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Abstract

A nonstandard finite difference (NSFD) scheme has been constructed and analyzed for a mathematical model that
describes Lotka—Volterra food web model. This new discrete system has the same stability properties as the
continuous model and,on the whole, it preservesthe same local asymptotic stability properties. Linearized stability
theory and Schur—Cohn criteria are used for local asymptoticstability of this discrete time model. Numerical

results are given to support the results.
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1. Introduction

The study of biological systems has been developed
over many years. In these systems, it is common
that the state variablesrepresent nonnegative
quantities, such as concentrations, physical
properties, the size of populations and the amountof
chemical compounds (Murray, 2003). These
biological models are commonly based on systems
of ordinary differential equations (ODEs). Exact
solutions of these systems are rarely accessible and
usually complicated; hence good approximations
are required.

Numerical methodsare often the method of choice
and should describe the dynamic behavior of the
systems, produce the nonnegativesolutionsand
reproduce the real dynamics of the biological
systems. The interspecies interaction is among the
most intensively explored fields of biology. The
increasingamount of realistic mathematical models
in that area helps in understanding the population
dynamics ofanalyzed biological systems. Mathematical
models of predator—prey systems, characterized by
decreasinggrowth rate of one of the interacting
populations and increasing growth rate of the
other, consist of the ODE systems. In most of the
modeled interactions, all rates of changes are
assumed to be timeindependent, which makes the
corresponding systems autonomous. The positivity
of the size of bothinteracting populations requires the
mathematical models to preserve the invariance of the
first quadrant.
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The differential equations in these
mathematicalmodels are usually nonlinear
autonomous differential equationsystems which have
only time-independent parameters. It is not always
possible to find the exact solutions of thenonlinear
models that consist of at least two ODEs. It is
sometimes more useful to find numericalsolutions to
these types of systems in order to easily programand
visualize the results. By applying a numerical method
on a continuous differentialequation system, it
becomes a difference equation system, i.e., a discrete
time system. While applying thesenumerical
methods, it is necessary that the new
differenceequation system provides the positivity
conditionsand exhibits the same quantitative behaviors
of a continuoussystem such as
stability, bifurcation and chaos. It is wellknown that
some traditional and explicit schemes such as
forwardEuler and Runge—Kutta are unsuccessful at
generatingoscillation, bifurcations, chaos and false
steady states, despite using adaptive step size (Arenas
et al., 2008; Mickens, 2005; Moghadas et al., 2003,
2004; Roeger, 2004, 2008). For forward Euler
method, if the step size is chosen small enough and the
positivityconditions are satisfied, it is seen that local
asymptoticstability for a fixed point is saved while in
some specialcases Hopf bifurcation cannot be
seen. Instead of classicalmethods, NSFD scheme can
alternatively be used to obtain more qualitative results
andremove numerical instabilities. These schemes are
developedfor compensating the weaknesses such as
numerical instabilities that may be caused by
standarddifference methods. Also, the dynamic
consistency can be represented byNSFD scheme (Liao
and Ding, 2012). The most important advantages of
this scheme isthat by choosing a convenient
denominator function instead ofthe step size, better
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results can be obtained. If the step size is chosen small
enough, the  obtained results  do not
changesignificantly but if gets larger this advantage
comes intofocus.

This paper is organized as follows: The next
sectionprovides a brief overview of the important
features of the procedures for constructing NSFD
schemes in ODEs. In section 3, we introduce the
model thenceforth discretizated in a nonstandard
form that provides the positivity conditions. In
section 4, we present a lemmaand then a linearized
stability theorem is given for the localasymptotic
stability of the discrete time systems. Finally in the
last section, some numerical experiments are
carried out tostudy the solution to this system. Later
on some notes are presented on a Hopf
bifurcationthat arises at a certain critical value.

2.Nonstandard Finite Difference Schemes for
ODEs

The initial foundation of NSFD schemes come from
the exact finitedifference schemes. These schemes
were well developed by Mickens (1994, 2003,
2005, 2007) in the pastdecades. These schemes are
developed for compensating the weaknesses such as
numerical instabilities that may be causedby
standard finite difference methods .Regardingthe
positivity, boundedness and monotonicity of
solutions, NSFD schemes have a better
performance over the standard finite difference
schemes, due to their flexibility to construct a
NSFD scheme that can preservecertain properties
and structures, which are obeyed by the original
equations. Also, thedynamic consistency could be
presented well by NSFD schemes.

