EXTREMAL ORDERS INSIDE SIMPLE ARTINIAN RINGS*

N. H. HALIMI**

84 Manburgh Tce, Darra, QLD 4076, Australia Email: n h halimi@yahoo.com.au

Abstract – The aim of this paper is to study orders over a valuation ring V with arbitrary rank in a central simple *F*-algebra Q. The relation between all of the orders is explained with a diagram. It is then shown that inside Bezout order, extremal *V*-orders are precisely semi-hereditary. In the last section, the effect of Henselization on maximal and semi-hereditary orders is examined.

Keywords - Dubrovin valuation rings, extremal orders, Henselization

1. INTRODUCTION

In this paper, all rings are associative with a multiplicative unit and all modules are unitary. If A is a ring, J(A) will denote its Jacobson radical, U(A) its group of units, Z(A) its center, A^* its set of nonzero divisors, and $M_n(A)$ the ring of $n \times n$ matrices over A. The residue ring A/J(A) will be denoted by \overline{A} . And Q denotes a simple artinian ring with finite dimension over its center Z(Q), while D denotes a division ring.

In the second section we briefly discuss some of the ring theoretic properties and definitions.

In the third section we will see that semihereditary *V*-orders are extremal *V*-orders and obtain a diagram of maximal *V*-orders when *V* is a Henselian valuation ring.

In the fourth section we show that inside Bezout orders, extremal *V*-orders are precisely semihereditary, which is a generalization of Proposition 2.1 of [1].

In the last section we will examine the effect of Henselization on maximal and semihereditary orders.

2. DEFINITION AND PRELIMINARIES

In this paper F denotes a field and Q is a central simple F-Algebra, i.e., Q is a F-Algebra with $[Q:F] < \infty$ and F = Z(Q).

The most successful extension of the classical valuation theory on F to Q is the one introduced by Dubrovin in [2] and [3].

Definition 2. 1. A subring B of a central simple F-algebra Q is called a Dubrovin valuation ring in Q if

(1) B has an ideal M such that B/M is a simple artinian ring and

(2) For each $q \in Q \mid B$ there exist b, $a \in B$ such that $bq, qa \in B \mid M$.

^{*}Received by the editor July 25, 2003 and in final revised form September 10, 2005

^{**}Corresponding author

The following properties of Dubrovin valuation rings were proved by Dubrovin in [2, 3].

- i) The two sided ideals of B are totally ordered by inclusion, where two sided ideals are a Bbimodule of Q. Therefore we have M=J(B)
- ii) Each finitely generated left (resp, right) ideal of *B* is principal.
- iii) (a) Let V be a valuation ring of F, then there exists a Dubrovin valuation ring of B in Q such that $B \bigcap F = V$, [2-4].

(b) If *B*, and *B*' are two Dubrovin valuation rings of *Q* extending *V*, then $B'=dBd^{-1}$ for some $d \in Q^*[5, 6]$.

Therefore, for every valuation ring V of F=Z(Q), there is a unique (up to conjugate) associated Dubrovin valuation ring B of Q. It is reasonable to expect that B will carry much information about the arithmetic of Q in relation to V, (see [7] Theorem 3.4 and [8] Theorem 3.7).

Definition 2. 2. Let Q be a finite-dimensional *F*-Algebra and *V* a ring with quotient field *F*. A subring *R* of *Q* is said to be an order in *Q* if *RF*=*Q*. If *V*=*Z*(*R*), then *R* is said to be a *V*-order if, in addition, *R* is integral over *V*. If *R* is maximal with respect to inclusion among *V*-order of *Q*, then *R* is said to be a maximal order over *V*.

- a) In the case V is a discrete valuation ring, then by ([9], 18.6 and 18.2) any V-order in a central simple *F*-algebra is a finite V-module, so for such V, Definition 2.2 agrees with the usual one, as in [10].
- b) In this paper we assume V is a commutative valuation ring in F of arbitrary Krull-dimension. The integrality hypothesis in the above definition is used to guarantee the existence of maximal orders for any Q and V. But finitely generated maximal V-orders need not exist, (see [7] Proposition 2.3).
- c) Let V be a valuation ring of a field F, and Q a central simple F-Algebra. If B is an integral Dubrovin extension of V to Q (i.e., B is a Dubrovin valuation ring of Q such that B is integral over V and $V=B \bigcap F$) then B is a maximal V-order (by Example 2.2 [7]).

