begin{split} [X_i,X_j] &= y^r K_{jir}^{m} X_{\overline{m}}\,, \\ [X_i,X_{\overline{j}}] &= \Gamma_{j-i}^{k} X_{\overline{m}}\,, \\ [X_{\overline{i}},X_{\overline{j}}] &= 0, \end{split}$$

where $K_{jir}^{\ \ m}$ denotes the components of a Riemannian curvature tensor of M.

Lemma 2. [1] Let X be a vector field on TM with components $(X^h, X^{\overline{h}})$ with respect to the adapted frame $\{X_h, X_{\overline{h}}\}$. Then X is fiber-preserving vector field on TM if and only if X^h are functions on M.

Therefore, every fiber-preserving vector field X on TM induces a vector field $V=X^h\frac{\partial}{\partial x_h}$ on M.

Definition 1. [1], [3] Let V be a vector field on M with components V^h . We have the following vector fields on TM which are called respectively, **complete, horizontal** and **vertical** lifts of V:

$$\begin{split} X^C &:= V^h X_h + y^m (\Gamma_{m\ a}^{\ h} V^a + \partial_m V^h) X_{\overline{h}} \,, \\ X^H &:= V^h X_h, \\ X^V &:= V^h X_{\overline{h}} \,. \end{split}$$

From Lemma 2 we know that X^C, X^H and X^V are fiber-preserving vector fields on TM.

Lemma 3. [1] Let X be a fiber-preserving vector field on TM. Then the Lie derivative of the adapted frame and its dual basis are given by:

I)
$$\mathcal{L}_{X}X_{h} = (-\partial_{h}X^{a})X_{a} + \{y^{b}X^{c}K_{hcb}^{\ \ a} - X^{\bar{b}}\Gamma_{b\ h}^{\ a} - X_{h}(X^{\bar{a}})\}X_{\bar{a}}, \ \Pi) \ \mathcal{L}_{X}X_{\bar{h}} = \{X^{b}\Gamma_{b\ h}^{\ a} - X_{\bar{h}}(X^{\bar{a}})\}X_{a},$$

III)
$$\mathcal{L}_{x} dx^{h} = (\partial_{m} X^{h}) dx^{m},$$

$$\text{IV)} \ \ \mathcal{L}_{_{X}} \delta y^{h} = - \{ y^{b} X^{c} K_{mcb}^{\quad h} - X^{\overline{b}} \Gamma_{b\ m}^{\quad h} - X_{m} (X^{\overline{h}}) \} dx^{m} - \{ X^{b} \Gamma_{b\ m}^{\quad h} - X_{\overline{m}} (X^{\overline{h}}) \} \delta y^{m}.$$

Lemma 4. [8] Let X be a fiber-preserving vector field on TM, which induces a vector field V on M. Then Lie derivatives $\pounds_X g_1$, $\pounds_X g_2$ and $\pounds_X g_3$ are given by:

I)
$$\mathcal{L}_{x} g_{1} = (\mathcal{L}_{y} g_{ij}) dx^{i} dx^{j}$$
,

$$\begin{split} II) \; \pounds_{_{X}}g_{2} &= 2[-g_{jm}\{y^{b}X^{c}K_{icb}^{m} - X^{\overline{b}}\Gamma_{bi}^{m} - X_{i}(X^{\overline{m}})\}dx^{i}dx^{j} \; + \\ & \quad \{\pounds_{_{V}}g_{ij} - g_{jm}\nabla_{i}X^{m} + g_{jm}X_{\overline{i}}(X^{\overline{m}})\}dx^{j}\delta y^{i}], \end{split}$$

$$III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{i} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{i} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{i} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{i} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{i} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{i} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} - X^{\overline{b}}\Gamma_{bj}^{m} - X_{j}(X^{\overline{m}})\}dx^{j}\delta y^{j} \; + \\ III) \; \pounds_{_{X}}g_{3} &= -2g_{mi}\{y^{b}X^{c}K_{jcb}^{m} + X^{\overline{b}}\Gamma_{bj}^{m} + X^{\overline{b}}\Gamma_{b$$

$$\begin{split} III) \ \pounds_{_{X}} g_{3} &= -2g_{mi} \{y^{o}X^{c}K_{jcb} - X^{o}\Gamma_{b\ j} - X_{j}(X^{m})\}dx^{j}\delta y^{i} + \\ &\{\pounds_{_{V}} g_{ij} - 2g_{mj}\nabla_{i}X^{m} + 2g_{mj}X_{\bar{i}}(X^{\overline{m}})\}\delta y^{i}\delta y^{j}, \end{split}$$

where $\mathcal{L}_{V} g_{ij}$ and $\nabla_{i} X^{m}$ denote the components of $\mathcal{L}_{V} g$ and the covariant derivative of V respectively.

