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1. INTRODUCTION 
 

Since Lyapunov [1] proposed his famous theory on the stability of motion, which is now commonly 
known as Lyapunov's second method or direct method, many papers have been published on the 
instability properties for various third-, fourth-, fifth-, sixth-, seventh and eighth orders of certain 
nonlinear differential equations in the relevant literature. So far, the most effective method to 
investigate the instability of solutions of certain nonlinear differential equations of higher order is still 
the Lyapunov’s direct (or second) method. In this connection, we refer to the papers of Bereketoglu 
[2], Ezeilo [3-7], Krasovskii [8], Li and Yu [9], Li and Duan [10], Reissig et al [11], Skrapek [12], 
[13], Tejumola [14], Tiryaki [15-17], C. Tunc and E. Tunc [18], Tunc [19-21], Tunc and Sevli [22], 
and the references cited therein. However, with respect to our observations in the relevant literature, 
in the case 1=n , the instability properties of nonlinear differential equations of the seventh order 
have been discussed only by Sadek [23] and Tejumola [14]. 

More recently, Sadek [23] investigated the subject for the seventh order scalar differential 
equation of the form:  

 
                                 )7(x + )6(

1xa + )5(
2 xa + )4(

3 xa + xa4 + xxf )( + xxg )( + 0)( =xh .                     (1) 
 
Namely, in [23], sufficient conditions for the instability of the zero solution of equation (1) were 
established by the author. However, with respect to our observations in the relevant literature, no 
work has been found other than the papers mentioned above on the instability of solutions of certain 
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seventh order nonlinear differential equations. The present work is the first attempt to obtain 
sufficient conditions for the instability of solutions of certain nonlinear vector differential equations 
of the seventh order. The motivation for the present study has come especially from the paper of 
Sadek [23] and the papers mentioned. Our aim is to acquire a similar result for certain nonlinear 
vector differential equations of the seventh order.  

In the present paper, we are concerned with the instability of the trivial solution 0=X  of the 
vector differential equation of the form: 
 
                          )7(X + )6(AX + )5(BX + )4(CX + XD + XXF )( + XXG )( + 0)( =XH                 (2) 

 
in the real Euclidean space nℜ  (with the usual norm denoted in what follows by . ), where 

A , B , C  and D  are constant nn× -symmetric matrices; F  and G  are continuous nn× -

symmetric matrix functions depending, in each case, on the arguments shown; nnH ℜ→ℜ:  and 

0)0( =H . It will be supposed that the function H  is continuous. Let )(XJ H , )(XJ G and )(XJ F  

denote the Jacobian matrices corresponding to the functions )(XH , )(XG  and )(XF , respectively, 

that is, )(XJ H = 
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),...,,( 21 nxxx , ),...,,( 21 nxxx , ),...,,( 21 nhhh , ),...,,( 21 nggg  and ),...,,( 21 nfff  are the 

components of X , X , H , G  and F , respectively. Other than these, it will also be assumed that 

the Jacobian matrices )(XJ H , )(XJ G  and )(XJ F  exist and are continuous. The symbol YX ,  

corresponding to any pair X , Y  in nℜ  stands for the usual scalar product ∑
=

n

i
ii yx

1

, and 

)(Aiλ , ),...,2,1( ni =  are the eigenvalues of the nn× - matrix A . 
We consider though in what follows, in place of (2), the equivalent differential system: 

 
                                           YX = , ZY = , SZ = , TS = , UT = , WU =  ,                                 (3) 

 
)()()( XHYXGZYFDSCTBUAWW −−−−−−−=  

 
was obtained as usual by setting YX = , ZX = , SX = , TX =)4( , UX =)5( , WX =)6(  in (2). 

Now, we consider the linear constant coefficient seventh order differential equation: 
 
                                     )7(x + )6(

1xa + )5(
2 xa + )4(

3 xa + xa4 + xa5  + xa6 + xa7 = 0.                           (4) 
 

It is well-known from the qualitative behavior of solutions of linear differential equations that 
the trivial solution of (4) is unstable if, and only if, the associated auxiliary equation:  
 
                                ≡)(λψ 7λ + 6

1λa + 5
2λa + 4

3λa + 3
4λa + 2

5λa  + λ6a + 7a = 0                           (5) 
 

has at least one root with a positive real part. The existence of such a root naturally depends on 
(though not always all of) the coefficients 1a , 2a ,…, 7a  in (5). For example, if  
 
                                                                           01 <a                                                                         (6) 
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then it is clear from a consideration of the fact that the sum of the roots of (5) equals ( 1a ) and that at 
least one root of (5) has a positive real part for arbitrary values of 2a , 3a , 4a , 5a , 6a , 7a . An 
analogue consideration, combined with the fact that the product of the roots of (5) is equal to (- 7a ), 
will verify that at least one root of (5) has a positive real part if  
 