Definition 2. 3. A ring *R* is said to be *extremal* if for every overring *S* such that $J(R) \subseteq J(S)$ we have S=R. If *S* is an overring of *R*, we say that *R* is extremal in *S* if *R* is extremal among all subrings of *S*. A *V*-order *R* is said to be an extremal *V*-order (or just extremal when the context is clear) if it is extremal among all *V*-orders in *Q*.

Definition 2. 4. A ring *R* is said to right (resp left) Bezout if every finitely generated right (left) ideal is principal. It is called Bezout if it is both right and left Bezout.

If V is a valuation ring, then there exists a Bezout V-order B in Q and each Bezout V-order is a maximal order by ([7] Theorem 3.4), and if B, and B' are two Bezout V-orders, then B, and B' are conjugate (by Theorem 6.12 [4]).

Definition 2. 5. A ring *R* is said to be right semihereditary (resp right hereditary) if every finitely generated right ideal (resp every right ideal) is projective as a right *R-module*. A ring is said to be semihereditary (resp hereditary) if it is both left and right semihereditary (resp hereditary).

a) If V be Dedekind domain with quotient field F and Q is a central simple F-Algebra, where $Q \cong M_n(D)$ and D is a division ring with center F, then R is a hereditary V-order if and only if R is an extremal (see 39.14 [10]).

b) Let V be a valuation ring of F=Z(Q) and Q a central simple F-Algebra. J.S. Kauta proved that every semihereditary V-Order is extremal (see Theorem 1.5 [11]), but the converse is not true. If F is

a field, $Q=M_2(F)$, V_n is a discrete valuation ring of dimension *n*, and *R* is a maximal V_n -order in *Q*, then there are three possibilities for the isomorphism class of *R*.

(1) $R \cong M_2(V_m)$, where V_m is the overring of V_n of dimension m. In this case R is a Bezout. (2) $R \cong \begin{bmatrix} V_m & J(V_p) \\ V_p & V_m \end{bmatrix}$, where m < p. In this case R is semihereditary, but not Bezout.

(3) *R* is primary (i.e., J(R) is a maximal ideal of *R*) but not Bezout (see [7], Theorem 5.7). Let *R* be maximal *V*-order in $M_2(F)$ which is primary, but not Bezout. Such an order cannot be semihereditary, since any primary semihereditary order is a Dubrovin valuation ring ([3]: Theorem 4), and hence Bezout.

3. MAXIMAL ORDERS OVER HENSELIAN VALUATION RINGS

In this section *D* always means a finite dimensional algebra with center *F*. A subring *B* of *D* is said to be a total valuation ring in *D* if $d \in B$ or $d^{T} \in B$ for all nonzero $d \in D$.

We recall that a valuation ring V in a field F is Henselian when Hensel's Lemma holds for V, i.e., for every monic polynomial $f \in V[x]$, if its image $\overline{f} \in \overline{V}[x]$, where $\overline{V} = V/J(V)$ has a factorization $\overline{f} = \widetilde{g}\widetilde{h}$ on $\overline{V}[x]$ with $\widetilde{g},\widetilde{h}$ monic and $gcd(\widetilde{g},\widetilde{h}) = 1$, then there exist monic $g,h \in V[x]$ with $f = gh, \overline{g} = \widetilde{g}$ and $\overline{h} = \widetilde{h}$, where \overline{g} and \overline{h} are images g and h respectively.

There are several other equivalent characterizations of the Henselian valuation ring, but the most relevant here is the following.

A valuation ring V in a field F is Henselian if V has a unique extension to each field $F \subset K$ with K algebraic over F (see [9] Coro.16.6 for a proof).

Now let *D* be a division algebra finite dimensional over its center Z(D)=F, and *V* a Henselian valuation ring of *F*. Schilling ([12] P.53, Theorem 9) proved that the integral closure *V* in *D* forms a ring *B*. The ring *B* is a total valuation ring of *V* and by ([13], Theorem 1) and *B* is the unique extension *V* to *D*. Therefore *B* is an invariant valuation ring of *D* (i.e., $dBd^{-1}=B$ for any $d \in D^*$).

Theorem 3. 1. Let D be a division algebra admitting a total valuation ring extending V. Then the integral closure of V in D is the unique extremal V-order (and hence the unique semihereditary V-order) in D.

Proof: By ([14]: Lemma 2) *V* has only a finite number of extensions to *D*. If $B_1, ..., B_n$ are all the extensions of *V*, then B_i and B_j are conjugate for all i,j by ([14]: Theorem 2). Let $T=Int_D(V)$ be the integral closure of *V* in *D*. Then $T=\bigcap_{i=1}^{n} B_i$ by ([14]: Theorem 3). Let *R* be an extremal *V*-order.