The advantages of NSFD schemes have been
shown in manynumerical applications. Arenaset al .
(2010) and Gonzélez-Parra et al. (2010) developed
NSFD schemesto solve population and biological
models. Jordan (2003) and Malek (2011)
constructed NSFD schemes for heat transfer
problems. For symplectic systems, Mickens (2005)
derived a NSFD variational integrator for
symplectic ODEs.

We now give an outline of the critical points
which will allow the construction of NSFD
discretizations for ODEs.

Consider the autonomous ODE given by

x'=f (x), X (to) =X, teftyt ],

where f (X) is, in general, a nonlinear function of
X. For a discrete-time grid with step size,
At =h, we replace the independent variable t
by

n=012 ..,N

where h :th;tO .The dependent variable X (t)
is replaced by

x€) ~ ,

where X, is the approximation of X (t,).

The first NSFD requirement is that the dependent
functions should be modeled nonlocally on the
discrete—time computationalgrid. Particular
examples of this include the following functions
(Mickens, 2005, 1994).

2~
X ~Xn+1xn’
Xn+1+Xn +Xn—1
3

Xn+1+xn—1)x2
2 "

A standard way for representing a discrete first-
derivative is given by

Xzz(

o,

X3~ (

However, the NSFD scheme requires that X " has
the more general representation

where the denominator function, i.e. @has the
properties:

I. ¢(h)=h+0(h?),
Il. ¢(h) isanincreasing function of h,
1. ¢(h) may depend on the parameters
appearing inthe differential equations.
The paper of Mickens (2007) gives a general

procedure for determining ¢(h) for systems of

ODEs.
An example of the NSFD discretization process is
its application to the decay equation

where A is a constant. The discretization scheme is
(Mickens, 2007)
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le”
o 9 A)= P

n+l~ n =— JX

Another elementary example is given by

X' =X —A,X?,

where the NSFD scheme is as follows (Mickens,
2007)

—n:ﬂan _ﬂzxnﬂxn’

where the denominator function is

hay=8 1
#(h, 4) x

It should be noted that the NSFD schemes for
both  ODEs are exact in the sense that

X, =X ('[n) for all applicable valuesof h>o0. In
general, for an ODE with polynomial terms,

x'=ax + (NL), NL =nonlinear terms,

the NSFD discretization for the linear expressions
is given by Mickens (2007)

Xng —X

¢

where the denominator function is

“=ax,+ (NL),,

shay= 1

a

It follows that if X' is a function of X which
does not have a linear term, then the denominator

function would be just h,i.e.@(h)=h.

3. Discretization of the Model

In a food web, a species is called basal if it is prey
but is not predatory, intermediate if it is both prey
and predator, and top if it is only a predator; the
compositionof predator and prey relationships in a
food web is referred to as its trophic structure and
individual levels as trophic levels. We use the word
population to meanabundance or biomass of a

species. Let X (t), Y (t) and z (t) represent the
populations of basal, intermediate, and top species
respectively in a food web at time t.A sensible
model for the trophic structure of a closed food-web

population at timet is a generalized Lotka—
Volterra system of the form

x'=ax —bx?—cxy —dxz,

y'=-ey +fxy —gyz,
z'=-hz +ixz + jyz,

x()=xo, y(O) =y, z(0)=2,,

where @, b, ..., ] >0. In this model, the basal
species with population X haveintrinsic growth
rate @ with environmental carrying capacity a/b
and the strengthof the effect of predation form. The
other two species are measured by interaction—
termcoefficients ¢ and d.As the top species with
population Z preys on both the basaland
intermediate species, its interaction terms XZ and
yz have positive coefficients,since Z increases

under interaction with each of the other
species. The intermediatespecies with population
y grows through interaction with the basal species

butdeclines through interaction with the top species.

This system is a special case of the well-known
Lotka—Volterra cascade model (Chen and Cohen,
2001) given by

@)

X/ (t)=x, (t){ei +ipijxj (t)} i =12,..,n()

where X; (t) is the population of species i,ei is
the intrinsic growth or decline rateof species i and
Pj is the interaction coefficient between species

i and ].We can consider here the case N =3 and

then use the NSFD scheme which applies to predict
the populationin the case of only one basal

species, so that P;; <0 and Py, = Pgy =0 in

(2), and with hierarchal predation, meaning that
each successive species preys on thosebelow

it. This means that in (2) species j preys on
species i if and only if 1 < J,so that p; <O if
i <jand p; >0ifi>].

