On 1-Manifolds and 2-Manifolds

M. El-Ghoul ${ }^{2}$ and A. El-Abed ${ }^{1,2 *}$
${ }^{I}$ Current Address: Department of Mathematics, Faculty of Science, Taibah University, Al-Madinah, KSA
${ }^{2}$ Permanent Address Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
E-mail: amalmatat@gmail.com

Abstract

In this work, different types of chaotic 1-manifolds which lie on the chaotic spheres or on a torus are introduced. Some types of retractions of the chaotic spheres affect on the 1-chaotic systems, and other types of retractions occur to the geometric manifold but make the 1-chaotic manifold invariant. The existed retractions are discussed through new proved theorems. Also we construct different types of folding of 1-chaotic manifolds which are homeomorphic to S^{1} and their indicatrixes.

Keywords: Chaotic; manifolds; folding; retraction; geodesics

1. Introduction

In this section, we present some definitions and background about chaotic manifolds and some geometric transformations.

Definition 1.1. (El-Ghoul, 2001 \& Kostelich 1996). The chaotic manifold is a manifold changed by time into homeomorphic manifolds either with fixed points pi, $\mathrm{i}=1,2, \ldots, \mathrm{n}$ or with no-fixed points .

Definition 1.2. (Thurston, 1977). An n-dimensional manifold is a Hausdorff topological space such that each point has an open neighborhood homeomorphic to the open n-dimensional disc $U n=\left\{x \in R^{\mathrm{n}}:|x|<1\right\}$.

Definition 1.3. (Docarmo, 1976 \& El-Abed, 2007). A geodesic in Riemannian manifold M is a parametrized curve γ such that the velocity vector $(\gamma *)$ is parallel along γ.

Definition 1.4. (El-Ghoul, El-Ahmady \& A. ElAbed 2007). Canonical geodesic equations is a non-linear system of differential equations such that $\frac{d}{d s}\left(\frac{\partial T}{\partial \theta^{\prime} i}\right)-\left(\frac{\partial T}{\partial \theta^{\prime} i}\right)=0, i=\overline{1, n}$
Where $\quad \bar{T}=1 / 2 \overline{d s^{2}}$ and $\quad \overline{d s^{2}}=\overline{d x_{1}{ }^{2}}+$ $\overline{d x_{2}{ }^{2}}+\ldots+\overline{d x_{n}^{2}}$.

Definition 1.5. (El-Kholy, 1981 \& Robertson, 1977). For Riemannian manifolds M and N (not necessarily of the same dimension), a map $f: M \rightarrow$ N is said to be a topological folding of M into N if,

[^0]for each piecewise geodesic path $\gamma: I \rightarrow M(I=$ $[0,1] \subseteq R$), the induced path $f \circ \gamma: I \rightarrow N$ is piecewise geodesic. If, in addition, $f: M \rightarrow N$ preserves lengths of paths, we call f an isometric folding of M into N. Thus an isometric folding is necessarily a topological folding. Many types of foldings are discussed and some applications are introduced in (Difrancesco, 2000 \& El-Abed, 2013).

Definition 1.6. (Franchetti, 2003 \& Goodykoontz, 1985). A subset A of a topological space X is called a retract of X if there exists a continuous map $r: X \rightarrow A$ (called a retraction) such that $r(a)=a$ for any $a \in A$.Many types of retractions are also presented in (Michael, 2002 \& Pellicer, 2004).

2. Main results

In what follows we introduce different types of folding of 1 -chaotic manifolds which are homeomorphic to S^{1} and their indicatrixes. Consider a system of 1-chaotic manifolds homeomorphic to S^{1} with $\tau_{i}=0$ and indecatrix representation $t(s)$ $=\left(x^{\prime}{ }_{i}, y^{\prime} ; \overline{\mu_{1}}, \overline{\mu_{2}} \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$ as in Fig. 1.