Then $R \subseteq T$, because R is integral over V. But both R and $J(B_i)$ contain J(V). Hence for each i, $\frac{R}{(J(B_i) \cap R)}$ is finite dimensional over V/J(V). But one has the embedding $\frac{R}{(J(B_i) \cap R)} \rightarrow B_i/J(B_i)$ and $[B_i/J(B_i): V/J(V)] \leq [D:F] < \infty$ by ([14]: Lemma 3). It follows that $\frac{R}{(J(B_i) \cap R)}$ is division algebra, and hence $J(B_i) \cap R$ is a maximal ideal of R. Hence, $J(R) \subseteq J(B_i) \cap R$.

Let $x \in \bigcap_{i} J(B_i)$ and $a, b \in J(T)$. Then $1 - axb \in U(B_i)$ for all *i*, and thus $1 - axb \in U(T)$. Therefore $x \in J(T)$. Hence $J(R) \subseteq \bigcap_{i} J(B_i) \subseteq J(T)$. Since *R* is extremal, we must have R = T.

On the other hand, T is a Bezout V-order by ([7]: Theorem 3.4) and every such T is a semihereditary V-order in D.

Corollary 3. 2. Let V be a valuation ring of F, and D suppose admits and invariant valuation ring B extending V. Then B is the unique extremal (and hence the unique semihereditary) V-order in D.

Proof: Since the extensions of V to D are conjugate, B is the unique extension of V to D. So the corollary follows from Theorem 3.1.

In the rest of the section we assume V to be a Henselian valuation ring of F, and D be a finite dimensional division algebra over its center Z(D)=F.

Let B be the unique extension of V to D, and let β be the set of all nonzero B-submodules of D. Then β is totally ordered. For if I and J are two B-submodules of D such that $I \not\subset J$, there exists an $a \in I$ -J. Then if $b \in J$, then $ab^{-1} \notin B$; thus $ba^{-1} \in B$, and hence $b \in Ba \subset I \Longrightarrow J \subseteq I$.

Definition 3. 3. Let *I* be a *B*-submodule of *D*. We define Γ^{I} to be $\{d \in D: dI \subseteq B\}$.

Definition 3. 4. Let
$$Q = M_n(D)$$
. An order $R = \begin{bmatrix} B, B_{1,2}, \dots, B_{1,n} \\ B_{2,1}, B, B_{2,3}, \dots, B_{2,n} \\ \dots, \dots, \dots, B_{n,n}, B_{n,2}, \dots, B_{n,n-1}, B \end{bmatrix}$ is said to be of *type* Φ H if

i) $B_{i,j} \in \beta$.

ii) If $d \notin B_{i,j}$, then $d^{-l} \in B_{j,i}$ for all $d \neq 0 \in D$. (Morandi's condition). iii) $B_{r,j}B_{j,s} \subseteq B_{r,s}$, for all $1 \le r, s, j \le n$.

We denote R by $(B_{i,j})$

Lemma 3. 5. (a) *R* is a ring and RF=RD=Q, i.e., *R* is an order. (b), $B_{i,j} \subseteq B \subseteq B_{j,i}$ or $B_{j,i} \subseteq B \subseteq B_{i,j}$ for all *i*,*j*.

Proof: (a) by (iii) *R* is a ring, because $B_{i,j} \neq 0$ for all *i*,*j*, therefore RF = RD = Q. For (b) since β is totally ordered, we have $B_{i,j} \subset B$ or $B \subseteq B_{i,j}$. If $B_{i,j} \subset B$, then $1 \notin B_{i,j}$, and hence, $1 \in B_{ij}$ by (ii). Thus $B = BI \subseteq B_{j,i}$, and so $B_{i,j} \subseteq B \subseteq B_{j,i}$.

If $B \subseteq B_{i,j}$, then $B_{i,j}B_{j,i} \subseteq B_{i,i} = B \Longrightarrow B_{j,i} = B_{j,i}l \subseteq B$, and hence $B_{j,i} \subseteq B \subseteq B_{i,j}$.

Lemma 3. 6. (Morandi) Let $Q=M_n(D)$ and $R=(B_{i,j})$. Then xR is projective as a R-module for all $x \in Q$.

