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Abstract

By using bifurcation theory of planar ordinary differential equations all different bounded travelling wave
solutions of the Generalized Zakharov equation are classified in different parametric regions. In each of these
parametric regions the exact explicit parametric representation of all solitary, kink (anti kink) and periodic wave
solutions as well as their numerical simulation and their corresponding phase portraits are obtained.
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1. Introduction

Many phenomena in physics, engineering and
science are described by nonlinear partial
differential equations (NPDEs). Exact
travelling wave solution of nonlinear evolution
equation is one of the fundamental objects of study
in  mathematical  physics. ~ When  these
exact solutions exist, they can help one to
understand the mechanism of the complicated
physical phenomena and dynamical processes
modeled by  these  nonlinear  evolution
equations. In the past decades a vast variety of the
powerful and direct methods to find the explicit
solutions of NPDE have been developed, such as
Hirota bilinear method (Hirota,
1971; Hirota, 2004), inverse scattering transform
method (M. J. Ablowits 1991), Backlund and
Darboux transforms method (Schief 2002), Lie
group method (Olver 1993) F-expansion method
(Fan  2004), Sine-Cosine  method  (Yan
1996), homotopy perturbation method (He
2005), homogenous balance method (Wang
1996), algebraic method (Hu 2005), Jacobi elliptic
function expansion method (Sh. K. Liu 2001) and
dynamical systems point of view (Zh. Dai, 2011;
B. Gambo, 2010). Certainly, the bifurcation theory
of planar dynamical systems is an efficient method
too. In this paper we consider the generalized
Zakharov equation by using the bifurcation
theory. The Zakharov equations (Zakharov,
1971), are used extensively in considerations of the
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evolution of Langmuir turbulence when strong
turbulence  effects are  considered.  The
Zakharov equation has various applications in
physics in the theory of deep-water waves (Shemer
2002), communication (Goldman 1984), and
nonlinear pulse propagation in fibers (Anderson
1983). The original derivation of these
equations was based on a simplified model
involving fluid concepts. The model leads to two
equations: one of these describes the evolution of
the envelop of the Langmuir waves with the
nonlinearity included through a term involving a
density fluctuation, and the other describes the
evolution of the density fluctuation due to the
ponder motive force exerted by the Langmuir
waves. Now we consider the generalized Zakharov
equations which have the form

Uge — Cszuxx = ﬁ(lElz)xx' iE; + a Eyy —a;uE +
azlEle + a3|E|4E = 0. (1)

In (1) a represents the coefficient of dispersion
and ay,a, a; represent the coefficients of
nonlinearity. When a, = a; = 0, (1) reduce to the
famous Zakharov equations (see (Zakharov,
1972; Zakharov, 1976) for details) which describe
the propagation of Langmuir waves in plasmas. The
complex number E represents, the envelop of the
electric field, and wis equilibrium value from
the fluctuation of the ion density. The parameter c,
is proportional to the ion acoustic speed. We find
exact solutions of (1) via the bifurcation theory of
planar dynamical systems. The purpose of this
paper is to give the bifurcation sets of the bounded
travelling wave solutions, i.e., solitary wave
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solutions, kink (anti kink) wave solutions
and periodic wave solutions. Also, we obtain the
explicit representation for some of these solutions
in different parametric region determined by the
bifurcation set. To find the travelling wave
solutions of (1) we consider the travelling
wave solutions of the form:

E(x,t) = v(&expli(kx — wt)], ulx, t) = u(é),& = x —ct, (2)

where k, w, ¢ are arbitrary constants, and ¢ denotes
the wave speed, k is the frequency, w is the soliton
wave number and v(¢) is a real function that
represents the shape of the pulse. By substituting
for E and u from (2) into the equations (1) we
obtain the following ordinary differential equations:

(c® = cDug = (), avg + i(2ak — vg +
(w—ak®)v—a,uv + a,v3 + azv® = 0. 3)
By integrating the first equation in (3) twice

with respect to ¢ and taking the integration constant
to be zero we obtain

u=—t v (4)

(c2-¢f)

Now we substitute (4) in the second equation of
(3) to obtain

Veg +av+ b  +yvS =0 5)
where
_ (w-ak?) _ 4  Ba _as
a= a » b= a (c2-c2)’ Y=
c=2ak (6)