Fig. 1. indicatrix representation of chaotic 1-manifolds such that $x_{i}^{\prime}=\cos s, y_{i}^{\prime}=\sin s, \overline{\mu_{1}}, \overline{\mu_{2}}, \ldots$ are the
physical characters of the outside system, $\underline{\mu_{1}}, \underline{\mu_{2}}, \ldots$ are the physical characters of the inside chaotic manifolds of S^{1}. The indicatrix representation of the geometric one is ($x^{\prime}{ }_{i}, y^{\prime} ; 0,0, \ldots ; 0,0, \ldots$) The representation of the interior system is $\left(x_{i}^{\prime}, y_{i}^{\prime} ; 0,0 \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$ for the outside system will be ($x_{i}^{\prime}, y_{i}^{\prime} ; \overline{\mu_{1}}, \overline{\mu_{2}} \ldots ; 0,0, \ldots$).
(a)Folding without singularity: Let $f_{1}: M^{1} \rightarrow M^{2}$, be a folding of the pure geometric into itself without singularity, then this folding induces two systems of foldings
$\bar{f}_{1 i}: \bar{M}_{i}^{1 c} \rightarrow \bar{M}_{i}^{2 c}, \underline{f}_{1 i}: \underline{M}_{i}^{1 c} \rightarrow \underline{M}_{i}^{2 c}$
such that M^{2} is homeomorphic to $\bar{M}_{i}^{2 c}, \underline{M}_{i}^{2 c}$, the indecatrices representation is invariant. See Fig. 2.

Fig. 2. Nonsingularity folding with invariant
So we obtain the following:
Theorem 2.1. Any folding of 1-chaotic manifold without singularity to itself preserves the indecatrices of the chaotic manifold invariant.

Corollary 2.1. The folding of pure chaotic 1manifold without singularity to another chaotic changes in its indicatrix.

Proof: Define a folding $\overline{f^{*}}{ }_{11}: \bar{M}_{1}^{1 c} \rightarrow \bar{M}_{2}^{2^{*}}$, of pure chaotic 1- manifold $\bar{M}_{1}^{1 c}$ on another pure chaotic $\bar{M}_{2}^{1 c}$ such that $\bar{f}_{11}\left(\bar{M}_{1}^{1 c}\right)=\bar{M}_{2}^{2^{* c}}$ then its geometric and the other chaotic manifolds not change but the indecatrix representation will be $\left(x^{\prime}{ }_{i}, y^{\prime} ; ; 0 ; \overline{f^{*}}{ }_{11}\left(\overline{\mu_{2}}\right), \overline{\mu_{3}} \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$ instead of $\left(x^{\prime}{ }_{i}, y^{\prime} ; \overline{\mu_{1}}, \overline{\mu_{2}} \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$. See Fig. 3.

Fig. 3. Nunsingularity folding with variant indecatrix
(b) Folding with singularity: Consider the folding
$f_{2}: M^{1} \rightarrow M^{2}, f_{2}$ restricted on the geometric one, then there are induced systems of foldings
$\bar{f}_{2 i}: \bar{M}_{i}^{1 c} \rightarrow \bar{M}_{i}^{2 c}, \underline{f_{2 i}}: \underline{M_{i}^{1 c}} \rightarrow \underline{M}_{i}^{2 c}$,
which induce a folding of the indicatrix as shown in Fig. 4.

Fig. 4. Singularity folding and indicatrix
Hence we can formulate the following
Theorem 2.2. The folding of 1 -chaotic manifold with singularity induces a folding for its indecatrix. Now we will discuss the effect of retraction on the indecatrix. Let $r_{1}: \bar{M}_{i}^{1 c} \rightarrow \bar{M}_{i}^{1 c}$,,such that $r_{1}\left(\bar{\mu}_{j}\right)=$ $\frac{\bar{\mu}_{j}}{n_{1}}$, then the retraction will reduce the density function. The indecatrix will be in the form $\left(x^{\prime}{ }_{i}, y^{\prime}{ }_{i} ; \overline{\mu^{1}}, \ldots \frac{\bar{\mu}_{j}}{n_{1}}, \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$. see Fig. 5.

Fig. 5. Retraction of the density function
if $r_{2}: \bar{M}_{i}^{1 c} \rightarrow \bar{M}_{i}^{1 c}, r_{2}\left(\bar{\mu}_{j}\right)=\frac{\bar{\mu}_{j}}{n_{2}}, n_{2}>n_{1}$, similarly if $r_{3}\left(\bar{\mu}_{j}\right)=\frac{\bar{\mu}_{j}}{n_{3}}, n_{3}>n_{2}>n_{1}$, and so on we get
$\lim _{j \rightarrow \infty} r_{j}\left(\frac{\bar{\mu}_{j}}{n_{j}}\right)=0$, in this case the indecatrix is $\left(x^{\prime}{ }_{i}, y^{\prime}{ }_{i} ; \overline{\bar{\mu}}_{1}, \ldots \bar{\mu}_{j-1}, 0, \ldots, \bar{\mu}_{j+1} \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$
So, the limit of all retractions for all physical characters of chaotic 1- manifolds will have the indecatrix $\left(x^{\prime}{ }_{i}, y^{\prime}{ }_{i} ; 0,0, \ldots, 0,0, \ldots\right)$

Corollary 2.2. Any variation of the curvature of chaotic 1 - manifolds does not induce any variation on indecatrix representation curvature.

