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Abstract – The aim of this paper is to study orders over a valuation ring V with arbitrary rank in a 
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1. INTRODUCTION 
 

In this paper, all rings are associative with a multiplicative unit and all modules are unitary. If A is a 
ring, J(A) will denote its Jacobson radical, U(A) its group of units, Z(A) its center, A* its set of 
nonzero divisors, and Mn(A) the ring of nn × matrices over A. The residue ring A/J(A) will be 
denoted by A . And Q denotes a simple artinian ring with finite dimension over its center Z(Q), while 
D denotes a division ring. 

In the second section we briefly discuss some of the ring theoretic properties and definitions. 
In the third section we will see that semihereditary V-orders are extremal V-orders and obtain a 

diagram of maximal V-orders when V is a Henselian valuation ring. 
In the fourth section we show that inside Bezout orders, extremal V-orders are precisely 

semihereditary, which is a generalization of Proposition 2.1 of [1]. 
In the last section we will examine the effect of Henselization on maximal and semihereditary 

orders. 
 

2. DEFINITION AND PRELIMINARIES 
 
In this paper F denotes a field and Q is a central simple F-Algebra, i.e., Q is a F-Algebra with 
[Q:F]<∞  and F=Z(Q). 

The most successful extension of the classical valuation theory on F to Q is the one introduced 
by Dubrovin in [2] and [3]. 
 
Definition 2. 1. A subring B of a central simple F-algebra Q is called a Dubrovin valuation ring in Q 
if 
(1) B has an ideal M such that B/M is a simple artinian ring and  
(2) For each q∈Q\B there exist b, a∈B such that bq, qa∈B\M. 
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The following properties of Dubrovin valuation rings were proved by Dubrovin in [2, 3]. 
i) The two sided ideals of B are totally ordered by inclusion, where two sided ideals are a B-

bimodule of Q. Therefore we have M=J(B) 
ii) Each finitely generated left (resp, right) ideal of B is principal. 
iii) (a) Let V be a valuation ring of F, then there exists a Dubrovin valuation ring of B in Q such that 

B∩ F=V, [2-4]. 
(b) If B, and B’ are two Dubrovin valuation rings of Q extending V, then B’=dBd-1 for some d∈Q* [5, 
6]. 

Therefore, for every valuation ring V of F=Z(Q), there is a unique (up to conjugate) associated 
Dubrovin valuation ring B of Q. It is reasonable to expect that B will carry much information about 
the arithmetic of Q in relation to V, (see [7] Theorem 3.4 and [8] Theorem 3.7). 
 
Definition 2. 2. Let Q be a finite-dimensional F-Algebra and V a ring with quotient field F. A subring 
R of Q is said to be an order in Q if RF=Q. If V=Z(R), then R is said to be a V-order if, in addition, R 
is integral over V. If R is maximal with respect to inclusion among V-order of Q, then R is said to be a 
maximal order over V.  
a) In the case V is a discrete valuation ring, then by ([9], 18.6 and 18.2) any V-order in a central 

simple F-algebra is a finite V-module, so for such V, Definition 2.2 agrees with the usual one, as 
in [10]. 

b) In this paper we assume V is a commutative valuation ring in F of arbitrary Krull-dimension. The 
integrality hypothesis in the above definition is used to guarantee the existence of maximal orders 
for any Q and V. But finitely generated maximal V-orders need not exist, (see [7] Proposition 2.3). 

c) Let V be a valuation ring of a field F, and Q a central simple F-Algebra. If B is an integral 
Dubrovin extension of V to Q (i.e., B is a Dubrovin valuation ring of Q such that B is integral over 
V and V=B∩ F) then B is a maximal V-order (by Example 2.2 [7]).  

 
Definition 2. 3. A ring R is said to be extremal if for every overring S such that J(R)⊆ J(S) we have 
S=R. If S is an overring of R, we say that R is extremal in S if R is extremal among all subrings of S. 
A V-order R is said to be an extremal V-order (or just extremal when the context is clear) if it is 
extremal among all V-orders in Q. 
  