Now let dv/d¢ = y. Then we derive the
following travelling wave system which is a planar
Hamiltonian system

v=1y
y = —v(a + bv? + yv?). (4)
Because the phase portraits of the Hamiltonian
system (7) determine travelling wave solutions of
(1), we find the bifurcation set for which the
qualitative behavior of phase portraits of (7)
changes. Here we consider only bounded travelling
waves because in physical model only
bounded travelling waves are meaningful. Suppose
that v(x,t) = v(x —ct) = v(§) is a
continuous solution of system (7) for —0 <& <
o and limg_, 4 v( xi) = p, limg,_,, v(§) = q. We
recall that
(i) if p=gq then v(x,t) is called a solitary or
impulse wave solution, and
(ii) if p = q then v(x,t) is called kink(anti kink)
wave solution.
Usually a solitary wave solution, a kink (anti kink)

wave and periodic travelling wave solutions of
equations (1) correspond to a homoclinic orbits or
cuspidal loop, heteroclinic orbit or eye figure loop
and periodic orbit of (7) respectively. Thus it is
necessary to find all periodic orbits, homoclinic
orbits, heteroclinic orbits of system (7) which
depend on the systems' parameters.

The rest of this paper is organized as follows. In
section 2, we give the bifurcation set and
corresponding phase portrait of system (7). In
Section 3, using the information obtained about the
phase portraits of bounded solutions of (7) we
obtain the numerical simulation for corresponding
bounded travelling wave solutions of the system
(). In Section 4, exact explicit parametric
representation for different possible solitary wave
solutions, periodic travelling wave solutions and
kink (anti kink) wave solutions of equation (1) are
given.

2. Bifurcation in phase portrait of (7)

In this section, first a brief definition of the
bifurcation is given. Bifurcation means changes in
qualitative structure of the flow of a differential
equation as parameter changes (J. K. Hale and H.
Kocak 1991). Thus a bifurcation is a change of the
topological type of the system as the parameters
pass through a bifurcation value
(kuznetsov 1998). We will often refer as local
bifurcations to bifurcations that happen in any small
neighborhood of the equilibria or cycles. There are
also bifurcations that cannot be detected by looking
at small neighborhood of equilibria or cycles. Such
bifurcations are called global. In our analysis we
consider both local and global bifurcations.

Now we consider bifurcation set (set of
bifurcation values of parameters) and qualitatively
different phase portraits of (7). First the generic
case y # 0 is considered With some time scaling
and without loss of generality we can assume
y = % 1, so that we can have Hamiltonian system

v=y,

y= —va+ bv*+v") = fi). (8)
with Hamiltonian Hi(w,y) =y%/2 +
Fy(v), where £+ correspond to y =41 and
Fy(v) = £v%/6 + bv*/4 + av?/2 is

the corresponding potential function. It is clear that
critical points of F, are zeros of fy , since - f are
derivatives of F,. It is known that
isolated minimum, maximum and inflection points
of F correspond to center, saddle point and cusp
point of system (8), respectively (e.g. see (J. K.
Hale and H. Kocak 1991). Also, it is known that
the global structure of phase portraits of system (8)
will not change qualitatively unless one of



357

1JST (2014) 38A3 (Special issue-Mathematics): 355-364

the conditions listed below is violated (J. K. Hale
and H. Kocak 1991):
i. There are only finitely many critical points of F,.
ii. Each critical point of F, is non-degenerate, that
is Fy'(#;) # 0 for critical point 7;.
iii. No two maximum values of F, are equal.
iv. |Fr(v)|—> o as |vy| - oo, that is Fy is
unbounded for both v; — oo and v; - —oo.
Potential functions satisfying the above four
conditions are called the generic potential
functions. In our case it is clear that conditions i
and iv are satisfied for all values of a and
b. Therefore to find the bifurcation set, we first
need to find conditions where critical points of F,
become degenerate. So we set

fi(a,b,v) =av+bv:t v°> =0, 9)
W=a+3bv2 +5v* =0.) (10)