Proof: We first suppose *xR* is projective for all $x \in e_{i,i}R$ for any *i*. We prove *xR* is projective for any *x* (where $e_{i,i}$ is matrix $n \times n$ with 1 in (i,i) entry and zero in the others). We do this by showing that e_ixR is projective, where $e_i=e_{1,1}+e_{2,2}+\ldots+e_{i,i}$. We use induction on i, the case i=1 is true by assumption (because if $x=(d_{i,j})$ then $xe_{1,1}R=(xe_{1,1})R$, and since $xe_{1,1}=d_{1,1}e_{1,1}$ and $d_{1,1}\in B_{i,j}$ or $d_{1,1}\in B_{j,i}$, therefore $xe_{1,1}\in e_{1,1}R$). So suppose $e_{i-1}xR$ is projective for all $x \in e_{ii}R$. We have the exact sequence of *R*-modules.

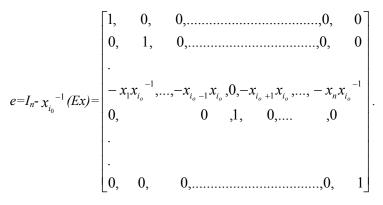
 $0 \rightarrow e_i x R \cap (1 - e_{i-1}) R \rightarrow e_i x R \rightarrow e_{i-1} e_i x R \rightarrow 0$, where $1 = e_{1,1} + e_{2,2} + \dots + e_{n,-n} = e_n$. Now $e_{i-1} e_i x R = e_{i-1} x R$ and $e_i x R \cap (1 - e_{i-1}) R \subseteq e_i R \cap (1 - e_{i-1}) R = e_i R$ (because $1 - e_{i-1} = e_{i,1} + \dots + e_{n,n}$). Since $e_{i-1} x R$ is projective by the induction of the sequence splits. So $e_i x R \cong e_{i-1} x R \oplus (e_i x R \cap (1 - e_{i-1}) R)$.

Thus $e_{i-1}xR \oplus (e_ixR \cap (1-e_{i-1})R)$ is a cyclic right *R*-module and is a submodule of $e_{i,i}R$. Hence it is projective by assumption. Therefore we obtain e_ixR as a sum of two projective modules, thus it is projective. Thus by induction, e_ixR is projective for all *i*. Setting i=n, then $e_nxR=xR$ is a projective.

We now show that *xR* is projective for all $x \in e_{ii}M_n(D)$. Recall that *xR* is projective if and only if the annihilator $ann_R(x) = eR$ for some idempotent $e \in R$. This holds for $x \in Q$, not just for $x \in R$ as RF=Q and $ann_R(x) = ann_R(x \alpha)$ for any $\alpha \in F^*$.

Say $x = \sum_{j=1}^{i} x_j e_{i,j} \in e_{i,i} M_n(D)$ with $x_j \in D$. If x=0 then $ann_R(x) = R$ and we are done. Also, by Lemma 2.5 of [7] there is an i_o with $x_j x_{i_0}^{-1} \in B_{i_0,j}$ for all j, and so $x_{i_0}^{-1} x_j \in B_{i_0,j}$ for all

j. Let *e* be the permutation matrix which switches the *i*_oth and *i* th rows. Let



We have $e \in R$ since $x_{j}x_{i_{o}}^{-1} \in B_{i_{o}j}$. Also $xe = xI_{n} - xx_{i_{0}}^{-1}(Ex) = x - x = 0$ $xe = xI_{n} - xx_{i_{o}}^{-1}(Ex) = x - x = 0$, and so $e \in ann_{R}(x)$.

Let $a \in ann_R(x)$, then $ea = (I_n \cdot x_{i_0}^{-1}(Ex))a = a \cdot 0 = a$. Thus $e^2 = e$, and $ann_R(x) = eR$ is generated by an idempotent. Therefore xR is projective.

Theorem 3. 7. (J.S. KAUTA) *R* is a semihereditary *V*-order if and only if *R* is conjugate to an order of type Φ H. Therefore orders of type Φ H are extremal. (See Theorem 4.7 [7] and 39.14 (ii) [10] for special cases of this theorem.)