Definition 2. 4. A ring R is said to right (resp left) Bezout if every finitely generated right (left) ideal 
is principal. It is called Bezout if it is both right and left Bezout.  

If V is a valuation ring, then there exists a Bezout V-order B in Q and each Bezout V-order is a 
maximal order by ([7] Theorem 3.4), and if B, and B’ are two Bezout V-orders, then B, and B’ are 
conjugate (by Theorem 6.12 [4]).  
 
Definition 2. 5. A ring R is said to be right semihereditary (resp right hereditary) if every finitely 
generated right ideal (resp every right ideal) is projective as a right R-module. A ring is said to be 
semihereditary (resp hereditary) if it is both left and right semihereditary (resp hereditary).  

a) If V be Dedekind domain with quotient field F and Q is a central simple F-Algebra, where 
Q≅ Mn(D) and D is a division ring with center F, then R is a hereditary V-order if and only if R is an 
extremal (see 39.14 [10]).  

b) Let V be a valuation ring of F=Z(Q) and Q a central simple F-Algebra. J.S. Kauta proved that 
every semihereditary V-Order is extremal (see Theorem 1.5 [11]), but the converse is not true. If F is 



Extremal orders inside simple artinian rings 
 

Autumn 2005                                                  Iranian Journal of Science & Technology, Trans. A, Volume 29, Number A3 

413

a field, Q=M2(F), Vn is a discrete valuation ring of dimension n, and R is a maximal Vn-order in Q, 
then there are three possibilities for the isomorphism class of R. 
(1) R≅ M2(Vm), where Vm is the overring of Vn of dimension m. In this case R is a Bezout. 

(2) R≅












mp

pm

VV

VJV )(
, where m<p. In this case R is semihereditary, but not Bezout. 

(3) R is primary (i.e., J(R) is a maximal ideal of R) but not Bezout (see [7], Theorem 5.7). Let R be 
maximal V-order in M2(F) which is primary, but not Bezout. Such an order cannot be semihereditary, 
since any primary semihereditary order is a Dubrovin valuation ring ([3]: Theorem 4), and hence 
Bezout. 
 

3. MAXIMAL ORDERS OVER HENSELIAN VALUATION RINGS 
 
In this section D always means a finite dimensional algebra with center F. A subring B of D is said to 
be a total valuation ring in D if d∈B or d-1∈B for all nonzero d∈D. 

We recall that a valuation ring V in a field F is Henselian when Hensel’s Lemma holds for V, i.e., 
for every monic polynomial f∈V[x], if its image ][xVf ∈ , where V =V/J(V) has a factorization 

hgf ~~= on V [x] with hg ~,~ monic and gcd )~,~( hg =1, then there exist monic ][, xVhg ∈  
with hhandggghf ~~, === , where g and h are images g and h respectively. 

There are several other equivalent characterizations of the Henselian valuation ring, but the most 
relevant here is the following. 

A valuation ring V in a field F is Henselian if V has a unique extension to each field F⊂K with 
K algebraic over F (see [9] Coro.16.6 for a proof).  

Now let D be a division algebra finite dimensional over its center Z(D)=F, and V a Henselian 
valuation ring of F. Schilling ([12] P.53, Theorem 9) proved that the integral closure V in D forms a 
ring B. The ring B is a total valuation ring of V and by ([13], Theorem 1) and B is the unique 
extension V to D. Therefore B is an invariant valuation ring of D (i.e., dBd-1=B for any d∈D*). 
 
Theorem 3. 1. Let D be a division algebra admitting a total valuation ring extending V. Then the 
integral closure of V in D is the unique extremal V-order (and hence the unique semihereditary V-
order) in D.  
 