By solving (9) and (10) we find the
bifurcation set to be B, ={(a,b):a=0,b%=
4a,b <0} and B_={(a,b):a=0b*= —
4a,b >0}  which  correspond to y=
+ 1 respectively. These bifurcation sets divides the
parametric plane into 7 distinct regions (see Figs. 1
and 2). In each parametric regions, the number and
type of the critical points remain unchanged. To see
the type and number of critical points it is sufficient
to consider only a typical equation for a
particular value of a and b in each region. Critical
points of Fy are v=20 and

v= i\[(—bi J Ay)/(£2) where Ay = b*F
4a which correspond to y = +1 respectively. It is
easy to verify that number of critical points of F,
will change from one non-degenerate critical point
in region Il to five non-degenerate critical points in
region (I) and three non-degenerate critical points
in region (V). On the boundary of these
regions, i.e. regions Il, 1V, VI and VII critical
points are degenerate. To classify the critical points
and determine the phase portraits of system (7)
we need to consider two cases y =1 and y = —1
separately.

v

Fig. 1. Bifurcation sets and phase portraits of equation (8)
with y = 1 in different parametric regions

Fig. 2. Bifurcation sets and phase portraits of equation (8)
with y = —1 in different parametric regions

Casel.y=1

Since F is a sixth order polynomial and the
coefficient of v® is positive, it is easy to verify that
the only non-degenerate critical points of F in
region (A, <0; or A, 20,b>0,a>0) is
v = 0 which is a minimum point. Therefore, in this
region system (7) has a global center (see Fig. 1).

In region Il (A* =0,b < 0), F, has three critical
points where v =0 is a minimum and v =

+./—b/2 are inflection points. These points
correspond to a center and cusp points of (7)
respectively. Also, because of

symmetry, H.( /—2,0) = H,(— —2.0) >

H(0,0). Therefore system (7) will have an eye-
figure loop connecting the cusp points and an oval
of periodic orbits encircling the origin and also a
band of periodic orbits outside the eye-figure loop
(see Fig. 1).

In region |1 (A, > 0,b < 0,a > 0) the potential
function F, always has three non-degenerate
minimum points and two non-degenerate maximum
points between them. Therefore, in this region
system (7) has three center and two saddle points.

Since F, is even and the critical points

+ [(—b — 4/ A,)/2 are symmetric with respect to

a-axis we have

() ()

2 2

There will be an orbit, heteroclinic to these two
saddle points, and since

H,(0,0) < H, (i [=b =B/, o).

this heteroclinic cycle includes a band of
periodic orbits encircling the origin.
Also,
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since H+<— ﬂ,0>> H, (- _b+27‘/A_+,0)

2

and H,( _b_z—‘/A—*,O)> H,( /%A—*,O), there

will be two orbits homoclinic to these saddle
points. These homoclinic orbits include a band of
periodic orbits encircling centers at

(+ /—1;27\/?,’ 0) points in system (7) (see Fig. 1).

Inregions IV (b >0,a=0),andVl,a=b=0
the only critical point of F, is v =0 which is a
degenerate minimum point, therefore system (7)
has a global degenerate center at origin (see Fig. 1).

In region V (a <0), F, has three non-degenerate

critical points at v=0,v =+ /(—b + ./ Ay)/2, where
v=0 is a maximum and v=+ [(—b+,/ AL)/2

are minimum points. Also

H,.(0,0) > H (i }%,0). Therefore, system

(7) has orbits double homoclinic to saddle point at
the origin. Also, there will be ovals of periodic
orbits inside each of the homoclinic orbits

encircling centers at (+ /(—b +./4,)/2,0) and a

band of periodic orbits outside the double
homoclinic (figure eight-loop) orbits (see Fig. 1).

In region VII (a = 0,b < 0), situation is similar
to that of region V with the difference that, the
maximum point of F, and saddle point of system
(7) is degenerate in this case. (see Fig. 1).
Therefore, we have proved the following lemma:

Lemmal. Phase portrait of system (7)
corresponding to H, = h is classified as follows
(see Fig. 1):

i. In region | (A, >0,a>0,b<0), phase
portrait of system (8) consists of two saddle
points, three centers, a cycle heteroclinic to saddle
points, two orbits homoclinic to saddle points and
bands of periodic orbits inside the heteroclinic
cycle and homoclinic orbits, and outside of figure
eight-loop.

ii. In region () (A, =0,b <0) phase portrait
of (7) consists of a center, two cusp points, an eye-
figure loop and two bands of periodic orbits inside
and outside of the eye-figure loop.

iii. In regions Il (A, <0orA,>0,a>0, b>
0) phase portrait consists of a global non-
degenerate center.

iv. In regions VI (a=b=0)and IV (a=0,b >
0), phase portrait consists of a degenerate global
center.

v. In region V(a < 0), phase portrait consists of
a non-degenerate saddle point at the origin, two

centers at

(+ /(—b +4,)/2,0), a

double homoclinic orbit to the saddle point and
bands of periodic orbits inside and outside of the
double homoclinic orbit.

vi. In region VIl (a=0,b <0), phase portrait
consist of a degenerate saddle point at the
origin, two centers, a double homoclinic orbit to the
saddle point and bands of periodic orbits inside and
outside of the double homoclinic orbit.