Proof: Suppose *R* is a semihereditary *V*-order. Then *R* contains a full set of primitive orthogonal idempotents. After a conjugation, if necessary, we may assume all the standard idempotents $e_{1,l}, e_{2,2}, ..., e_n$ $_n \in R$. Since *R* is integral over *V*, $e_{i,i}Re_{i,i}$ is integral over *V*. Also $e_{i,i}Re_{i,i}F=e_{i,i}RFe_{i,i}=e_{i,i}De_{i,i}=D$, therefore $e_{i,i}Re_{i,i}$ is a *V*-order; indeed, $e_{i,i}Re_{i,i}$ is a semihereditary *V*-order in *D*. Hence $e_{i,i}Re_{i,i}=B$ (because *B* is an invariant valuation ring extending *V*; therefore *B* is the unique extremal and hence the unique semihereditary *V*-order in *D*). Set $B_{i,j}=e_{i,i}Re_{j,j}$. Then $B_{i,j}\neq 0$, since *R* is an order in *Q*. Since $B \subseteq R$, we have $Be_{i,i}Re_{j,j}=e_{i,i}RRe_{j,j}=e_{i,i}R e_{j,j}B$, therefore $BB_{i,j}=B_{i,j}B=B_{i,j}$ and so $B_{i,j}$ is a *B*-bisubmodule of *D*. Now *R* is a ring and $Re_{j,j}e_{j,j}R=Re_{j,j}R\subseteq R$; so $B_{k,j}B_{j,l}\subseteq B_{k,l}$, where $B_{k,j}=e_{k,k}Re_{j,j}$ and $B_{j,l}=e_{j,j}Re_{l,l}$ holds. We only have to show Morandi's condition holds.

Suppose $\exists i_0, j_0$ and an $0 \neq \alpha \in D$ such that $\alpha \notin B_{i_0 j_0}$ and $\alpha^{-1} \notin B_{j_0, i_0}$. Since *B* is an invariant valuation ring, $i_0 \neq j_0$. Let $\Gamma = (e_{i_0, i_0} + e_{j_0, j_0}) \mathbb{R}(e_{i_0, i_0} + e_{j_0, j_0}) \cong \begin{bmatrix} B & B_{j_0, i_0} \\ B_{i_0, j_0} B \end{bmatrix}$. Then Γ is a sumihore ditervention of M(D) by [15]. Corrected respectively.

semihereditary order in $M_2(D)$ by [15]. Consider $x = \begin{bmatrix} \alpha & 1 \\ 0 & 0 \end{bmatrix} \in M_2(D)$.

Then $\operatorname{ann}_{\Gamma}(\mathbf{x}) = \begin{cases} t & r \\ -\alpha t & -\alpha r \end{cases}$ such that $t, \alpha r \in B, r \in B_{j_0, i_0}, \alpha t \in B_{i_0, j_0} \end{cases}$ (see the proof of Theorem 1.5 [11]). We have $\alpha t \in B_{i_0, j_0}$ and $t \in B$. But $\alpha \notin B_{i_0, j_0}$. So $t \in J(B)$. Since Γ is a semihereditary order in $M_2(D)$, $\operatorname{ann}_{\Gamma}(\mathbf{x})$ is generated by an idempotent $\begin{bmatrix} a & b \\ -\alpha a & -\alpha b \end{bmatrix} = \begin{bmatrix} a & b \\ -\alpha a & -\alpha b \end{bmatrix}^2$. So $1 = a - b\alpha$.

But $a \in J(B)$, so $b\alpha$ is a unit in *B*. Hence αb is also a unit in B. But $b \in B_{j_0, i_0} \supseteq \alpha bB = B$ since αb is a unit in *B*, hence $\alpha^{-1} \in B_{j_0, i_0}$, a contradiction, and so we have Morandi's condition.

On the other hand, let $R = (B_{i,j})$ be of type Φ H. We want to show that R is a semihereditary Vorder in $Q=M_2$ (D). By Lemma 2.5, R is a ring with the identity element of Q, and FR=Q. By the proof of ([7], Proposition 4.3), R is a V-order. But $M_r(R)$ is of type Φ H whenever R is. Hence Lemma 2.6 shows that for each r, every principal right ideal of $M_r(R)$ is projective. So R is right Semihereditary by [12]. Similarly, R is left semihereditary and hence it is semihereditary.

Proposition 3. 8. Every Bezout V-order is a semihereditary V-order, but the converse does not hold.