Proof: By ([14]: Lemma 2) V has only a finite number of extensions to D. If B1,…,Bn are all the 

extensions of V, then Bi and Bj are conjugate for all i,j by ([14]: Theorem 2). Let T=IntD(V) be the 

integral closure of V in D. Then T=∩
n

i
iB

1=

by ([14]: Theorem 3). Let R be an extremal V-order. 

Then R⊆T, because R is integral over V. But both R and J(Bi) contain J(V). Hence for each i, 

))(( RBJ
R

i ∩
is finite dimensional over V/J(V). But one has the embedding →))(( RBJ

R
i ∩

Bi/J(Bi) 

and [Bi/J(Bi): V/J(V)]≤ [D:F]<∞  by ([14]: Lemma 3). It follows that ))(( RBJ
R

i ∩
is division 

algebra, and hence J(Bi)∩ R is a maximal ideal of R. Hence, J(R)⊆ J(Bi)∩ R. 

Let x ∩
i

iBJ )(∈ and a,b∈J(T). Then 1-axb∈U(Bi) for all i, and thus 1-axb∈U(T). Therefore 

x∈J(T). Hence J(R) ∩
i

iBJ ⊆⊆ )( J(T). Since R is extremal, we must have R=T. 
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On the other hand, T is a Bezout V-order by ([7]: Theorem 3.4) and every such T is a 

semihereditary V-order in D. 
 
Corollary 3. 2. Let V be a valuation ring of F, and D suppose admits and invariant valuation ring B 
extending V. Then B is the unique extremal (and hence the unique semihereditary) V-order in D. 
 
Proof: Since the extensions of V to D are conjugate, B is the unique extension of V to D. So the 
corollary follows from Theorem 3.1. 

In the rest of the section we assume V to be a Henselian valuation ring of F, and D be a finite 
dimensional division algebra over its center Z(D)=F. 

Let B be the unique extension of V to D, and let β be the set of all nonzero B-submodules of D. 
Thenβ  is totally ordered. For if I and J are two B-submodules of D such that I⊄ J, there exists an 
a∈I-J. Then if b∈J, then ab-1∉B; thus ba-1∈B, and hence b∈Ba⊂ I⇒ J⊆ I. 
 
Definition 3. 3. Let I be a B-submodule of D. We define I-1 to be {d∈D: dI⊆B}. 
 

Definition 3. 4. Let Q=Mn(D). An order R=
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 is said to be of type ΦH if 

 
i) Bi,j∈ β . 
ii) If d∉Bi,j, then d-1∈Bj,i for all d≠ 0∈D. (Morandi’s condition). 
iii) Br,jBj,s⊆Br,s, for all 1≤ r,s,j≤ n. 
We denote R by (Bi,j) 

 
Lemma 3. 5. (a) R is a ring and RF=RD=Q, i.e., R is an order. 
(b), Bi,j⊆B⊆Bj,i or Bj,i⊆B⊆Bi,j for all i,j. 
 
Proof: (a) by (iii) R is a ring, because Bi,j≠ 0 for all i,j, therefore RF=RD=Q. 
For (b) since β is totally ordered, we have Bi,j ⊂B or B⊆Bi,j. If Bi,j⊂B, then 1∉Bi,j, and hence, 1∈Bij 
by (ii). Thus B=B1⊆  Bj,i, and so Bi,j⊆B⊆Bj,i. 

If B⊆Bi,j, then Bi,jBj,i⊆Bi,i=B⇒Bj,i= Bj,i1⊆B, and hence Bj,i⊆B⊆Bi,j. 
 

Lemma 3. 6. (Morandi) Let Q=Mn(D) and R=(Bi,j). Then xR is projective as a R-module for all x∈Q. 
 