Casell.y = -1

In this case parametric region is divided into eight
locally topologically equivalent regions by
bifurcation set B_ (see Fig. 2). Using a similar
analysis to Case | we can derive the phase portraits
of system (7). Inregionlll (A_ >0,a<0,b > 0)
potential  function F.  has three  non-
degenerate maximum points at x =0, x =

t % and two minimum points atx =
b—,/ A_
tJ—,— Also, because of symmetry

H_( b+m,0) =H_ (— b+m, 0). Therefore

2 2

saddle points i( [(b +.4A)/2, 0) always lies

on the same level curve of the Hamiltonian H_ =
h. Furthermore along parabola a = —3b%/16,b >
0 all three saddle points lie on the same potential

level, i.e. H(0,0)=H( (b+JA__)/2,0) =0,

therefore region Il will be divided into three
subregions which will be denoted by

I (a) = {(a, b) € region Ill: a > —31—1:},
- ; .
11 (b) = {(a, b) € region Ill: a = P } and

li(c) = {(a, b) € region Ill:a < —%}. In region
I1I(b) bounded orbits of phase portraits of
system (7) consist of two cycles heteroclinic to
saddle points at origin and

< b+ A_)/2,0>, and bands of periodic orbit

inside the heteroclinic cycles. In region Ill(a), 0 =

H(0,0) < H_ <i [(b+AD)/2, 0>, therefore the

phase portrait of bounded orbits of (7) consist of a
double  homoclinic  orbit to origin, a
cycle heteroclinic to saddle

points (i [(b+D)/2, O), bands  of

periodic orbits inside homoclinic orbits and a band
of periodic orbits outside oh double homoclinic
orbit and inside the heteroclinic cycles. In region
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Ii(c), 0 = H(0,0) > H_ (i /%I,O). Therefore

the phase portraits of bounded periodic orbits
consist of homoclinic orbits to saddle points

(i /b+2A_,O> and band of periodic orbits inside

each of the homoclinic orbits (see Fig. 2). Phase
portraits of system (7) in other regions are derived
in a similar manner and are omitted here for the
sake of brevity. Therefore, it is proved that:

Lemma2. Phase portrait of system (7)
corresponding to H_ = h is classified as follows
(see Fig. 2):

i. In region | (a > 0) phase portrait of bounded
orbits consists of a center at the origin, two saddle

points at (i /(b +.A)/2, 0), cycle heteroclinic

to the saddle points and a band of periodic orbits
encircling the origin inside the heteroclinic cycle.

ii. In region Il (a=0,b>0), phase portrait
of bounded orbits consists of a degenerate center at
the origin, two saddle points at (+ /b, 0), cycle
heteroclinic to the saddle points and a band of
periodic orbits encircling the origin inside the
heteroclinic cycle.

iii. In region (1l1) (A_ > 0,a < 0,b > 0), there are
three saddle points at (0,0,

(i /(b +A)/2, 0) and two centers at
(i [(b—[DD)/2, 0). In regions 111(a) there are a

double homoclinic orbit to origin, a cycle

heteroclinic to saddle points ( /#,0), bands

of periodic orbits inside homoclinic orbits and a
band of periodic orbits outside double homoclinic
orbit and inside the heteroclinic cycles. In region 111
(b) there are two cycles heteroclinic to saddle

points at origin and < /b+2A‘,0), and bands of

periodic orbit inside the heteroclinic cycles. In
region I11(c), there are homoclinic orbits to saddle

points (i /(b +.AD)/2, 0) and band of periodic

orbits inside each of the homoclinic orbits.

iv. In region IV (A_ =0, b >0, a <0), there is
a saddle point at (0,0) and two cusp points at
(+/b/2,0).

v. Inregion V (A_<0Qor A_>0, a<0,b<0)
there is only a saddle point at (0,0).

vi. In regions VIl (a =0,b<0)and VI (a =b =
0), there is a non hyperbolic saddle point at the
origin (0,0).

