In this paper, by employing the Guo-Krasnoselskii fixed point theorem in a cone, we study the existence of positive solutions to the following nonlocal fractional boundary value problems { π·0+ πΌ π’(π‘) = π(π‘, π’(π‘)), π‘ ∈ (0,1), π’π‘ + π’′(0) = 12 [π»1(ππ’) + ∫ π»2 πΈ(π π’π )ππ , π’1) + π’′(1) = 0, c where cπ·0+ πΌis the standard Caputo derivative of order πΌ 1 < πΌ< 2, πΈ⊆ (0,1) is some measurable set. We provide conditions on π π»1, π»2 and πsuch that the problem exhibits at least one positive solution.
Nyamoradi, N., & Alaei Dizaji, H. (2014). Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions. Iranian Journal of Science, 38(4), 455-461. doi: 10.22099/ijsts.2014.2562
MLA
N. Nyamoradi; H. Alaei Dizaji. "Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions", Iranian Journal of Science, 38, 4, 2014, 455-461. doi: 10.22099/ijsts.2014.2562
HARVARD
Nyamoradi, N., Alaei Dizaji, H. (2014). 'Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions', Iranian Journal of Science, 38(4), pp. 455-461. doi: 10.22099/ijsts.2014.2562
VANCOUVER
Nyamoradi, N., Alaei Dizaji, H. Existence solutions for nonlocal fractional differential equation with nonlinear boundary conditions. Iranian Journal of Science, 2014; 38(4): 455-461. doi: 10.22099/ijsts.2014.2562