Proof: We first suppose xR is projective for all x∈ei,iR for any i. We prove xR is projective for any x 
(where ei,i is matrix n×n with 1 in (i,i) entry and zero in the others). We do this by showing that eixR 
is projective, where ei=e1,1+e2,2+…+ei,i. We use induction on i, the case i=1 is true by assumption 
(because if x=(di,j) then xe1,1R=(xe1,1)R, and since xe1,1=d1,1e1,1 and d1,1∈Bi,j or d1,1∈Bj,i, therefore 
xe1,1∈e1,1R). So suppose ei-1xR is projective for all x∈eiiR. We have the exact sequence of R-modules. 
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0→ eixR∩ (1-ei-1)R→ eixR→ ei-1eixR→0, where 1=e1,1+e2,2+…+en, n=en. Now ei-1eixR=ei-1xR 
and eixR∩ (1-ei-1)R⊆ eiR∩ (1-ei-1)R=eiR (because 1-ei-1=ei,i+…+en,n). Since ei-1xR is projective by the 
induction of the sequence splits. So eixR≅ ei-1xR⊕ (eixR∩ (1-ei-1)R). 

Thus ei-1xR ⊕ (eixR ∩ (1-ei-1)R) is a cyclic right R-module and is a submodule of ei,iR. Hence it 
is projective by assumption. Therefore we obtain eixR as a sum of two projective modules, thus it is 
projective. Thus by induction, eixR is projective for all i. Setting i=n, then enxR=xR is a projective.  

We now show that xR is projective for all x∈eiiMn(D). Recall that xR is projective if and only if 
the annihilator annR(x)=eR for some idempotent e∈R. This holds for x∈Q, not just for x∈R as 
RF=Q and annR(x)=annR(xα ) for anyα ∈F*. 

Say x=∑
=

i

j
jijex

1
, ∈ei,iMn(D) with xj∈D. If x=0 then annR(x)=R and we are done. 

Also, by Lemma 2.5 of [7] there is an io with jiij Bxx ,
1

00
∈− for all j, and so jiji Bxx ,

1
00

∈− for all 

j. Let e be the permutation matrix which switches the ioth and i th rows. Let 
 

e=In- 1
0

−
ix (Ex)=
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We have e∈R since xjx

oi
-1∈B

oi j. Also 0)(1
0

=−=−= − xxExxxxIxe in  xe=xIn-xx-1
oi
(Ex)=x-

x=0, and so e∈annR(x). 
Let a∈annR(x), then ea=(In-

1
0

−
ix (Ex))a=a-0=a. Thus e2=e, and annR(x)=eR is generated by an 

idempotent. Therefore xR is projective. 
 
Theorem 3. 7. (J.S. KAUTA) R is a semihereditary V-order if and only if R is conjugate to an order 
of typeΦH. Therefore orders of type ΦH are extremal. (See Theorem 4.7 [7] and 39.14 (ii) [10] for 
special cases of this theorem.) 
 
Proof: Suppose R is a semihereditary V-order. Then R contains a full set of primitive orthogonal 
idempotents. After a conjugation, if necessary, we may assume all the standard idempotents 
e1,1,e2,2,…,en, n∈R. Since R is integral over V, ei,iRei,i is integral over V. Also 
ei,iRei,iF=ei,iRFei,i=ei,iDei,i=D, therefore ei,iRei,i is a V-order; indeed, ei,iRei,i is a semihereditary V-order 
in D. Hence ei,iRei,i=B (because B is an invariant valuation ring extending V; therefore B is the unique 
extremal and hence the unique semihereditary V-order in D). Set Bi,j=ei,iRej,j. Then Bi,j≠ 0, since R is 
an order in Q. Since B⊆R, we have Bei,iRej,j=ei,iBRej,j=ei,iR ej,j=ei,iR ej,jB, therefore BBi,j=Bi,jB=Bi,j 
and so Bi,j is a B-bisubmodule of D. Now R is a ring and Rej,jejjR=Rej,jR⊆R; so Bk,jBj,l⊆Bk,l, where 
Bk,j=ek,kRej,j and Bj,l=ej,jRel,l holds. We only have to show Morandi's condition holds. 
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Suppose 00 , ji∃  and an 0 ∈≠ α D such that
00 jiB∉α and 