Proof: Suppose

$$R = \begin{bmatrix} B \supset J(B_{1,2}) \supset, \dots, \supset J(B_{1,n}) \\ \cap & \cap \\ B_{2,1} \supset B \supset, \dots, \supset J(B_{2,n}) \\ \cap & \cap &, \dots, \\ \cap, \dots, & \cap \\ B_{n,1} \supset B_{n,2} \supset, \dots, & \supset B \end{bmatrix}$$

where $B_{i,j}$ is an overring *B* for all i,j and $B_{i,j} \neq B$ for some i,j. By Theorem 2.7 and Theorem 2.6 of [11] *R* is semihereditary maximal V-order. But $B_{n,l} \supset B$ by assumption. Let $W=B_{n,l} \cap F$, then $RW \subset M_n(B_{n,l})$, since $WB \subset WB_{n,l}=B_{n,l}$. If *R* is a Bezout, then $R \cong M_n(B)$ by Corollary 3.5 of [7]. But *RW* would be a Dubrovin valuation ring over *W* and $RW \subset M_n(B_{n,l})$. Therefore $RW=M_n(B_{n,l})$, a contradiction.

If *R* is a Bezout *V*-order, by Proposition 1.8 and Example 1.15 of [16], then *R* is semihereditary and also more examples of semihereditary orders can be found in [17].

Therefore we have the following diagram in general.

Integral Dubrovin valuation rings
$$\Rightarrow$$
 Bezout V-orders \Rightarrow Maximal V-orders $\downarrow \downarrow$

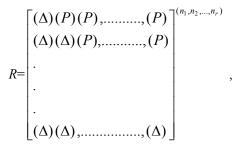
(if V is Henselian) type $\Phi H \Leftrightarrow$ semihereditary V-orders \Rightarrow Extremal V-orders.

4. SEMIHEREDITARY ORDERS INSIDE BEZOUT ORDERS

Let V be a discrete valuation ring of F and Q a central simple F-algebra. By Wedderburn structure theorem $Q \cong M_n(D)$, where D is a division algebra with center F.

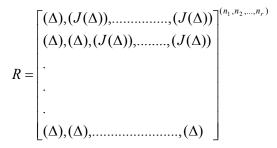
By (10-4) Corollary of [10] every *V*-order in *Q* is contained in a maximal *V*-order in *Q*. If *V* be complete valuation ring, then the integral closure *V* in *D*, i.e., $\Delta = \text{int}_D(D)$ is the unique maximal *V*-order in *D*. let *R* be an *V*-order in *Q*. Then by Theorem (39-14) of [10], *R* is a hereditary order if *R* is an Extremal *V*-order.

In this case *R* is precisely,



where $P = J(\Delta)$ and $n_1+n_2+\ldots+n_r=n$.

Now we assume V is a Henselian valuation ring of F, not necessarily discrete. Let R be an Extremal V-order inside an integral Dubrovin valuation ring of B with $B \cap F = V$. We know the integral closure V in D i.e., $\Delta = \operatorname{int}_D(V)$ is a unique maximal V-order in D, and so $B \cong M_n(\Delta)$ is a Dubrovin valuation ring and we can consider $R \subset M_n(\Delta)$. By (Proposition [1]) R is semihereditary. So in this case we have



where $n_1 + n_2 + \ldots + n_r = n$ and R=B if $J(R) = J(\Delta)R$ if $J^{-1}(\Delta) = \Delta$.

If V isn't Henselian, then $B_h = B \otimes_v V_h$ is a Dubrovin valuation ring. Therefore $B/J(B) \cong B_h/J(B_h)$

 $J(B) \otimes_{v} V_{h} \subseteq R \otimes_{v} V_{h} = R_{h}$. Hence we have $\bigcup \qquad \bigcup \qquad$, thus R_{h} is semihereditary $R/J(B) \cong R_{h}/J(B_{h})$

and so R is semihereditary by ([11] Proposition 3.3). Thus inside an integral Dubrovin valuation ring, extremal *V*-orders are precisely the semihereditary *V*-orders.

Corollary 4. 1. Let R be an extremal V-order inside a Dubrovin valuation ring of B, and if $R \subseteq R' \subseteq B$, then R' is extremal V-order in B.

Proof: Since *R* is semihereditary, R' is a semihereditary *V*-order (by Lemma 4.10 of [7]), and so R' is an extremal V-order.

Corollary 4. 2. Let *R* be an extremal *V*-order inside an integral Dubrovin valuation ring with J(B) a non-principal ideal of *B*. Then R=B if J(R)=J(V)R.

Now the generalization of Proposition 2.1 of [1] is given.

Theorem 4. 3. Let R be an Extremal *V*-order sitting inside a Bezout *V*-order *B*. Then R is a semihereditary *V*-order.

Proof: By induction on [Q: F]. If [Q: F]=1, then B is an integral Dubrovin valuation ring and so R is a semihereditary.