                                                              01 =a  and 07 ≠a                                                                 (7) 

 
for arbitrary 2a , 3a , 4a , 5a  and 6a . The condition 01 =a  here in (7) is, however, superfluous 
when 
  
                                                                          07 <a ;                                                                       (8) 

 
then for )0(ψ = 07 <a  and  0)( >Rψ  if 0>R  is sufficiently large, thus showing that there is a 
positive real root of (5) subject to (8) and for arbitrary 1a , 2a , 3a , 4a , 5a  and 6a . Moreover, a 
necessary and sufficient condition for (5) to have a purely imaginary root, βλ i=  ( β  real), is that 
the two equations 
 
                                                   07

2
5

4
3

6
1 =+−+− aaaa βββ                                                      (9) 

 
and  
 
                                                    06

2
4

4
2

6 =+−+− aaa βββ                                                      (10) 

are satisfied at the same time. If  
 
                                                  01 ≤a , 03 ≥a , 05 ≤a  and 07 >a                                               (11) 

 
or  
 
                                                  01 ≥a , 03 ≤a , 05 ≥a  and 07 <a ,                                             (12) 

 
then equation (5) cannot have any purely imaginary root whatever. 
 

2. MAIN RESULT 
 
We establish the following result: 

 
Theorem: In addition to the basic assumptions imposed on A , B , C , D , F , G  and H , we 
suppose that the following conditions are satisfied: 
(i) There are constants 1a , 2a , 3a , 7a  such that 0)( 1 ≤≤ aAiλ , 0)( 3 ≥≥ aCiλ , 0))(( ≤YFiλ  for 
all nY ℜ∈  and 0))(( 7 >≥ aXJ Hiλ  for all nX ℜ∈≠ )0(  and 0)( ≠XH  if 0≠X , 

),...,2,1( ni = or  
)( ′i  0)( 1 ≥≥ aAiλ , 0)( 2 >≥ aBiλ , 0)( 3 ≤≤ aCiλ , 0))(( ≥YFiλ  for all nY ℜ∈  and 

0))(( 7 <≤ aXJ Hiλ  for all, 0≠X  nX ℜ∈  and 0)( ≠XH  if 0≠X , ),...,2,1( ni = . 
Then the zero solution 0=X  of (3) is unstable. 
 

Remark 1. It should be noted that there are no restrictions on the constants 2a , 4a , 6a  in (1), as well 
as on the eigenvalues of the matrices B , D , G  in (2) for the part )(i  of the theorem. 

 
Remark 2. In the case 1=n , the conditions of the theorem reduce to those of Sadek [23].  
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The following lemma is important for the proof of the theorem. 
 

Lemma: Let A  be a real symmetric nn× - matrix and 0)( >≥≥′ aAa iλ  ),...,2,1( ni = , where 
a′ , a  are constants. Then 
  

XXaXAXXXa ,,, ≥≥′  
 

and 
 

XXaAXAXXXa ,,, 22 ≥≥′ . 
 
Proof: See [24].  
 
Proof of the theorem: The proof of the theorem depends on a scalar differentiable Lyapunov 
function 0V  = ),,,,,,(0 WUTSZYXV . This function and its total time derivative satisfy some 
fundamental inequalities. We define 0V  as follows: 
 

0V = - ∫
1

0

,)( σσ dXYYF  - ∫
1

0

,)( σσσ dXXXG - WX , - AUX , - BTX ,  

 
- CSX , - DZX , + UY , + ATY , + BSY , + CZY , - ASZ ,  

                                            - TZ , + SS ,
2
1

+ YDY ,
2
1

- ZBZ ,
2
1

.                                         (13) 

 
It is clear from (13) that 0)0,0,0,0,0,0,0(0 =V . Obviously, it also follows from the assumptions 

of the theorem, the above lemma and (13) that: 
 

0
2
1,

2
1)0,0,0,,0,0,0( 2

0 >== εεεεV , 

 
for all arbitrary, 0≠ε , nℜ∈ε . So, in every neighborhood of )0,0,0,0,0,0,0(  there exists a point 

) , , , , , ,( ρωτµζηξ  such that 0),,,,,,(0 >ρωτµζηξV  for all ρωτµζηξ  , , , , , ,  in nℜ . Next, 
let ),,,,,,( WUTSZYX = ))(),(),(),(),(),(),(( tWtUtTtStZtYtX  be an arbitrary solution of (3). A 
straightforward calculation from (13) and (3) yields  
  

),,,,,,(00 WUTSZYXV
dt
dV = = - SAS , + ZCZ , + XXH ),( + ZXYF ,)( + XYXG ,)(  

 