Proof: Since the indecatrix representation of chaotic 1manifolds is $(s)=\left(x^{\prime}, y^{\prime} ; \overline{\mu_{1}}, \overline{\mu_{2}} \ldots ; \underline{\mu_{1}}, \underline{\mu_{2}}, \ldots\right)$, then $t^{\prime}(s)=\left(x^{\prime \prime}, y^{\prime \prime}, 0\right)$ for the geometric manifold and $\bar{t}_{i}^{\prime}(s)=\left(x^{\prime \prime}, y^{\prime \prime}, \bar{\mu}_{i}\right), \quad \underline{t}^{\prime}(s)=\left(x^{\prime \prime}, y^{\prime \prime}, \underline{\mu_{i}}\right) \quad$ for chaotic systems, which have a unique curvature $k(s)=\left|t^{\prime}(s)\right|=1$.

In this section we will present some types of chaotic 1- manifolds which lie on the chaotic spheres, some kinds of retractions of the chaotic spheres that affect on the 1 -chaotic systems, also other types of retractions that occur onto the geometric manifold but make the 1-chaotic manifold invariant without any change.
Consider a system of chaotic 1 - manifolds $\cup s_{i}^{1 c}$ lie on the chaotic spheres as in Fig. 6.

Fig. 6. Retraction of chaotic 1-manifolds lie on chaotic spheres

If $r_{1}:\left\{\cup s_{i}^{2 c}-p_{i}\right\} \rightarrow \cup M_{i}^{c}$ where $\cup s_{i}^{2 c}$ are the chaotic spheres and $\cup M_{i}^{c}$ are the retracted chaotic manifolds and p_{i}, p_{-i} are any two antipodal points of the sphere $s_{i}^{2 c}$ then we find $r_{1 i}\left(\left\{\cup s_{i}^{2 c}-\right.\right.$ $\left.\left.p_{i}\right\}\right), i=1,2, \ldots$ have two dimension and the $1-$ chaotic manifolds are still invariant. The limit of this type $r_{1 i}$ will be these chaotic 1-manifolds i.e., $\lim _{j \rightarrow \infty} r_{1 i}\left(\left\{\cup s_{i}^{2 c}-p_{i}\right\}\right)=\cup s_{i}^{1 c}$ see Fig. 7.

Fig. 7. The limit of retraction r1i
Let $r_{2}:\left\{\cup s_{i}^{2 c}-q_{i}\right\} \rightarrow \cup H_{i}^{c}$, such that $\cup H_{i}^{c}$ are 2chaotic manifolds that intersect with chaotic 1manifolds $\cup s_{i}^{1 c}$, in this case the chaotic manifolds $U s_{i}^{1 c}$ will be variant under this retraction and, in the end, we obtain $\lim _{j \rightarrow \infty} r_{1 i}\left(\left\{\cup s_{i}^{2 c}-p_{i}\right\}\right)=\cup d_{i}^{1 c}$ where $\cup d_{i}^{1 c}$ are chaotic 1- manifolds, while $\lim _{j \rightarrow \infty} r_{1 i}\left(\left\{\cup s_{i}^{2 c}-q_{i}\right\}\right)=0$ - chaotic manifolds. See Fig. 8.

Fig. 8. Limit of retration r 2 i
Hence we obtain the following.
Theorem 2.3. The limit of retractions of 2-chaotic manifolds $\cup s_{i}^{2 c}$ to 1 -chaotic manifolds $\cup s_{i}^{1 c}$ which lie on them is not followed by a variant in the 1 chaotic manifolds $\cup s_{i}^{1 c}$

Theorem 2.4. The limit of retractions of 2-chaotic manifolds, $\cup s_{i}^{2 c}$ chaotic manifolds $\cup d_{i}^{1 c}$ intersect perpendicular with the 1 -chaotic manifolds U $s_{i}^{1 c}$ change $U s_{i}^{1 c}$ to 0 -chaotic manifolds.