Now we assume B is not a Dubrovin valuation ring. Then there exists an integral Dubrovin valuation ring T of Q, with center $W \supset V$ such that

i)
$$T \supset B$$
 ii) $J(T) \subseteq J(B) \subseteq J(R)$ iii) $\tilde{R} = R/J(T), \tilde{B} = B/J(T)$

are V/J(W)-orders in $\overline{T} = T/J(T)$, and $(iv)[\overline{T} : Z(\overline{T})] < [Q:F]$. By induction, \widetilde{R} is semihereditary and so R is semihereditary (by Lemma 4.11 of [7]).

5. THE HENSELIZATION

We now consider V to be a valuation ring of a field F of arbitrary rank which need not be Henselian. One aim of this section is to examine the effect of Henselization on Bezout and maximal semihereditary *V*-orders.

Let (V_h, F_h) be the Henselization of (V, F) (see [9] for definition).

Let Q be a central simple F-algebra, then $Q \otimes_F F_h$ is a central simple F_h -algebra and by ([10] Corollary 7.8) and also by Wedderburn's Theorem $Q \otimes_F F_h \cong M_n(D)$ for some n, where D is a division algebra finite dimension over F_h .

Let R be a V-order in Q. Clearly if $R \otimes_V V_h$ is a maximal V_h -order, then R is a maximal V-order. Thus the difficulty lies in proving the converse.

If V be a discrete valuation ring, then a V-order R of Q is a maximal order if R is a Dubrovin valuation ring ([6]: Example 1.15). Therefore, in this case $R \otimes_v V_h$ is a Dubrovin valuation ring of $Q \otimes_F F_h$, which is integral over V_h. Thus $R \otimes_V V_h$ is a maximal V_h-order.

On the other hand, there exists a Bezout maximal V-order R such that $R \otimes_V V_h$ is a semihereditary maximal order, but is not Bezout, (see [7] Example 4.14).

P. Morandi [7] mentioned two questions.

(1) Suppose R is a maximal *V*-order in a central simple *F*-algebra *Q*. Let (F_h, V_h) be the Henselization of (V, F). Then $R \otimes_V V_h$ is a V_h -order in $Q \otimes_F F_h$. Is $R \otimes_V V_h$ a maximal order?

(2) If *R* is semihereditary, then $R \otimes_V V_h$ is a V_h -order in $Q \otimes_F F_h$. Is $R \otimes_V V_h$ semihereditary? Now we assume that B is an invariant valuation ring extension of V_h to D and $R \cong (B_{i,j})$, an order of type Φ H in $Q \otimes_F F_h$.

Theorem 5. 1. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T is a Bezout *V*-order in Q, then $T \otimes_V V_h$ is conjugate to an order type ΦH such that $B_{i,j}{}^{-l} = B_{j,i}$ for all i,j and $J(T) \otimes_V V_h = J(B)(T \otimes_V V_h)$.

Moreover, $T \otimes_V V_h$ is a Dubrovin valuation ring if T is a Dubrovin valuation ring. In this case $T \otimes_V V_h$ is conjugate to $M_n(B)$.

Proof: By Theorem17 of [18], $T \otimes_V V_h$ is a semihereditary maximal V_h -order in $Q \otimes_F F_h$. Therefore $T \otimes_V V_h$ is conjugate to an order type Φ H. And by Theorem 2.7 of [11] $B_{i,j}^{-1} = B_{j,i}$ for all i,j and $J(T) \otimes_V V_h = J(B)(T \otimes_V V_h)$. Also, $T \otimes_V V_h$ is Bezout if T is Dubrovin valuation ring (see Theorem 17 in [18]). Since V_h is Henselian, $T \otimes_V V_h$ is a Dubrovin valuation ring, and so $T \otimes_V V_h$ is conjugate to $M_n(B)$.

J. S. Kauta ([11]: Theorem 3.4) proved that a V-order R is semihereditary if its Henselization $R \otimes_v V_h$ is a semihereditary. So the answer (2) is yes.

Theorem 5. 2. If *R* is a maximal *V*-order in a central simple *F*-algebra *Q*, then $R \otimes_v V_h$ is a maximal V_h -order in $Q \otimes_F F_h$ if one of the following conditions holds.

(1)R is a Bezout ring.

(2)R is a semihereditary ring.

(3)R is a finitely generated *V*-module.

(4) RankV=1

Proof: If *R* is a Bezout ring, then by Theorem 17 of [18] $R \otimes_{v} V_{h}$ is a maximal V_{h} -order.