6. MAIN RESULTS

Proposition 1. Let X be a complete (resp. horizontal or vertical) lift conformal vector field on TM. Then the scalar function $\Omega(x,y)$ in $\mathcal{L}_{X}\tilde{g}=2\Omega\tilde{g}$ is a function of position alone (resp. $\Omega=0$).

Proof: Let TM be the tangent bundle over M with Riemannian metric \tilde{g} and X be a complete (resp. horizontal or vertical) lift conformal vector field on TM. By definition, there is a scalar function Ω on TM such that

$$\pounds_{_{X}}\tilde{g}=2\Omega\tilde{g}.$$

Since the complete horizontal and vertical lift vector fields are fiber preserving, by applying \mathcal{L}_x to the definition of \tilde{g} , using Lemma 4 and the fact that $dx^i dx^j$, $dx^i \delta y^j$ and $\delta y^i \delta y^j$ are linearly independent, we have following three relations

$$a(\mathcal{L}_{V}g_{ij} - 2\Omega g_{ij}) = bg_{im}(y^{b}X^{c}K_{jcb}^{\ m} - X^{\bar{b}}\Gamma_{b\ j}^{\ m} - X_{j}(X^{\overline{m}})) + g_{im}(y^{b}X^{c}K_{icb}^{\ m} - X^{\bar{b}}\Gamma_{b\ i}^{\ m} - X_{i}(X^{\overline{m}}))],$$
(2)

$$b(\mathcal{L}_{V}g_{ij} - 2\Omega g_{ij}) = bg_{im}(\nabla_{j}X^{m} - X_{\bar{j}}(X^{\overline{m}})) + cg_{jm}(y^{b}X^{c}K_{icb}^{m} - X^{\bar{b}}\Gamma_{b}^{m} - X_{i}(X^{\overline{m}})).$$
(3)

Using relation 1, we have $\mathcal{L}_{v} g_{ij} = \nabla_{i} V_{j} + \nabla_{j} V_{i}$, from which we obtain

$$2\Omega g_{ij} = g_{mi} X_{\bar{i}}(X^{\overline{m}}) + g_{mi} X_{\bar{i}}(X^{\overline{m}}). \tag{4}$$

Applying $X_{\bar{k}}$ to the relation 4 and using the fact that g_{ij} is a function of position alone, we have

$$2g_{ij}X_{\overline{k}}(\Omega) = g_{mj}X_{\overline{k}}X_{\overline{i}}(X^{\overline{m}}) + g_{mi}X_{\overline{k}}X_{\overline{i}}(X^{\overline{m}}).$$

$$(5)$$

By means of definition 1 for complete lift vector fields, and by replacing the value of $X^{\overline{m}}$ in relation 5, we have

$$2g_{ij}X_{\overline{k}}(\Omega) = g_{mj}X_{\overline{k}}X_{\overline{i}}(y^{l}(\Gamma_{l}^{m}V^{a} + \partial_{l}V^{m})) + g_{mi}X_{\overline{k}}X_{\overline{j}}(y^{l}(\Gamma_{l}^{m}V^{a} + \partial_{l}V^{m})).$$

Since the coefficients of the Riemannian connection on M, and components of vector field V are functions of position alone, the right hand side of the above relation becomes zero, from which we have $X_{\overline{k}}(\Omega)=0$. This means that the scalar function $\Omega(x,y)$ on TM depends only on the variables (x^h) .

Similarly, for vertical lift vector fields, by using the fact that the components of V are functions of position alone and from relation 4, we have $\Omega=0$. Finally, for horizontal lift vector field by means of relation 4, we have $\Omega=0$.

Proposition 2. Let M be a connected manifold and X be a complete lift conformal vector field on TM. Then the scalar function $\Omega(x,y)$ in $\pounds_x \tilde{g} = 2\Omega \tilde{g}$ is constant.

Proof: Let X be a complete lift conformal vector field on TM with components $(X^h, X^{\overline{h}})$, with respect to the adapted frame $\{X_h, X_{\overline{h}}\}$.

Let us put

$$A_a^m = \Gamma_{a,b}^m X^h + \partial_a X^m.$$

The coordinate transformation rule implies that A_a^m are the components of (1, 1) tensor field A. Then its covariant derivative is

$$\nabla_i A^m_{\ a} = \partial_i A^m_{\ a} + \Gamma^m_{i\ k} A^k_{\ a} - \Gamma^k_{i\ a} A^m_{\ k},$$

where $\nabla_i A^m_a$ is the component of the covariant derivative of tensor field A.