Now, we will discuss the effect of the geodesic retraction of the chaotic spheres on the chaotic stereographic projections

Let us consider a sphere s_{1}^{2} of radius unity, with the differential equation $X \dot{X}+Y \dot{Y}+Z \dot{Z}=0$, then its chaotic equations will be $\bar{X} \dot{\bar{X}}+\bar{Y} \dot{\bar{Y}}+\bar{Z} \dot{\bar{Z}}=0$, and $\underline{X X}+\underline{Y \dot{Y}}+\underline{Z \dot{Z}}=0$. see Fig. 9

Fig. 9. Stereographic projection
The relation between the set of points on the geometric sphere $s_{1}^{2}(X, Y, Z)$, and any point on the geometric plane $\pi(x, y, 0)$ is
$X=\frac{2 X}{X^{2}+Y^{2}+1}, Y=\frac{2 Y}{X^{2}+Y^{2}+1}, Z=\frac{X^{2}+Y^{2}-1}{X^{2}+Y^{2}+1}$
Then there are two induced systems

$$
\left(\bar{X}_{i}, \bar{Y}_{i}, \bar{Z}_{i}\right) \in \bar{s}_{1 i}^{2},\left(\underline{X_{i}}, \underline{Y_{i}}, \underline{Z}_{i}\right) \in \underline{S}_{1 i}^{2}
$$

and two chaotic systems of pure chaotic planes
$\left(\bar{x}_{i}, \bar{y}_{i}, 0\right) \in \bar{\pi}_{i},\left(\underline{x}_{i}, \underline{y_{i}}, 0\right) \in \underline{\pi}_{i}$
we can obtain chaotic 1 -manifolds by the following retraction of $\left(s_{1}^{2}-\left\{p_{i}\right\}\right)$
$r:\left(s_{1}^{2}-\left\{p_{i}\right\}\right) \rightarrow s_{1}^{1}$ which induce two types of geodesic retractions of the chaotic spheres $\underline{\bar{s}}_{1 i}^{2}$
$\bar{r}_{i}:\left(\bar{s}_{1}^{2}-\left\{\bar{p}_{i}\right\}\right) \rightarrow \bar{s}_{1}^{1}$ and $\underline{r}_{i}:\left(\underline{s_{1}^{2}}-\left\{\underline{p_{i}}\right\}\right) \rightarrow \underline{s}_{1}^{1}$, which must be followed by stereographic projections retractions
$r^{*}: \pi \rightarrow R^{1}$, which induce,
$\bar{r}_{i}^{*}: \bar{\pi}_{i} \rightarrow \bar{R}^{1}, \underline{r}_{i}^{*}: \underline{\pi}_{i} \rightarrow \underline{R}^{1}$, see Fig. 10.

Fig. 10. Geodesic retraction of the chaotic spheres
So we can state the following theorem:
Theorem 2.5. The geodesic retraction of chaotic spheres induce two chaotic retractions of the stereographic projections which reduce the dimension of chaotic stereographic planes $\overline{\bar{\pi}}_{i}$
Let the tours $T=S_{1}{ }^{1} \times S_{2}{ }^{1}$ be a 2 -manifold which have chaotic 1 -manifolds $\cup s_{3}^{1 c}$ and let us introduce the following retractions on T,

1. $r_{1}: T-S_{2}^{1} \rightarrow \cup S_{3}^{1 c}$,
2. $r_{2}: T-S_{2}^{1} \rightarrow s_{h}^{1}$, where $s_{h}^{1} \in T$
3. $r_{3}: T-S_{1}^{1} \rightarrow$ annulus
4. $r_{4}: T-S_{1}^{1} \rightarrow s_{b}^{1}$, such that $s_{b}^{1} \in T$, as shown in Fig. 11.

Fig. 11. Retraction preserve the 1-chaotic manifolds
Then we obtain the following theorem:
Theorem 2.6. The retraction $r_{1}\left(T-S_{2}^{1}\right)$ of a geometric manifold does not change the 1 -chaotic manifolds $\cup s_{3}^{1 c}$ while the retraction $r_{2}\left(T-S_{2}^{1}\right)$ of a geometric manifold removes the 1 -chaotic manifolds.

Theorem 2.7. The retraction $r_{3}\left(T-S_{1}^{1}\right)$ of a geometric manifold preserves the dimension of chaotic manifolds $\cup s_{3}^{1 c}$ but the retraction $r_{4}(T-$ S_{1}^{1}) induces 0-chaotic manifold.