Caselll.y =0
Now we consider the degenerate case y = 0. If
b # 0, equation (7) becomes

v=y,
y = -v(a+ bv?). (11)

Then without loss of generality we can assume
b = +1, so that we can have Hamiltonian system

v=y,
y= —vlat vd):=f1(v),(12) (12)

with Hamiltonian H.(v,y) = y%/2 + F,(v), where
+ corresponds to b = +1 and Fy(v) = tv*/4 +
av?/2 is the corresponding potential
function. Similar to the above discussions to the
case | and Il, we see that bifurcation occurs in
a=0. If y=>b=0 then system (5) becomes a
linear differential equation. Then we have the
following lemma:

Lemma3. Phase portrait of system (11)
corresponding to A, = h is classified as follows:

i. If b=1 then the phase portrait of system
(11) consists of a global center at the origin for
a > 0, a degenerate global center at the origin for
a =0 and a non-degenerate saddle point at the
origin, two centers at (+v—a0), a
double homoclinic orbit to the saddle point and
bands of periodic orbits inside and outside of the
double homoclinic orbit for a < 0.

ii. If b =—1 then the phase portrait of system
(11) consists of two non-degenerate saddle points at
(+Va,0), cycle heteroclinic to the saddle points
and a band of periodic orbits encircling the origin
inside the heteroclinic cycle for a > 0, a degenerate
saddle at the origin for a = 0 and a saddle at the
origin for a < 0.

iii. If b = 0 then for a = 1 we have a global center
at the origin and for a = —1 we have a non-
degenerate saddle point at the origin.

3. The numerical simulation of bounded
travelling waves

It is well known that the bounded travelling waves
E(&) of system (1) correspond to the bounded
integral curves of system (7). In Lemmas 1, 2 and
3, all bounded integral curves of system (7). have
been classified. In this section we give numerical
simulation for a typical member of bounded
travelling waves of system (7) in the form of
v(x,t) = v(x — ct) = v(£) as follows:

Case 1. Homoclinic loops

These orbits only exist in regions I, V when y =
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1, in regions Ill(a), 111(c) when y = —1 and for
y = 0,a < 0. Homoclinic orbits of system (7)
correspond to solitary travelling waves of (5). Let
y=1, b=-3, a="7/4, which correspond to a
point in region | of Fig. 1. Now we consider system
(7) and choose initial conditions v(0) =
—1.707106, v'(0) = 0. So that they lie on the left
branch of double homoclinic orbit (figure-eight
loop). In physics this type of travelling wave is
called solitary wave with valley form (see Fig.
3(a)). Now let y =1, b=-3, a=7/4 which
correspond to a point in parametric region | in Fig.
1. Again we use initial conditions to be on the
homoclinic orbit of system (7). Let v(0)=
1.707106,v'(0) = 0 so that they lie on the right
branch of double homoclinic orbit (figure-eight
loop). This type of travelling wave in physics is
called solitary wave with peak form (see Fig. 3(b)).

(a) (b)

Fig. 3. The simulation of solitary waves corresponding to
the homoclinic orbits of equation (7). (a) Solitary wave of
valley form, (b) Solitary wave of peak type

Case Il. Nilpotent Homoclinic loops

These orbits only exist in region VII when y =
1. Nilpotent Homoclinic loop of system (7)
corresponds to solitary wave of system (5). As in
the previous part two set of parameters y =1, b =

_; a = 0 are chosen which correspond to a point

in region VII in Fig. 1. Now we consider system (7)
and choose initial conditions
v(0) = —1.066517046, v'(0) = 0 so that they lie
on the left branch of degenerate double homoclinic
(figure eight loop) which correspond to solitary
wave with valley form (see Fig. 4(a)). For the same
parameters and initial conditions v(0) =
1.066517046, v'(0) = 0 so that they lie on
the right branch of degenerate double homoclinic
(figure eight loop) which correspond to solitary
wave with peak form (see Fig. 4(b)).