In order to get a better analysis for the system, we
reduce the number of parameters using the

nondimensionalization method as in (Murray, 2003)
as follows. Letting

u)=2x@, v =Sy, wr)=S70)

whereT =at, consequently we get
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xO=2ur),  yo=2va) Alh)=e’ -1
b C eAh _1
ey A% h,A)= ,
20 =2u) (0 A)=3
(3) eDh —1
Substituting (3) into (1) and renaming T to t, ¢,(h,D)= D
gives
u'=u(l-u-v-w), 4. Stability Analysis of the Model
v'=v(-A +Bu -Cw), Consider the system of ODEs given by
w'=w (-D +Eu+Fv), X'"=F(x,y,z),
U=y VO =V, WO=W,  Y'=G(X.y.2)
where Z'=H(xy,z), ©)
f where F, G and H are nonlinear functions. Let
a’ b’ d’ X,Y and Z be the steady-state solution, i.e.,
h i j
D=—, E=—, F==, X Y Z)=G(X.Y . Z)=H(X.Y.Z)=
. 5 . F(X,Y,Z)=G(X,Y,Z)=H(X, Y, Z)=0.
with Now consider small perturbations to steady-state
solutions
b c d ~
Uo:axo’ V°:£y°’ Wo=gzo- Xt)=X +x(),

The system of nonlinear differential (4) will be
discretizated as follows

u(r)~u,,
V(I )=V,
UAUDESL Y
u*(M) =u, U,
u(@)v(T)=u,v,,
u@w (T)=u,w,,
vw(T)=v,.w,.

If U, V1 and W, explicitly solved (4), the
following iterations will be obtained:

_ @A+d (),
"1+ g (h)u, v, W)
_ @+Bg(h, AV,
" 1+, (h,A)A+Cw )’

:(1+E¢3(hlD)un+1+F¢3(h'D)vn+l)Nn (5)
N+l 1+Dg,(h,D) ’

where denominator functions are chosen as by

YO =Y +y@),
Z@t)=Z +z(t).

Frequently these are called perturbations of the
steady-state. Substituting, we arrive at

X +x)=F(X +xY +y,Z +2),
Y +y)=G(X +xY +y,Z +2),
(Z+z)=HX +xY +y,Z +2).

On the left-hand side we expand the derivatives
and that by definition

X'=Y'=Z'=0.

On the right—hand side we now expand F G and
H in aTaylor series about the point (X', Y, Z).
The result is
X'=F(XY,Z)+FE (XY ,Z)x+F, (XY ,Z)y
+F, (XY ,Z)z+ msoforderx?,y?z?xy,
yz ,xz ,and higher,
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y'=G(XY,Z)+G, (XY ,Z)x +G, (X Y ,Z)y
+G,(X Y ,Z)z+ msoforderx?,y?z?xy,
yz ,xz ,and higher,

2'=HX Y, Z)+H, (XY, Z)x +H (X Y ,Z)y
+H, (XY ,Z)z+ msoforderx?y?z2xy,

yz ,xz ,and higher.

Again by definition,
F(X,Y,Z)=G(X,Y,Z)=H(X,Y, Z)=0,
so we are left with

X' =ayX +apy +asZ,

Y =aX +8,Y +85y7,

Z'=agX +aypY +857,
where the matrix of coefficients

8 Sy Y
A=la, a, a
8y 8 8g
F(XY,Z) F XY.,Z) FXY,Z)
=G, (XY ,Z) G (XY ,Z) G,(X)Y,Z)|
H, (XY ,Z) H,(XY.,Z) H,(XY,2)
is the Jacobian of the system of equations (6).
Hence the problem has been reduced to a linear

system of equations, i.e., W'=Aw with
W = (X Y.z )T , for states that are in proximity to
the steady state (X, Y, Z).

A parallel statement exists for linearity concept
systems at difference equations (Elaydi, 1999).

Consider the autonomous (time-invariant) linear
difference equations given by

Xn+l:AXn' (7)

T k
where X, = (Xln ' Xon ,...,an) e A" and
A= (aij )isak xk real nonsingular  matrix,
in which the values of Aare all constants and

P =dtA 1)

isthe characteristic polynomial of the matrix A.

The following theorem gives necessary and
sufficient conditions for asymptotic stability of the
linear autonomous system (7).

Theorem 1. The zero solution of (7) is
asymptotically stable if and only if p(A) <1.