And if R is a semihereditary ring, it follows from Theorem 1 of [19].

Now we suppose that *R* is a finitely generated V-module. Then *R* is contained in a Bezout *V*-order *T* by ([7], Prop.3). Since $[T/J(T):V/J(V)] < \infty$, there exists $t_1, ..., t_n \in T$ such that $T=t_1V+...+t_nV+J(T)$. But by ([11]: Prop. 1.4) $J(T) \subset R$ (since maximal orders are extremal). Hence *T* is a finitely generated Bezout *V*-order. By the maximality of *R*, we have T=R. Therefore *R* is a Bezout *V*-order.

(4) Let (V_h, F_h) be the Henselization of (V, F). Then $(V, F) \subseteq (V_h, F_h) \subseteq (V, F)$, where (V, F) is the complement of (V, F) with respect to the metric induced by the valuation corresponding of V. Hence V is dense in V_h and by (Proposition of [19]) we have $R \otimes_V V_h$ as a maximal V_h-order in $Q \otimes_F F_h$.

Let B be a unique extension valuation ring V_h to D, where $Q \otimes_F F_h \cong M_n(D)$ and $R=(B_{i,j})$ is order type ΦH . Then we have the following theorem.

Theorem 5. 3. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T is a maximal semihereditary *V*-order in Q, then $T \otimes_V V_h$ is conjugate to an order type ΦH such that $B_{i,j}$. ${}^{I}=B_{j,i}$ for all i,j.

Proof: By Theorem 5.2, (2) $T \otimes_V V_h$ is a semihereditary maximal V_h -order, and by Theorem 3.7 $T \otimes_V V_h$ is conjugate to an order $R = (B_{i,j})$. On the other hand, R is a semihereditary maximal order, and by Theorem 2.6 of [11] we have $B_{i,j} = B_{j,i}^{-1}$ for all i,j.

REFERENCES

- 1. Kauta, J. S. (1997). Integral semihereditary orders inside Bezout maximal orders. J. Algebra, 189, 253-272.
- 2. Dubrovin, N. I. (1982). Noncommutative valuation rings. *English trans. Trans. Moscow Math. Soc.*, 45, 273-287.
- Dubrovin, N. I. (1985). Noncommutative valuation rings in simple finite-dimensional algebras over a field. English trans. Math, USSR Sb., 51, 493-505.
- 4. Grater, J. (1992). The defektsatz for central simple algebras. Trans. Amer. Math. Soc., 330, 823-843.

- 5. Brungs, H. H. & Grater, J. (1990). Extensions of valuation rings in central simple. *Trans. Amer. Math. Soc.*, 317, 286-302.
- 6. Wadsworth, A. R. (1989). Dubrovin valuation rings and Henselization. Math. Ann., 283, 301-329.
- 7. Morandi, P. J. (1992). Maximal order over valuation ring. J. Algebra., 152, 313-341.
- 8. Grater, J. (1992). Prime PI-rings in which finitely generated right ideals are principal. *Forum. Math, 4*, 447-463.
- 9. Endler, O. (1972). Valuation theory. Springer.
- 10. Reiner, I. (1975). Maximal orders. Academic Press, Londan.
- 11. Kauta, J. S. (1997). Integral semihereditary orders, extermality, and Henselization. J. Algebra. 189, 226-252.
- 12. Schilling, O. F. G. (1950). The Theory of Valuation. Math. Surveys and Monographs Vol 4. Amer. Math. Soc. Providence.
- 13. Wadsworth, A. R. (1986). Extending valuations to finite dimensional division algebras. Pro. Amer. Math. Soc., 98, 20-22.
- 14. Brungs, H. H. & Grater, J. (1989). Valuation rings in finite dimensional division algebras. J. Algebra., 120, 90-99.
- 15. Sandomierski, F. L. (1969). A note on the global dimension of subrings. Proc. Amer. Math. Soc., 23, 478-480.
- 16. Alajbegovic, J. H. & Dubrovin, N. I. (1990). Noncommutative Prufer rings, J. Algebra. 135, 165-176.
- 17. Morandi, P. J. (1993). Noncommutative Prufer rings satisfying a polynomial identity. J. Algebra., 161, 623-640.
- 18. Haile, D. E., Morandi, P. J. & Wadsworth, A. R. (1995). Bezout orders and Henselization. J. Algebra., 173, 394-423.
- 19. Kauta, J. S. (1998). On semihereditary maximal orders. Bull. London. Math. Soc., 30, 251-257.

420