00 ,
1

ijB∉−α . Since B is an invariant 

valuation ring, i0≠ j0. Let Γ = (
0000 ,, jjii ee + )R(

0000 ,, jjii ee + )
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. Then Γ  is a 

semihereditary order in M2(D) by [15]. Consider x= 
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0000 ,, ,,, jiij BtBrBrt ∈∈∈ αα  (see the proof of 

Theorem 1.5 [11]). We have 
00 , jiBt∈α and Bt ∈ . But 

00 , jiB∉α . So ).(BJt ∈ Since Γ is a 

semihereditary order in M2(D), ann Γ (x) is generated by an idempotent 
2
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So 1=a- αb . 

But )(BJa∈ , so αb  is a unit in B. Hence bα is also a unit in B. But BbBBb ij =⊇∈ α
00 ,  

since bα is a unit in B, hence 
00 ,

1
ijB∈−α , a contradiction, and so we have Morandi’s condition. 

On the other hand, let )( , jiBR =  be of type ΦΗ .We want to show that R is a semihereditary V-
order in Q=M2 (D). By Lemma 2.5, R is a ring with the identity element of Q, and FR=Q. By the 
proof of ([7], Proposition 4.3), R is a V-order. But Mr(R) is of type ΦΗ  whenever R is. Hence 
Lemma 2.6 shows that for each r, every principal right ideal of Mr(R) is projective. So R is right 
Semihereditary by [12]. Similarly, R is left semihereditary and hence it is semihereditary.  
 
Proposition 3. 8. Every Bezout V-order is a semihereditary V-order, but the converse does not hold. 
 
Proof: Suppose 
 

R=
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where Bi,j is an overring B for all i,j and Bi,j≠ B for some i,j. By Theorem 2.7 and Theorem 2.6 of [11] 
R is semihereditary maximal V-order. But Bn,1⊃ B by assumption. Let W=Bn,1∩ F, then 
RW⊂Mn(Bn,1), since WB⊂WBn,1=Bn,1. If R is a Bezout, then R≅ Mn(B) by Corollary 3.5 of [7]. But 
RW would be a Dubrovin valuation ring over W and RW⊂Mn(Bn,1). Therefore RW=Mn(Bn,1), a 
contradiction.  

If R is a Bezout V-order, by Proposition 1.8 and Example 1.15 of [16], then R is semihereditary 
and also more examples of semihereditary orders can be found in [17]. 

Therefore we have the following diagram in general. 
Integral Dubrovin valuation rings⇒Bezout V-orders⇒Maximal V-orders 

                                                            ⇓                                        ⇓  
(if V is Henselian) type ΦH ⇔ semihereditary V-orders⇒Extremal V-orders. 
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4. SEMIHEREDITARY ORDERS INSIDE BEZOUT ORDERS 
 
Let V be a discrete valuation ring of F and Q a central simple F-algebra. By Wedderburn structure 
theorem Q≅ Mn(D), where D is a division algebra with center F. 

By (10-4) Corollary of [10] every V-order in Q is contained in a maximal V-order in Q. If V be 
complete valuation ring, then the integral closure V in D, i.e., )(int DD=∆ is the unique maximal V-
order in D. let R be an V-order in Q. Then by Theorem (39-14) of [10], R is a hereditary order if R is 
an Extremal V-order. 

In this case R is precisely, 
 

R=

),...,,( 21
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)(.,,.........)()()( rnnn
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∆∆∆

∆∆
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where )(∆= JP and n1+n2+…+nr=n. 