Proof: (Elaydi, 1999).
Consider the k-th order difference equation

Xn+k + p1Xn+k—1+ pZXn+k—2+'"+kan :0' (8)

where any P; for i =1,2,...,K is real number

and Py # 0. For problem (8) the characteristic
equation is given by

A +p A+ +p, =0,
where
P(A)=A+p A +..+p,,

is called the characteristic polynomial of the
difference equation (8). One of the main tools that
provides necessary and sufficient conditions for the
zeros of a k-th degree polynomial, such as P (1),
to lie inside the unit disk is the Schur—Cohn
criterion (Elaydi, 1999). This is useful for studying
the stability of zero solution of (8). By analyzing
the Schur—Cohn criterion for K =3, the following

result can be gained.

Lemma 1. (Jury conditions, Schur—Cohn criteria,
k =3). Suppose the characteristic polynomial
P(A) is given by P(1)=A*+pA*+p,A+p,. The

solutions ,, i =1, 2, 3of P(2)=0satisfy | 4 [<1 if
the following three conditions are held:

I. P =1+p,+p,+p;>0,

. (-)°P(-D)=1-p,+p,—ps>0,
Il l_(p3)2 >| P2 — P3Py |

Proof: (Elaydi, 1999).

Theorem 2. (The linearized stability theorem). Let
X be anequilibrium point of the difference
equation

Xpa =F (X X g0 Xy ), k=01,...
where the function F is a continuously
differentiable functiondefined on some open
neighborhood of an equilibrium point X . Then the
following statements are true.

I. If all the roots of the characteristic polynomial
haveabsolute value less than one, then the
equilibrium point X is locally asymptotically stable.
Il. If at least one root of the characteristic
polynomial has absolute value greater than
one, then the equilibriumpoint X is unstable.
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Proof: (Elaydi, 1999).
Equilibrium points of (4) are found as follows:

X7 =(0,0,0), X; =000, X; =(2,01-2),

E E
“_ A A - . D A
Xi=(g 150 Xg=(hyh; hy), X3 = (0,2 -0),
where
AF —CD +CF
h, = + , )
BF —CE +CF
—AE +BD +CD -CE
h, = , (10)
BF —CE +CF
AE —-AF -BD +BF
h, = (1)
BF —CE +CF

Only fixed points X, i =12,...,5 have real

biological meaning.Coordinates of all five steady
states are nonnegative if

A<AF —CD +CF <B
B BF-CE+CF E°
Equations (5) can be written as follows as
_ @+g(h),
1+4 (U, +v, +w,)’
— (1+B¢2(hiA)un+l)‘/n
1+¢,(h,A)(A+Cw,)’
h — (1+E¢3(hv D)un+l+F¢3(h! D)‘/n+l)Nn .
1+D¢(h,D)

By using these equations, Jacobian matrix will be
found as:

f, f,. fu
Ju,vowy)=/9, 9, 9 |
hun h\/n I"an

where

404
L S .
"o ! ! n
_Bdigy,
Uy nzﬂ 1
o - 7 +Bnogu, —Bogdu v,
" n'u '
(Cn* +BGugu, +BCnopu,)gy.,
gwn = 2 2 '
nu
h = (EW—EWM +BF’7¢2Vn _BF¢1¢ZUnVn)9¢§Nn Y
" ' u(l+Dgy)
h = (F* ~EGugu, +BFnou, ~BFdggu v, )gw ,
’ ' u(l+Dgy)
a-p
h, =i b,
" (L+Dg)

with

n=1+U, +v, +w )g,
u=1+(A+Cw )g,
¢=1+WV, +w, )4,
0=1+4,
a=(E 1*04u, +CFr’dy ) ,
+BF (ug +Cné,)0p0u v W
B=n"1’ +(E ul, +Fiyv, +BFOJU VY Iruds.
We determine stability of each steady state
X, i=12..5by considering, where
possible, the eigenvalues ﬂl(i),ﬂz(i)and /13(” for
each matrix J (X ;).

I. X =(0,0,0):
% o o
772
1000=| 0 X o |
Y7,
s 1
1-Dg

has eigenvalues

A0 =e", L

1
@ _ W _
A = oA A e

Now by theorem 2, we conclude that Xl* is an
unstable point.

Il. X} =(10,0):
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% _o _o
n n n
10,00=| 0 1tB% o |
nu
0 n+Eog,
nl+ Dg,)
has eigenvalues
1
=
A-B (1—eAh)
A’Z(Z) = AeAh '
D-E(-e Dh)
%2) = De Dh ’

so by theorem 2, X; is stable if A>B and
E <D andunstableif A<B orE >D.

