In this paper, by employing the Guo-Krasnoselskii fixed point theorem in a cone, we study the existence of positive solutions to the following nonlocal fractional boundary value problems { π·0+ πΌ π’(π‘) = π(π‘, π’(π‘)), π‘ ∈ (0,1), π’π‘ + π’′(0) = 12 [π»1(ππ’) + ∫ π»2 πΈ(π π’π )ππ , π’1) + π’′(1) = 0, c where cπ·0+ πΌis the standard Caputo derivative of order πΌ 1 < πΌ< 2, πΈ⊆ (0,1) is some measurable set. We provide conditions on π π»1, π»2 and πsuch that the problem exhibits at least one positive solution.
Nyamoradi, N. and Alaei Dizaji, H. (2014). Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions. Iranian Journal of Science, 38(4), 455-461. doi: 10.22099/ijsts.2014.2562
MLA
Nyamoradi, N. , and Alaei Dizaji, H. . "Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions", Iranian Journal of Science, 38, 4, 2014, 455-461. doi: 10.22099/ijsts.2014.2562
HARVARD
Nyamoradi, N., Alaei Dizaji, H. (2014). 'Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions', Iranian Journal of Science, 38(4), pp. 455-461. doi: 10.22099/ijsts.2014.2562
CHICAGO
N. Nyamoradi and H. Alaei Dizaji, "Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions," Iranian Journal of Science, 38 4 (2014): 455-461, doi: 10.22099/ijsts.2014.2562
VANCOUVER
Nyamoradi, N., Alaei Dizaji, H. Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions. Iranian Journal of Science, 2014; 38(4): 455-461. doi: 10.22099/ijsts.2014.2562