Let R and S be reduced rings with identities whose idempotents are central, and let M be an (R, S)-bimodule such that annr (M)=0. In this paper, we determine first the structure of automorphisms of the triangular ring, = S R M T 0 , and then, for all automorphisms α ,β of T we determine the structure of (α,β)-derivations of T.
GHOSSEIRI, M. N. (2005). THE STRUCTURE OF (α,β)-DERIVATIONS OF TRIANGULAR RINGS. Iranian Journal of Science, 29(3), 507-514. doi: 10.22099/ijsts.2005.2824
MLA
GHOSSEIRI, M. N. . "THE STRUCTURE OF (α,β)-DERIVATIONS OF TRIANGULAR RINGS", Iranian Journal of Science, 29, 3, 2005, 507-514. doi: 10.22099/ijsts.2005.2824
HARVARD
GHOSSEIRI, M. N. (2005). 'THE STRUCTURE OF (α,β)-DERIVATIONS OF TRIANGULAR RINGS', Iranian Journal of Science, 29(3), pp. 507-514. doi: 10.22099/ijsts.2005.2824
CHICAGO
M. N. GHOSSEIRI, "THE STRUCTURE OF (α,β)-DERIVATIONS OF TRIANGULAR RINGS," Iranian Journal of Science, 29 3 (2005): 507-514, doi: 10.22099/ijsts.2005.2824
VANCOUVER
GHOSSEIRI, M. N. THE STRUCTURE OF (α,β)-DERIVATIONS OF TRIANGULAR RINGS. Iranian Journal of Science, 2005; 29(3): 507-514. doi: 10.22099/ijsts.2005.2824