« D D
. X;=(=.,01-=):
J=(201-2)

D D
J(=,01-2
(2 01-2)
4 Doy Doy
n En? En?
_ 0 Ey+BD6g, 0
Enu

(E-D)(En-Dg)dp, (E-D)xé En’+p
En’(1+Dg) E’7’u(l+Dg) En*(1+Dg)
where

y =FEn’ —ED uf4 + FBDn04,,
p=EDnbg+D (D —-E60)644,

has eigenvalues

AE —BD (1-e*")
CD —CE +(AE +CE —CD)e*"’

—(1+D)h

2 =" —(D-E)t-e"
+Ee™ (L+e") +./1—-e")7),

0= (0 -E)a-e)

+EeDh (L+e") - f1—-e")r),

20

with
7=(E —-D)*-(E +D)%" +(2DE —2E )™ (1+e")
+E%®™ +(3E? —4ED)e*?P)",

So by theorem 2, X; is stable if

AE+ CE >BD+CD and E >D.lIt is
unstable if AE + CE <BD + CD.

A A

V. X, =(+,1-—,0):
=G 1-5.0)
A, A
IG1-5.0
o« _AG4 _AGg
n B7* Bn*
(A-B)p By’ +ABn+(A-B)A)s (A-B)g,
nu "y Bru’
_ -Brut+x
0 0 Bru(+Dg)
where

v=Cn* +A0(ugp +Cng),
= (AF7—AE 10—BF )@, + (A —B)AF .,

has eigenvalues

BD - (AE +BF —AF)(1-e™)

A0 =

BDe®™
0= (B -ANL-e)
—B(1+e )eAh+M),
0= (B -A)L-e)
—B(1+e e - " -Do),
with

o=(A-B)’e"-1)+2B(B -Ae*" -B%*"
+2B(B —A)™M" +B(4A —3B)e A",

So by theorem 2, XZ is stable if

AF+ DB >AE+BFand B > A. It is
unstable if AF + DB < AE + BF.

V. X =(h,h,,h;)where h, h, and h, are
defined in  (9)-(11): J(X.)is extremely
complicated, making a general investigation of the
stability of X, infeasible,
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5. Numerical Results and Conclusion

For the numerical scheme (5), wedivide the
experiments into two parts: In Figs. 1-4, we allow
at least one zeroinitial condition, while in Figs. 5-
9, we consider the case where all initial data
arepositive.

Figures 1-3.We choose

A=1B=4C=1D=LE=2F=1

and h =0.01. By thepreceding discussion of

steady states, the equilibrium solutions for (4)
are given by

©.00), 0.0), (;..0)

1.1, 111
=.0,2),(=,=,2). (12)
(2 2) (3 3 3)

Although the only stable steady state of these is
the last one, all nonzero initialconditions would be
necessary for an orbit to approach it, sincethe
coordinate planes are invariant under the flow of
(4). Wedescribe each figure in further detail as
follows.

Figure 1: We choose initial data U(0)=1/2,
vQ € and w(0)=0.Thefigure shows that

V,=0andwW, =0 forall n=0,12,... while

U, =1 asn —>oo.The second equilibrium in

(12) is approached, which means thatthe population
of the basal species approaches carrying capacity in
absenceof the intermediate and top species as
expected.

Figure 2: Initial conditions are

u(0)=0, v(0)=2 and w (0)=2.Thefigure
shows that as V, —>0,s0 does W, >0 as

N —oo. The top specieswill remain as long as
there is an intermediate species to prey on, while
theintermediate species dies off exponentially in
absence of a basal species. Thesteady state (0, 0, 0)
in (12) is approached with the given initial data.

Figure 3 :Initial conditions in this figure are

u(0) =2, v(0)=0 and w (0) = 2.Wesee that
u, —)]/2 while W, —)]/2 as N -—oo,
Populations of species oscillate as food web

populations progress towardequilibrium .The fourth
steady state in (9) is approached

1144

vity

w{)

wi(t)

105 =
v(t) o)

Fig. 1. Solutions for u(0)=0.5,v (0)=0 and w (0)=0
with h=0.01
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w(t)

vt ult)

Fig. 2. Solutions for u(0)=0,v(0)=2 and w (0) =2
with h=0.01

Figure 4: Here we choose

A=1B=4C=1D=2E=LF=1

and h =0.01.This gives rise to (0, 0, 0), (1, 0, 0)
and (1/4, 3/4, 0) as equilibria of (4). We choose
initial  conditions U(0)=2, v(0)=0 and
w (0)=2.By invarianceof the coordinate
planes, as N —»oo the steady state (1, 0, 0) is
approached by (U,,,V, W ).

ul

%

vl

wit)