(a) (b)

Fig. 4. The simulation of the solitary waves
corresponding to nilpotent homoclinic orbits of equation
(7). (a) Solitary wave of valley form, (b) Solitary wave of
peak form

Case I11. Heteroclinic orbits

These orbits exist only in region | when y = 1 and
in regions I, Il, l(b) when y =—-1 and for
y = 0,a > 0. Upper and lower heteroclinic orbits
of system (7) correspond to kink and anti-kink
travelling waves of system (5) respectively. Again
we consider system (7) and choose y =1,b =
—3,a =7/4 which correspond to a point in
parametric region | in Fig. 1. As has been
mentioned above in this case we have orbits are
heteroclinic to saddle points

(—,/(3 -2)/2, 0> and ( /(3 -v2)/2, 0). Now

we use initial conditions v(0) =0,v'(0) =
0.7814744144 and

v(0) = 0,v'(0) = —0.7814744144 on upper and
lower heteroclinic orbits respectively and obtain
Fig. 5(a, b).

ANs

Fig. 5. The simulation of the kink and anti-kink waves
corresponding to the heteroclinic orbits of equation
(7). (8) Anti-kink waves, (b) Kink waves

Case IV. Eye-figure loop

This loop exists only in region Il when y =
1. Upper and lower orbits of eye-figure loop of
system (7) again correspond to kink and anti-kink
travelling waves of system (5) respectively. As in
previous part a set of parameters y =1, b = -2,
a =1 are chosen, which correspond to a point
in region Il in Fig. 1. Now we consider system (7)
and choose initial conditions v(0) = 0,v'(0) =
0.5773502692 and v(0) = 0,v'(0) =
—0.5773502692 on upper and lower orbits of eye-
figure loop respectively and obtain Fig. 6 (a, b).

- e gy
Fig. 6. The simulation of the kink and anti-kink waves

corresponding to the eye figure loop of equation (7). (a)
Anti-kink waves, (b) Kink waves

Case V. Periodic orbit
These periodic orbits are global (regions 11, 1V, V1)
when y=1 and for y=0,b=1,a=0 or
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local which lie inside homoclinic orbits (regions
ILV) when y =1 and (regions Ill(a), 111(c)) when
y = —1, inside and outside of eye-figure loop
(regions 1) when y = 1, inside heteroclinic cycles
(region I) when y = 1 and (region I, Il, I11(b)) when
y=-1 and for y=0, b=-1, a >0, inside
and outside of double figure-eight loop (regions I)
when y = 1, inside and outside of nilpotent double
homoclinic loop, (regions VII) when y =1 and
inside and outside of figure eight loop (regions
Il1@) when y=—1 and fory =0, b=1, a<
0. Periodic orbits of system (7) correspond to
periodic travelling waves of system (5). Here we
choose a periodic orbit inside the heteroclinic orbits
in region | in Fig. 1. Of course, we could choose a
global center or period orbits inside
homoclinic orbits, period orbits inside and outside
of eye figure loop as well, but the figures are
qualitatively the same. Let y =1,b=-3,a=17/
4. Heteroclinic orbit corresponding to these set of
parameters  passes through saddle points

(— /(3 —2)/2, o) and < /(3 —2)/2, o) and

include the center (0,0) of system (7). We choose
three sets of initial conditions v(0) = 0, v'(0) =
0.7,v(0) = 0, v'(0) = 0.000001 and v(0)=
0, v'(0) = 0.7811, close to center
(0,0), somewhere in the middle and very close to
heteroclinic orbit respectively (see Fig. 7 (a, b,
€)). We notice that the period of these periodic
orbits increases as we move away from the center
toward the heteroclinic orbits. When y =1 we
choose two set of initial conditions v(0) =
1.523,v'(0) = 0 and v(0) = 1.7, v'(0) = 0 close
and far from the figure-eight loop in region V
respectively (see Fig. 8(a, b)). Finally, we choose
two sets of initial conditions v(0) = 0,v'(0) =
0.82 and v(0) = 0,v'(0) = 1.5 close and far from
the double figure-eight loop respectively (see Fig.
9(a, b)).

M-IV Y

Fig. 7. Simulation of periodic waves corresponding to
periodic orbits inside heteroclinic cycle of equation
(7). () Medium period, (b) Short period, (c) Long period

Fig. 8. Simulation of periodic waves corresponding to
periodic orbits outside of figure-eight loop of equation
(7). () Close to figure-eight loop, (b) Far from figure-
eight loop

(a) (b)

Fig. 9. Simulation of periodic waves corresponding to
periodic orbits outside of double eight figure loop of
equation (7). (a) close to double figure-eight loop, (b) Far
from double figure-eight loop

Remark 1.

i. We notice the difference between solitary waves
in Figs. 3 and 4 and kink, anti-kink in Figs. 5 and 6
which shows their asymptotic behavior ast —
+oo. In Fig. 3 stable and unstable manifolds of
equilibrium point intersect transversally but in Fig.
4 they intersect tangentially. Similar condition
holds in Figs. 5 and 6 respectively.

ii. We notice that the number of inflection points on
periodic waves during one half period in each of
Figs. 7, 8 and 9 is zero, one and two which
correspond to the shape periodic orbits of system

().