Proof: $\cup s_{3}^{1 c}$ represent 1 -chaotic manifolds that lie on the torus $T=S_{1}{ }^{1} \times S_{2}{ }^{1}$ (2-manifold), since
$r_{1}\left(T-S_{2}^{1}\right)=\cup s_{3}^{1 c}$ so this type of retraction gives the same 1 -chaotic manifolds $\cup s_{3}^{1 c}$ while the retracion $r_{2}\left(T-S_{2}^{1}\right)$ leads to the circle $s_{h}^{1} \in T$ as shown in Fig. 12. Since $s_{h}^{1} \notin \cup s_{3}^{1 c}$ then the 1chaotic manifolds $\cup s_{3}^{1 c}$ vanish.

In retracion $r_{3}\left(T-S_{1}^{1}\right)$ of a geometric manifold the torus T becomes annulus of dimension 2 but has different geometric characteristics, so $\cup s_{3}^{1 c}$ also preserve its dimension. While the retraction of $r_{4}\left(T-S_{1}^{1}\right)$ decreases the dimension of the torus T to 1 which is the dimension of circles s_{b}^{1}. Then we get a decreasing in dimension of 1-chaotic manifolds $U s_{3}^{1 c}$ to 0 -chaotic manifolds.

3. Application

In this section we introduce an application in the medical field.

Fig. 12. Eyeball instruction
Let the eyeball represent 2- manifold (geometric) and its 2 -chaotic manifolds can be sclera, choroid, retina, lens, cornea, vitreous body and lacrimal secretion carry 1 -chaotic manifolds as central retinal artery, vein and nerve.
Small size malignancy behind the eye can affect the eyeball (eye deformity) with its layers without effecting blood vessels and nerves (1- manifold) while
huge size malignancy can affect eyeball layers and also affect blood vessels and nerves.
External trauma can change the size of eyeball leading to rupture of eye, lens dislocation and retinal detachment associated with blood vessels lesions.
Glaucoma increase the size of eye without change in artery, vein and nerve

Acknowledgment

The authors are grateful to the anonymous referees, whose remarks helped to improve the presentation

References

Difrancesco, P. (2000). Folding and coloring problems in mathematics and physics. Bull-etin of the American Mathematical Society, 135, 277-291.
Docarmo, M. P. (1976). Differential Geometry of curves and surfaces. Englewood Cliff, New Jersey.
El-Abed, A. (2007). On differential equations and some geometric transformations. Ph.D. Thesis, Faculty of science, Tanta University, Egypt.
El-Abed, A. (2013). On Some Geometric Transformation of Compound Graph and Applications. International Journal of Applied Mathematics and Statistics, 41, 88103.

El-Abed, A. (2013). A New Connection in Discrete Mathematics. European Journal of Scientific Research, February, 96, 218-225.
El-Ghoul, M. (2001). Fractional folding of manifold, Chaos. Solutions and Fractals, 12, 1019-1023.
El-Ghoul, M., E. El-Ahmady \& El-Abed, A. (2007). Deformation retract of ellipsoid and its folding onto Geodesics. International Journal of Applied Mathematics, 7, 887-900.
El-Kholy, E. (1981). Isometric and topological folding of manifolds. Ph. D. Thesis, University of Southampton, U. K.

Franchetti, (2003). The retraction constant in some Banach spaces. Journal of Approximation Theory, 120, 296-308.
Goodykoontz, J. T. (1985). Some retractions and deformation retractions on 2^{x} and $\mathrm{c}(\mathrm{x})$. Topology and its Applications, 21, 121-133.
Kostelich, E. J. \&, Armbruster, D. (1996). Introductory differential equations from linearity to chaos. AddisonWesley Publishing Company, New York.
Michael, E. (2002). Closed retracts and perfects retracts. Topology and its Applications, 121, 451-468.
Pellicer-Couarrubias, P. (2004). Retractions in hyperspaces. Topology and its Applications, 135, 277291.

Robertson, S. A. (1977). Isometric folding of Riemannnian manifold. Proc. Roy. Soc. Edinburgh, 77, 275-289.
Thurston, W. P. (1977). Three-Dimensional Differential geometry and topology. Princeton University Press, New Jersey.

[^0]: *Corresponding author
 Received: 21 July 2013 / Accepted: 16 April 2014