From definition 1, $X^{\overline{m}} = A^m_a y^a$. By means of relation 3, we have

$$b[\mathcal{L}_{_{V}}g_{ij}-2\Omega g_{ij}-g_{im}(\nabla_{j}X^{m}-A^{m}_{\;j})]=cg_{jm}[y^{a}X^{c}K_{ica}^{\quad m}-\Gamma_{k\ i}^{\ m}A^{k}_{\;a}y^{a}-X_{i}(A^{m}_{\;h}y^{h})]$$

Note that the components of A are functions of position alone, from which the right hand side of this relation becomes

$$cg_{jm}[y^a X^c K_{ica}^{\ m} - \Gamma_{k}^{\ m}{}_i A^k_{a} y^a - (\frac{\partial}{\partial x^i} - y^a \Gamma_{a}^{\ k}{}_i \frac{\partial}{\partial y^k}) (A^m_h y^h)]$$

$$= cg_{jm}[y^a X^c K_{ica}^{\ m} - \Gamma_{k}^{\ m}{}_i A^k_{a} y^a - y^a \frac{\partial}{\partial x^i} A^m_{a} + \Gamma_{a}^{\ k}{}_i A^m_{k} y^a]$$

$$= cy^a (X^c K_{icaj} - g_{mj} \nabla_i A^m_{a}).$$

Thus we have

$$b[\pounds_{V}g_{ij}-2\Omega g_{ij}-g_{mi}(\nabla_{j}X^{m}-A^{m}_{j})]=cy^{a}(X^{c}K_{icaj}-g_{mj}\nabla_{i}A^{m}_{a}).$$

By means of Proposition 1 the left hand side of the above relation is a function of position alone. Applying $X_{\bar{k}} = \frac{\partial}{\partial u^k}$ to this relation gives

$$X^c K_{icaj} - g_{mj} \nabla_i A_a^m = 0,$$

Or

$$X^c K_{icai} = \nabla_i A_{ia}$$
.

From which

$$\nabla_i A_{ja} + \nabla_i A_{aj} = 0. ag{6}$$

Now by replacing $X^{\overline{m}}$ in relation 4

$$2\Omega g_{ij} = g_{mj} X_{\bar{i}} \{ y^h (\Gamma_{h\ a}^m X^a + \partial_h X^m) \} + g_{mi} X_{\bar{j}} \{ y^h (\Gamma_{h\ a}^m X^a + \partial_h X^m) \}$$

$$= g_{mj} (\Gamma_{i\ a}^m X^a + \partial_i X^m) + g_{mi} (\Gamma_{j\ a}^m X^a + \partial_j X^m)$$

$$= g_{mj} A_{\ i}^m + g_{mi} A_{\ j}^m.$$

Applying covariant derivation ∇_k to this relation gives

$$2g_{ij}\nabla_k\Omega=\nabla_kA_{ji}+\nabla_kA_{ij}.$$

From relation 6, we get $\nabla_k \Omega = \frac{\partial}{\partial x_k} \Omega = 0$.

Since M is connected, the scalar function Ω is constant.

Theorem 1. Let M be a connected n-dimensional Riemannian manifold and TM be its tangent bundle with metric \tilde{g} . Then every complete lift conformal vector field on TM is homothetic, moreover, every horizontal or vertical lift conformal vector field on TM is a Killing vector.

Proof: Let M be an n-dimensional Riemannian manifold, TM its tangent bundle with the metric \tilde{g} and X a complete (resp. horizontal or vertical) lift conformal vector field on TM. Then by means of Proposition 1 the scalar function $\Omega(x,y)$ in $\mathcal{L}_x \tilde{g} = 2\Omega \tilde{g}$ is a function of position alone (resp. $\Omega = 0$), and by means of Proposition 2 it is constant. Thus, every complete lift conformal vector field on TM is homothetic and every horizontal or vertical lift conformal vector field on TM is a Killing vector.

Theorem 2. Let M be a connected n-dimensional Riemannian manifold and TM be its tangent bundle with metric \tilde{g} . Then every inessential fiber preserving conformal vector field on TM is homothetic.