Now we assume V is a Henselian valuation ring of F, not necessarily discrete. Let R be an 
Extremal V-order inside an integral Dubrovin valuation ring of B with .VFB =∩ We know the 
integral closure V in D i.e., )(int VD=∆ is a unique maximal V-order in D, and so )(∆≅ nMB is a 
Dubrovin valuation ring and we can consider )(∆⊂ nMR . By (Proposition [1]) R is semihereditary. 
So in this case we have 
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where nnnn r =+++ ...21  and R=B if RJRJ )()( ∆= if ∆=∆− )(1J . 

If V isn't Henselian, then hvh VBB ⊗= is a Dubrovin valuation ring. Therefore 

.)( hhvhv RVRVBJ =⊗⊆⊗  Hence we have 
)(/)(/

)(/)(/

hh

hh

BJRBJR

BJBBJB

≅

≅
∪∪ , thus Rh is semihereditary 

and so R is semihereditary by ([11] Proposition 3.3). Thus inside an integral Dubrovin valuation ring, 
extremal V-orders are precisely the semihereditary V-orders. 

 
Corollary 4. 1. Let R be an extremal V-order inside a Dubrovin valuation ring of B, and if 

BRR ⊆′⊆ , then R′ is extremal V-order in B. 
 
Proof: Since R is semihereditary, R′ is a semihereditary V-order (by Lemma 4.10 of [7]), and so R′ is 
an extremal V-order. 
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Corollary 4. 2. Let R be an extremal V-order inside an integral Dubrovin valuation ring with )(BJ a 
non-principal ideal of B. Then R=B if J(R)=J(V)R. 

Now the generalization of Proposition 2.1 of [1] is given. 
 
Theorem 4. 3. Let R be an Extremal V-order sitting inside a Bezout V-order B.Then R is a 
semihereditary V-order. 
 
Proof: By induction on [Q: F]. If [Q: F]=1, then B is an integral Dubrovin valuation ring and so R is 
a semihereditary. 

Now we assume B is not a Dubrovin valuation ring. Then there exists an integral Dubrovin 
valuation ring T of Q, with center VW ⊃ such that 

 
i)    ) ( ) ( ) ( )   ) / ( ), / ( )T B ii J T J B J R iii R R J T B B J T⊃ ⊆ ⊆ = =� �  

 
are )(/ WJV -orders in )(/ TJTT = , and ].:[)](:[)( FQTZTiv <  By induction, R~  is 
semihereditary and so R is semihereditary (by Lemma 4.11 of [7]). 
 

5. THE HENSELIZATION 
 

We now consider V to be a valuation ring of a field F of arbitrary rank which need not be Henselian. 
One aim of this section is to examine the effect of Henselization on Bezout and maximal 
semihereditary V-orders.  
Let (Vh,Fh ) be the Henselization of (V,F) (see [9] for definition). 

Let Q be a central simple F-algebra, then Q hF F⊗ is a central simple Fh-algebra and by ([10] 
Corollary 7.8) and also by Wedderburn's Theorem )(DMFQ nhF ≅⊗  for some n, where D is a 
division algebra finite dimension over Fh. 

Let R be a V-order in Q. Clearly if hV VR ⊗ is a maximal Vh-order, then R is a maximal V-
order. Thus the difficulty lies in proving the converse. 

If V be a discrete valuation ring, then a V-order R of Q is a maximal order if R is a Dubrovin 
valuation ring ([6]: Example 1.15). Therefore, in this case hv VR ⊗ is a Dubrovin valuation ring of 

hF FQ⊗ , which is integral over Vh. Thus hV VR ⊗ is a maximal Vh-order. 
On the other hand, there exists a Bezout maximal V-order R such that hV VR ⊗ is a 

semihereditary maximal order, but is not Bezout, (see [7] Example 4.14). 
P. Morandi [7] mentioned two questions. 

(1) Suppose R is a maximal V-order in a central simple F-algebra Q. Let (Fh,Vh) be the Henselization 
of (V,F).Then hV VR ⊗  is a Vh-order in hF FQ⊗ . Is hV VR ⊗ a maximal order? 