Fig. 3. Solutions for u(0) =2,v (0)=0 and w (0) =2
with h=0.01

|

h
\

u@®

w{l)

>
vit) u()

Fig. 4. Solutions for u(0)=2,v (0) =0 and w (0) =2
with h=0.01

In contrast to Fig. 3, Fig. 4 shows that if the death
rate ofthe top species is too large, this species will
face extinction, at least compared tothe system with
relatively large interaction rate with the basal
species comparedto death rate for the top species.
Figure 5: We choose
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A=1B=4C=1D=2E=LF=1

andh =11, giving riseto equilibria for (4) of
(0,0,0), (1,0,0) and (I/4, 3/4, 0) as those with

allcoordinates nonnegative. We choose initial data
u(0)=2, v(0)=2 and W (0)=2.The figure
suggests that since the death rate D of the top
species is relativelylarger than the interaction rate
E between the basal and top species, and if
thedeath rate A of the intermediate species is
relatively smaller than the interactionrate B
between the basal and intermediate species, then the
population of thebasal species will approach

A/B =1/4 while the intermediate species

approaches1—A/B .The top species becomes

extinct.
Figure 6: This figure has

A=2,B=1C=1D=LE=2F=1

and h=11 so equilibria of (4) are
(0,0, 0), (1,0,0), and (1/2, 0, 1/2).with initial
conditions chosen as u(O):2, V(O):2 and

w(@)=2@u, v,w) €2/ 0, 1/2).in

general, if the death rate D of the top species is
smaller than the interactionrate E between the
basal and top species and the death rate A of the
intermediatespecies is larger than the interaction
rate B between the basal and
intermediatespecies, then the population of the

basal species will approach D/E , the population

of the top species will approach 1— D/E and
the intermediate speciesdeclines to extinction.

|
i
|

3

]
|
ﬁvtv\ "
’U '/ N

wity
—~

DT,
~ \:!\:\- N
vty ’ o0

Fig. 5. Solutions for u(0)=2,v(0)=2 and w (0) =2
with h=1.1

Figure 7: Here

A=2,B=1C=1D=2E=1LF=1

andh =15, so that the onlypossible equilibria of
(4) are (0, 0, 0) and (1, O, 0). With initial
conditionsof u(0)=2, v(0)=2 and w (0) =2

and given that only (1, 0, 0) is stable, thisis the one
approached over time. The figure confirms that if
the death rate A of the intermediate species is
larger than the interaction rate B between thebasal
and top species, and the death rate D of the top
species is larger than theinteraction rate E between
the basal and top species, then the population of
thebasal species will approach the carrying capacity
while the intermediate and topspecies become
extinct.
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Fig. 6. Solutions for u(0)=2,v (0)=2 and w (0)=2

with h=1.1

uin

vi)

e 9

wit)

wit

vty

o)

Fig. 7. Solutions for u(0)=2,v (0) =2 and w (0) =2
with h=1.5

In Tables 1 and 2, for different step sizes h, the
qualitative stability results, obtained by NSFD

scheme, of the fixed point X;and X; are

respectively compared to classical methods such as
forward Euler and Runge—Kutta. If step size his
chosen small enough, the results of the proposed
NSFD scheme are similar with the results of the
other two numerical methods. But if the step size h
is chosen larger, the efficiency of NSFD scheme is

clearly seen.

Table 1. Qualitative results of the fixed point X; for

different time step sizes,t = 0-100

h Euler Runge-Kutta NSFD

0.001 Convergence Convergence Convergence
0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
0.2 Divergence Convergence Convergence
0.5 Divergence Convergence Convergence
1 Divergence Divergence Convergence
10 Divergence Divergence Convergence

Table 2. Qualitative results of the fixed point X; for

different time step sizes, t = 0-500

h Euler Runge-Kutta NSFD
0.001 Convergence Convergence Convergence
0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
04 Divergence Convergence Convergence
0.5 Divergence Convergence Convergence
1 Divergence Divergence Convergence
10 Divergence Divergence Convergence
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In Figs. 8 and 9, the NSFD solutions of U, v and
W converge to fixed points X ; and X ; as

simulated and also Runge—Kutta, forward Euler and
proposed NSFD scheme are compared graphically.
All the numerical calculations and simulations are
performed by using Matlab programme. In
conclusion, the efficiency of the proposed NSFD
scheme is investigated and compared with other
numerical methods.