                                    - ∫
1

0

,)( σσ dXYYF
dt
d

 - ∫
1

0

,)( σσσ dXXXG
dt
d

.                                    (14) 

 
Remember that 

 

∫
1

0

,)( σσσ dXXXG
dt
d

 = ∫
1

0

,)( σσσ dXYXG + ∫
1

0

2 ,)( σσσ dXXYXJ G + ∫
1

0

,)( σσσ dYXXG  

 

    = ∫
1

0

,)( σσσ dXYXG + ∫ ∂
∂1

0

,)( σσσ
σ

σ dXYXG = 1
0

2 ,)( XYXG σσ = XYXG ,)( .      (15) 
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and  
 

∫
1

0

,)( σσ dXYYF
dt
d

 = ∫
1

0

,)( σσ dYXYF
dt
d

= ∫
1

0

,)( σσ dZXYF + ∫
1

0

,)( σσσ dYXZYJ F  

 

+ ∫
1

0

,)( σσ dYYYF = ∫
1

0

,)( σσ dZXYF + ∫ ∂
∂1

0

,)( σσ
σ

σ dZXYF + ∫
1

0

,)( σσ dYYYF  

 

                  = 1
0,)( ZXYF σσ + ∫

1

0

,)( σσ dYYYF = ZXYF ,)( + ∫
1

0

,)( σσ dYYYF .             (16) 

 
By collecting estimates (15) and (16) into (14) we obtain  

 

0V  = - SAS , + ZCZ , + XXH ),( - ∫
1

0

,)( σσ dYYYF  

 
Since XXJXH H )()( σσ

σ
=

∂
∂

 and 0)0( =H , then  
 

∫=
1

0

)()( σσ XdXJXH H . 

 
Therefore, it follows from (i) and )( ′i , respectively, that  
 

                   XXH ),( = ∫
1

0

,)( σσ dXXXJ H ≥ ∫
1

0
7 , σdXXa = XXa ,7 =

2
7 Xa               (17) 

 
and 
 

                    XXH ),( = ∫
1

0

,)( σσ dXXXJ H ≤ ∫
1

0
7 , σdXXa = XXa ,7 =

2
7 Xa .            (18) 

 
Now, if we assume the assumption (i) of the theorem and (17) hold, then we have  

 

0V ≥  - 
2

1 Sa +
2

3 Za +
2

7 Xa . 
 

Thus, the assumption (i) shows that 0)(0 ≥tV  for all 0≥t , that is, 0V  is positive semi-definite. 
Furthermore, 00 =V )0( ≥t  necessarily implies that 0=Y  for all 0≥t , and also that ξ=X  (a 
constant vector), 0== YZ , 0== YS , 0== YT , 0)4( == YU , 0)5( == YW , 0)6( == YW  
for all 0≥t . Substituting the estimates  
 

ξ=X , 0====== WUTSZY  
 

in (3) it follows that 0)( =ξH , which necessarily implies that 0=ξ  because of 0)0( =H  and 
0)( ≠XH  if 0≠X . So  

 
0======= WUTSZYX  for all 0≥t . 

 
Therefore, the function 0V  has the entire requisite Krasovskii criterion [8] if the condition (i) in 

the theorem holds. This proves the proof of part (i) of the theorem.  
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Similarly, for the proof of part )( ′i  of the theorem, we consider the Lyapunov function 
1V = ),,,,,,(1 WUTSZYXV  defined by the function 1V = - 0V , where 0V  is defined as the same the 

function in (13). Trivially,  
 

0)0,0,0,0,0,0,0(1 =V  
 

and 
 

)0,0,,0,,0,0(1 εεV = εε , + εε ,
2
1 B 0

2
1 2

2
2 >+≥ εε a  

 
for all arbitrary, 0≠ε , nℜ∈ε . Hence, in every neighborhood of )0,0,0,0,0,0,0(  there exists a 
point ),,,,,,( ρωτµζηξ , such that 0),,,,,,(1 >ρωτµζηξV  for all ρωτµζηξ ,,,,,,  in 

nℜ . For the remaining of the proof, if we follow the line indicated just above, then we can easily 
conclude that the function 1V  has the entire requisite Krasovskii criterion [8] if the condition )( ′i  in 
the theorem holds. This completes the proof of part )( ′i  of the theorem.  

Thus, the basic properties of the functions ),,,,,,(0 WUTSZYXV  and ),,,,,,(1 WUTSZYXV , 
which are proved just above, verify that the zero solution of (3) is unstable. (See, Theorem 1.15 in 
Reissig [11] and Krasovskii [8]) The system of equation (3) is equivalent to the differential equation 
(2). Consequently, it follows the original statement of the theorem.  
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