Proof: Let X be an inessential fiber preserving conformal vector field on TM with components $(X^h, X^{\bar{h}})$, with respect to the adapted frame $\{X_h, X_{\bar{h}}\}$. Using the same argument in proof of Proposition 1, it is obvious that we have relations 2, 3 and 4. From relation 4, we have

$$\Omega g_{ii} = g_{mi} X_{\bar{i}}(X^{\overline{m}}).$$

Since $\Omega(x,y)$ in $\mathcal{L}_{x}\tilde{g}=2\Omega\tilde{g}$ is supposed to be a function of position alone, by applying $X_{\tilde{i}}$ to the above relation we have

$$X_{\overline{i}}(X_{\overline{i}}(X^{\overline{m}})) = 0.$$

Applying $X_{\bar{i}}$ to relation 4 again and using above relation gives

$$X_{\overline{i}}(X_{\overline{i}}(X^{\overline{m}})) = 0.$$

Thus we can write

$$X^{\overline{m}} = \alpha^m_{\ a} y^a + \beta^m,\tag{7}$$

where α_a^m and β^m are certain functions of position alone. Replacing relation 7 in relation 3, we have

$$b(\mathcal{L}_{V}g_{ij}-2\Omega g_{ij})=bg_{im}(\nabla_{j}X^{m}-\alpha^{m}_{j})+cg_{jm}(y^{b}X^{c}K_{icb}^{m}-y^{a}\alpha^{b}_{a}\Gamma_{b}^{m}-\beta^{b}\Gamma_{b}^{$$

$$y^a \frac{\partial}{\partial x_i} \alpha^m_{\ a} - \frac{\partial}{\partial x_i} \beta^m + y^a \Gamma^k_{a\ i} \alpha^m_{\ k}$$

$$=bg_{im}(\nabla_jX^m-\alpha^m_{\ j})+cg_{jm}(y^bX^cK_{icb}^{\ m}-y^a\nabla_i\alpha^m_{\ a})-cg_{jm}\nabla_i\beta^m.$$

Therefore

$$b(\mathcal{L}_{V}g_{ij}-2\Omega g_{ij}-g_{im}(\nabla_{j}X^{m}-\alpha^{m}_{j}))+cg_{jm}\nabla_{i}\beta^{m}=cg_{jm}y^{a}(X^{c}K_{ica}^{m}-\nabla_{i}\alpha^{m}_{a}).$$

The left hand side of this relation is a function of position alone. From which by applying $X_{\bar{k}}$ we have

$$X^c K_{ica}^{\ \ m} = \nabla_i \alpha^m_{\ a}. \tag{8}$$

Replacing relation 7 in relation 4 we find

$$2\Omega g_{ij} = \alpha_{ii} + \alpha_{ij}.$$

The covariant derivative of this relation and using relation 8 gives

$$\nabla_k \Omega = \frac{\partial}{\partial x_b} \Omega = 0.$$

Since M is connected, then the scalar function Ω on M is constant. This completes the proof of Theorem 2.

REFERENCES

- 1. Yamauchi, K. (1995). On infinitesimal conformal transformations of the tangent bundles over Riemannian manifolds. *Ann Rep. Asahikawa. Med. Coll., 16*, 1-6, and (1996). *Ann. Rep. Asahikawa. Med. Coll., 17*, 1-7, and (1997). *Ann. Rep. Asahikawa. Med. Coll., 18*, 27-32.
- 2. Hasegawa, I. & Yamauchi, K. (2003). Infinitesimal conformal transformations on tangent bundles with the lift metric 1 + 2. *Scientiae Mathematicae Japonicae* 57, (1), 129-137, e7, 437-445.
- 3. Yano, K. & Ishihara, S. (1973). *Tangent and Cotangent Bundles*. Department of Mathematics Tokyo Institute of Technology, Marcel Dekker, Tokyo, Japan.
- 4. Yano, K. & Kobayashi, H. (1996). Prolongations of tensor fields and connection to tangent bundle I,

- General theory. Jour. Math. Soc. Japan, 18194-210.
- 5. Bejancu, A. (1990). Finsler geometry and applications. Ellis Horwood Limited publication.
- 6. Nakahara, M. (1990). *Geometry Topology and Physics*. Physics institute, Faculty of Liberal Arts Shizuoka, Japan., Bristol and New York, Adam Hilger.
- 7. Miron, R. (1981). Introduction to the theory of Finsler spaces. *Proc. Nat. Sem. On Finsler spaces, Brasov* (131-183). & (1987). Some connections on tangent bundle And their applications to the general relativity. *Tensor N. S.* 46, 8-22.
- 8. Yawata, M. (1991). Infinitesimal isometries of frame bundles with natural Riemannian metric. *Tohoku Math. J.* (2), 43(1), 103-115.