NS
— ——4th order Runge-Kutta | |
18 — = Forward Euler i

u(t)

80 100 120

—NSFD
= — = 4th order Runge-Kutta |
-~ Forward Euler

——NSED:
— — = 4th order Runge-Kutta
~ = -Forward Euler N

ki
B0 80 100 120

0
v(t) u(

Fig. 8. Comparison with NSFD scheme, 4th order
Runge—Kutta and forward Euler solutions of U, V and

W converges to fixed point X ; with h =0.1
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Fig. 9. Comparison with NSFD scheme, 4th order
Runge—Kutta and forward Euler solutions of U, V and

W converges to fixed point X ; with h =0.1

In Tables 3 and 4, for different step sizes h, the
qualitative stability results of the fixed point X:

and X ; obtained by NSFD scheme are respectively

compared to classical methods such as forward
Euler and Runge—Kutta. If step size his chosen
small enough, the results of the proposed NSFD
scheme are similar with the results of the other two
numerical methods. But if the step size h is chosen
larger, the efficiency of NSFD scheme is clearly
seen.
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Table 3. Qualitative results of the fixed point X: for
different time step sizes, t = 0-500

h Euler Runge-Kutta NSFD

0.001 Convergence Convergence Convergence
0.01 Convergence Convergence Convergence
0.1 Convergence Convergence Convergence
04 Divergence Convergence Convergence
0.5 Divergence Divergence Convergence
1 Divergence Divergence Convergence
10 Divergence Divergence Convergence

Table 4. Qualitative results of the fixed point X; for
different time step sizes, t = 0-5000

v(t)

u(t)

Fig. 10. Comparison with NSFD scheme and 4th order
Runge—Kutta and forward Euler solutions of U, V and

W converges to fixed point X ; with h =0.1

der Runge-Kutt [
Forward Euler

h Euler Runge-Kutta NSFD

0.001 Convergence Convergence Convergence
0.01 Convergence Convergence Convergence
0.1 Divergence Convergence Convergence
0.4 Divergence Divergence Convergence
0.5 Divergence Divergence Convergence
1 Divergence Divergence Convergence
10 Divergence Divergence Convergence

In Figs 10 and 11, the NSFD solutions of U, v
and W converge to fixed points X, and X ; as

simulated and also Runge—Kutta, forward Euler and
proposed NSFD scheme are compared graphically.
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Fig. 11. Comparison with NSFD scheme and 4th order
Runge—Kutta and forward Euler solutions of U, V and

W converges to fixed point X ; with h =0.01
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5.1. A Hopf Bifurcation

We claim that for an appropriate choice of
constants A and C—F,a value of B exists across
which a periodic orbit arises through achange in the
stability properties; specifically, there is a Hopf
bifurcation arising atthis B -value. To demonstrate
this, we fix A=1LC =1 D=1LE=4F=1
and considersolutions of (4) as the value of B is
varied. The steady state of interest inthis case is
X2 =( 1 ’ B 7,

B-3' B-3' B-3
extract the initial requirementthat B >7 so that
this is a first-octant steady-state equilibrium.

The matrix J (X ;) of the linearization about X 5

has eigenvalues that are roots of the characteristic
polynomial (Armstrong and Han, 2012)

) from which we

1 , B?-4B-9 3B-21
AT+ + =
B-3

L B

The Schur—Cohn stability criterion (lemma 1)
ensures that the roots of Pg lie in the

negativecomplex half-plane as long as each
coefficient is positive and the product of

thecoefficients of A and A? exceeds the product

of the coefficient of A° and the
constantterm. Solving these simple inequalities

shows that 2++/13 <B <9 which, togetherwith

the initial requirement that B >7 means that Py

has three roots two complexconjugates and one real
with negative real partas longas 7 <B <9.
Figure 12: Choosing

A=1B=8C=1D=LE=4F=1

andh =2.1 givesrise to (0, 0, 0), (1, 0, 0),

(1/8,7/8,0), (1/4,0,3/4) and (1/5,1/5,3/5)

as steadystates of (4). With initial conditions
u(0)=2,v(0)=2 and W (0)=2and given
that the only stable steady state is (1/5,1/5,3/5),

the figure confirms that (Un Vi ,Wn) approaches
the steady state solution
X ¢ =(h,h,,h,)=(1/5,1/5,3/5) as n —oo,
Figure 13: With

A=1B=11C=1D=1LE=4F=1

andh =2.5 all equilibria are unstable. Choosing
u(0)=2, v(0)=2 and W (0)=2,the figure

confirms that (Un VW n)WiII not approach (for
example) the steady state solution

(hh,h) &73737 |/ & n—ow
although A/B <D/E but rathera periodic
solution. This suggests a limit cycle.