4. Explicit formulas for bounded integral curves
of (7)

In this section explicit formulas for bounded
travelling waves of system (7) are given. In the first
step we consider the bounded graphics of system

().

CASEl.y=+1
Region I: There are two homoclinic orbits and two
heteroclinic  orbits of system (7) defined

by Hwy)=H (J_r /(—b +441)/2, o> = H(£7,0)

connecting saddle points (£, 0) which are passing
through points (£ ¥, 0). Therefore

y=+2(H( 0) - H(v,0)) = +[v? —
7?J@2 —v)/3,

where V= [(=b+2,/A})/2 and V=

[(—b +,/A,)/2. On the right and down branch of

the homoclinic orbit we have y=(v?-—

72)/(¥"2 —v?)/3. Since dv/dé=1y, by
integrating along the right homoclinic orbit for
negative y we get:
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3 % d¢
d¢ = .
L ‘ V§L(¢2—ﬁﬂ¢W—¢2

Then after some algebraic calculations we obtain
solitary wave solutions:

52 _52
\/(ﬁz—ﬁz)tanh2<f;$ z 3” +172)

Along the above heteroclinic orbit we have
y = (92 —v"2),/ (P2 — ©2)/3. As above we can
obtain kink and anti-kink wave solutions:

o9 tanh(7¢/(52-52)/3)

2+92(tanh2 (¢ (#2-92)/3)-1)

v() ==

v(©) =
J

Region I1. There is an eye-figure loop of system
(7) defined by H(v,y)=H(/-b/2,0) =
H(+v,0), connecting the cuspidal points
(£7,0). Therefore y = +./(¥% —v?)3/3. Along
the above heteroclinic orbit we have y = (¥? —
v?),/(#% — v2)3/3, which have kink and anti-kink
solutions:

— §ve
(@) =t
Region V. There are two orbits homoclinic to origin
for system (7) defined by
H(v,y) =0 that are passing through points
(%7, 0). Therefore

y = x|v|{/(#2 —v2)(v2 + k2)/3, where ¥ =
\[—3b/4 ++9b2 — 48a/4; k? = 3b/4 +

V9b2 — 48a/4. The solitary wave solutions are:
v(E) = + V2Dk .
J(k2—52)+(k2+172)cosh(217k§/\/§)

Region VII. There are two nilpotent homoclinic
orbits of system (7), defined by

H(v,y) = 0 connecting to degenerate saddle point
(0,0) and passing through points (+7,0). Then we

have y = +/v* (92 — v?) = +v2,/(P2 — v?2)/3
where ¥ = ,/—3b/2. The solitary wave solutions
are:

_ V30
V() =

CASE2.y =-1
Region I: There are two heteroclinic orbits of
system (7), defined by H(v,y) =H(x7,0) =

H(i /(b +\/F)/2,0> connecting the with two

saddle points (+7,0). Therefore y = +(v% —

v2) /(v + k2)/3, where k2 =-b/2 +

v/A=, which have kink and anti-kink solutions:

v &2 +K2
U(f) -+ vktanh(vfm)
Jk2+172(1—tanh(ﬁf\/m))
Region I1. There are two heteroclinic orbits of system
(7), defined by H(v,y) = H(+Vb,0) connecting with
two saddle points (+vb,0). Therefore y = +(b —
v%){/(v? + b/2)/3. The kink and anti-kink solutions

are given by:

v(E) = + Vb tanh (b€ /V2) .
3-2 tanh?(b&/v2)

Region I11(a). There are two homoclinic orbits of
system (7) defined by H(v,y) = 0 connecting with
saddle point (0,0) and passing through points
(£7, 0). Therefore

y = v/ = ) (W2 — k)3

Where # = /3b —/9b? + 48a/2 and

k+/3b++Ob% +48a/2. We have two solitary
wave solutions:

20 kvk™2—7°2 exp(§7 k/V/3)
\/[(kz—ﬁz) exp(2E7 k/v3))|° —452k2

v =+

In this region there are also two heteroclinic
orbits of system (7) defined by H(v,y)=