(2) If R is semihereditary, then hV VR ⊗ is a Vh-order in hF FQ⊗ . Is hV VR ⊗ semihereditary? 
Now we assume that B is an invariant valuation ring extension of Vh to D and )( , jiBR ≅ , an order of 
type ΦΗ  in .hF FQ⊗  
 
Theorem 5. 1. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T is a Bezout 
V-order in Q, then hV VT ⊗  is conjugate to an order type ΦΗ  such that Bi,j

-1=Bj,i for all i,j and 
).)(()( hVhV VTBJVTJ ⊗=⊗   

Moreover, hV VT ⊗  is a Dubrovin valuation ring if T is a Dubrovin valuation ring. In this 
case hV VT ⊗  is conjugate to Mn(B). 
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Proof: By Theorem17 of [18], hV VT ⊗  is a semihereditary maximal Vh-order in Q⊗ F Fh. Therefore 
hV VT ⊗  is conjugate to an order type ΦH. And by Theorem 2.7 of [11] Bi,j

-1=Bj,i for all i,j and 
J(T)⊗ v Vh=J(B)(T⊗ v Vh). Also, T⊗ v Vh is Bezout if T is Dubrovin valuation ring (see Theorem 17 
in [18]). Since Vh is Henselian, T⊗ v Vh is a Dubrovin valuation ring, and so T⊗ v Vh is conjugate to 
Mn(B).  

J. S. Kauta ([11]: Theorem 3.4) proved that a V-order R is semihereditary if its Henselization 
R⊗ v Vh is a semihereditary. So the answer (2) is yes.  
 
Theorem 5. 2. If R is a maximal V-order in a central simple F-algebra Q, then R⊗ v Vh is a maximal 
Vh-order in Q⊗ FFh if one of the following conditions holds. 
(1) R is a Bezout ring. 
(2) R is a semihereditary ring. 
(3) R is a finitely generated V-module. 
(4) RankV=1 
 
Proof: If R is a Bezout ring, then by Theorem 17 of [18] R⊗ v Vh is a maximal Vh-order.  
And if R is a semihereditary ring, it follows from Theorem 1 of [19]. 

Now we suppose that R is a finitely generated V-module. Then R is contained in a Bezout V-
order T by ([7], Prop.3). Since [T/J(T):V/J(V)]<∞ , there exists t1,…,tn∈T such that 
T=t1V+…+tnV+J(T). But by ([11]: Prop. 1.4) J(T)⊂R (since maximal orders are extremal). Hence T 
is a finitely generated Bezout V-order. By the maximality of R, we have T=R. Therefore R is a Bezout 
V-order.  

(4) Let (Vh, Fh) be the Henselization of (V, F). Then (V, F)⊆ (Vh, Fh) ⊆ (V, F), where (V, F) is 
the complement of (V, F) with respect to the metric induced by the valuation corresponding of V. 
Hence V is dense in Vh and by (Proposition of [19]) we have hV VR ⊗  as a maximal Vh-order in 

.hF FQ⊗  
Let B be a unique extension valuation ring Vh to D, where hF FQ⊗ )(DM n≅ and R=(Bi,j) is 

order typeΦΗ . Then we have the following theorem. 
 
Theorem 5. 3. Suppose Q is a central simple F-algebra and V is a valuation ring in F. If T is a 
maximal semihereditary V-order in Q, then hV VT ⊗  is conjugate to an order typeΦΗ  such that Bi,j

-

1=Bj,i for all i,j. 
 
Proof: By Theorem 5.2, (2) hV VT ⊗  is a semihereditary maximal Vh-order, and by Theorem 3.7 

hV VT ⊗  is conjugate to an order R=(Bi,j). On the other hand, R is a semihereditary maximal order, 
and by Theorem 2.6 of [11] we have Bi,j=Bj,i

-1 for all i,j.  
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