Remark 1. The foregoing computations show that
the system (4) undergoes a Hopf bifurcation for

A=1C=1D=LE=4F=1

across B=9.For7<B <9the system has a
stable equilibrium point X; as described above

where asX; is a stable center. For B >9

solutions of the system approach a limit cycle
asdemonstrated in Fig. 13.
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1
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Fig. 12. Solutions for u(0) =2,v (0)=2 and w (0) =2
with h=2.1
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Fig. 13. Solutions for u(0)=2,v (0)=2 and w (0) =2
with h=2.5

References

Arenas, A. J., Gonzalez—Parra, G., & Chen—Charpentier,
B. M. (2010). A nonstandard numerical scheme
ofpredictor—corrector type for epidemic models.
Computers Mathematics with Applications, 59(12),
3740-3749.

Arenas, A. J., Morano, J. A., & Cortes, J. C. (2008).
Nonstandard numerical method for a mathematical model
of RSV epidemiological transmission.Computers &
Mathematics with Applications, 56(3),670-678.

Armstrong, S., & Han, J. (2012). A method for numerical
analysis of a Lotka—Volterra food web model.journal
of numerical analysis and modeling, series B,
3(4), 442-459.

Chen, X., & Cohen, J. E. (2001). Transient dynamics and
food-web complexity in the Lotka—Volterra cascade
model. Proc. Bio. Sci., 268(1469), 869-877.

Elaydi, S. N. (1999).An Introduction to Difference
Equations.Springer, New York.

Gonzalez—Parra, G., Arenas, A. J., & Chen—Charpentier,
B. M. (2010). Combination of nonstandardschemes
and Richardsons extrapolation to improve the
numerical solution of population models.Mathematical
and Computer Modelling, 52(7-8), 1030-1036.

Jordan, P. M. (2003). A nonstandard finite difference
scheme for nonlinear heat transfer in a thin finite
rod.Journal of Difference Equations and Applications,
9(11), 1015-1021.

Liao, C., & Ding, X. (2012). Nonstandard finite
difference variational integrators for multisymplectic
PDEs. Journal of Applied Mathematics, 2012, Article
ID 705-179, 22 pages.

Malek, A. (2011). Applications of nonstandard finite
difference methods to nonlinear heat transfer
problems.In heat transfer—-mathematical modeling,
Numerical Methods and Information
Technology, doi:10.5772/14439.

Mickens, R. E. (2003). A nonstandard finite difference
scheme for the diffusionless Burgers equation
withlogistic reaction. Mathematics and Computers in
Simulation, 62(1-2), 117-124.

Mickens, R. E. (2005). Advances in the Applications of
Nonstandard Finite Difference Schemes. Wiley-
Interscience,Singapore.

Mickens, R. E. (2005). A numerical integration technique
for conservative oscillators combining
nonstandard finite difference methods with a
Hamilton’s principle. Journal of Sound and
Vibration, 285(1-2), 477-482.

Mickens, R. E. (2007). Calculation of denominator
functions fornonstandard finite difference schemes for
differential equationssatisfying a positivity condition.
Numerical Methods for Partial Differential Equations,
23(3), 672-691.

Mickens, R. E. (2005). Dynamic consistency: a
fundamental principle for constructing nonstandard
finite difference schemes for differential equations.
Journal of Difference Equations and
Applications, 11(7), 645-653.



1JST (2014) 38A4: 399-414

414

Mickens, R. E. (2002). Nonstandard difference schemes
for differential equations. Journal of Difference
Equations and Applications, 8(9), 823-847.

Mickens, R. E. (1994). Nonstandard finite difference
models of differential equations. World
Scientific, Singapore.

Moghadas, S. M., Alexander, M. E., Corbett, B. D., &
Gumel, A. B.(2003). A positivity—preserving Mickens—
type discretization of an epidemic model. Journal of
Difference Equations and Applications, 9(11), 1037—
1051.

Moghadas, S. M., Alexander, M. E., & Corbett,
B. D. (2004). A nonstandard numerical scheme for a
generalized Gause-typepredator—prey model. D, 188(1-
2),134-151.

Murray, J. D. (2003). Mathematical Biology, I, Third
edition, Springer.

Roeger, L. W. (2008). Dynamically consistent discrete
Lotka—Volterra competition models derived from
nonstandard finite differenceschemes, Discrete and
Continuous Dynamical SystemsB, 9(2), 415-429.

Roeger, L. W. (2004). Local stability of Eulers and
Kahans methods.Journal of Difference Equations and
Applications, 10(6), 601-614.