H(+%,0) = H (i /(b + \/A__)/Z,O) connecting

the saddle points (£7,0) =

(i [(b+ \/A__)/2,0>. Therefore y = +(9% —

v2)/(v2 + m?)/3,
where k? = (—b + 2,/A_)/2. Kink and anti-kink
solutions are given by:

mb tanh(¥,/(92+m?2)/38)
sz +92(1-tanh2 (3 @7 +m?)/3¢))

v =+

Region 111 (b).
There are four heteroclinic orbits of system (8)
defined by H(v,y) = H(0,0). Two of these orbits

connect (0,0) and (— /(b +\/A__)/2,0> and the
other two connect (0,0) and( /(b + JE)/Z,O).

Therefore y =+/(@2 —v2)2v2/3 = +(¥? —
v2)v/v/3, where = [(b+,/A_)/2. Kink and
anti-kink solutions are of the form:

7 D exp(73§/V3)
v2 +172(exp(2172€/\/§)—1)’

V() =+
\
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where ¥ = ’(b—,/A_)/Z.
Region 111 (¢):
There are two homoclinic orbits of system (7)

defined by H(v,y) = H(+ /(b +.,/02)/2,0) =

H(+v,0) connecting with saddle points (+7,0)
and passing through points (£%, 0). Therefore
y = +(9? — v?),/(v? — ©2) /3 where

U= /(b+JE)/2 and = [(b—2,/A2)/2. There

are solitary wave solutions given by:

ﬁ\/tanhz(fi\/iz—ﬁz/ﬁ)—ﬁz
ﬁ\/tanhz(fﬁ\/ﬁz—ﬁz/ﬁ)—l

v =+

CASE3.y =0

Regionb=1, a <0:

There are two orbits homoclinic to origin for
system (7) defined by H(v,y)=0 which
pass through points (+v—2a,0). Therefore
y = t|v|y/—(w? + 2a)/2. Two solitary wave
solutions are given by:

v(é) = i\[Za cot?(v/—a& + m/2) — 2a.

Regionb = —1,a > 0:

There are two heteroclinic orbits of system
(7), defined by H(v,y) = H(%Va,0) connecting
saddle points (+va,0) defined by y = +(a—
v2)/4/2. Kink and anti-kink solutions are:

v(§) = +Vatan(ya/2¢)

CASE 4. Periodic orbits

Now we calculate explicit formulas for bounded
periodic travelling waves. Here we only
consider periodic orbits of (7) which are located
inside the right homoclinic loops of Fig. 2 (y =
—1) in regions 111(a) and I1I(c) and inside the right
heteroclinic loop of Fig. 2 (y = —1) in regions
I11(b). Suppose that the periodic orbit passes
through (w4,0) and (w,,0) so that 0 < w; <
w,. Therefore this periodic orbit lie on the level
curve H(v,y) = H(w,,0) =h where H is the
Hamiltonian function. Define G(v,0) =
H(w,,0)—H(v,0). G(v,0) is a sixth
order polynomial with respect to wv, where
tw,, tw,, *w; are their roots with 0 < w; <
w, < ws. Therefore,

=+.,/2G(v,0) =

y
+/(0? — w?)(v? — 0P (V2 — w?)/3.

Since dv/dé =y, we get:

[«

v dq.’>
=+/3 .
Ll V(@2 — 0?) (92 — wd)(¢? — wd)

With change of variable of the form ¢2 = u on
the right hand side above we can derive

¢ V3 v du
g = — :
fo =72 fw% Vu@u — o)) - o) -ol)

Now by using integral tables for elliptic integrals
(P. F. Byrd 1971) we have

Uy
283 = gf du = gu, = gsn~(sin¢, k),
0

where sn~! is inverse Jacobian elliptic function
with modulus k (see (P. F. Byrd 1971)), snu, =
sin ¢ and

wi(v? — w)

¢ =sin"!| |———= 2
vi(w; —w3) |
_ (0} — 0w}
(wF — wf)ws’
g =

(03 = w)w;

Then after some algebraic calculations we get
solitary wave solution:

wiw}

£ [(02-w)w2 '
w§+(w§-w§)sn2<—\[ 2

v(§) =

Formulas for other periodic orbits of system (7)
can be derived in a similar manner and are omitted
here for the sake of brevity.
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