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Abstract

The main objective of this study is to swing Krull intersection theorem in primary decomposition of rings and
modules to the primary decomposition of soft rings and soft modules. To fulfill this aim several notions like soft
prime ideals, soft maximal ideals, soft primary ideals, and soft radical ideals are introduced for a soft ring over a
given unitary commutative ring. Consequently, the primary decomposition of soft rings and soft modules is
established. In addition, the ascending and descending chain conditions on soft ideals and soft sub modules of soft
rings and soft modules are introduced, respectively, enabling us to develop the notions of soft Noetherian rings

and soft Noetherian modules.
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1. Introduction

The certainty of information has always been a
major challenge; it is quite difficult to obtain the
required level of precision information. In order to
deal with problem precision in information, several
models and theories were developed and employed
but none of them served the purpose of exact
precision. It was concluded that the fundamental
cause of uncertainty lies in the set theory based on
classical logic. Russell's paradox is one of the
examples that points out the limitation of classical
set theory. Molodtsov (Molodtsov, 1999) initiated
soft theory as a mathematical tool to solve the
problem of precision in information. Maji et al.
(Maji. et. al, 2002 and 2003) showed the
significance of the soft set theory by applying it in
the decision making problems. Moreover, he
introduced new functions on soft set. Chen (Chen,
2005) established the notion of soft set
parameterization reduction, which made the soft
theory more applicable. Later, the concept of
normal parameter reduction of soft sets was
introduced by Kong (Kong, 2008). Whereas Zuo et
al. (Zou, 2008) introduced the soft set data analysis
method. Ali et al. (Ali et al. 2009) contributed some
new algebraic operations on the soft sets. In (Li
2011) Fu Li obtained some results of soft set theory
based on his newly defined algebraic operations
and proved that the distributive law holds involving
two new operations. Aktas and Cagman (Aktas and
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Cagman 2007) applied notions of group theory on
soft sets. Jun (Jun, 2008) and Jun and Park (Jun and
Park, 2008) have explored BCK/BCI-algebras and
there application in the soft sense. However, Feng
(Feng, 2008) investigated a soft semi-rings,
idealistic soft semi-rings and soft ideals. Moreover,
Shabir and irfan (Shabir et al. 2009) restricted one
binary operation and investigated soft ideals over a
semigroup. In continuation in a general setting Shah
et al. (Shah et al. 2011) have a soft treatment of
ordered  Abel-Grassman's  Groupoids  (AG-
Groupoids).

Recently, Soft set theory has incredible growth in
the algebraic structures. Aktas and Cagman (Aktas
et al. 2007) extended soft set for soft group.
However, in (Acar et al. 2010) the basic idea of a
soft ring was introduced, which is in fact a
parameterized family of subrings and ideals of a
ring. Atagun and Sezgin (Atagun and Sezgin, 2011)
presented soft subring and soft ideal, soft subfield
over a field and soft sub-module over a left R-
module. Celik et al. (Celik et al. 2011) described a
new concept of soft rings, soft ideals, and
introduced some new operations in soft set theory.
The notion of soft modules and its properties are
defined in (Sun et al. 2008).

In this study, initially we extended the concepts
of soft ideals in a soft ring to soft irreducible ideals,
soft prime ideals, soft maximal ideals, soft primary
ideals and soft radical ideals. Ultimately the
primary decomposition of soft rings and soft
modules is proven and consequentially, a shift in
Krull  intersection  theorem in  primary
decomposition of rings and modules is obtained.
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Furthermore, the ascending and descending chain
conditions on soft ideals and soft sub modules of
soft rings and soft modules are presented.
Accordingly, we are able to develop the notions of
soft Noetherian rings and soft Noetherian modules.

The paper is organized as: In section 2, some
relevant definitions and results on soft sets and soft
rings are described. While in section 3, we delimit
the primary decomposition of a soft ring. Also,
ascending and descending chain conditions on a
soft ring are also described in detail. In the same
section the notions of a soft Noetherian ring and a
soft Laskerian ring are presented. Section 4
contains the discussion on primary decomposition
of a soft module. Moreover ascending and
descending chain conditions on soft modules are
also given with soft Noetherian and soft Laskerian
modules. The major objective is obtained as a
theorem, analogous to Krull intersection theorem
for a soft ring and a soft module.

2. Preliminaries

Molodtsov (Molodtsov, 1999) defined a soft set as:
Let U be an initial universe and E be a set of
parameters. The power set of U is denoted P(U) and
A be a non-empty subset of E. A pair (F,A) is
called a soft set over U, where F is a mapping given
by A— P(U). In other words, a soft set over U is
a parameterized family of subsets of the universe
U . For £ € A F(g) is the set of £ -approximate
elements of (F,A).

Here, we recall some basic facts concerning soft
sets from (Maji et al. 2002), for two soft sets (F, A)
and (G, B) over a common universe U , (F,A) is a
soft subset of (G, B) (i.e., (F,A) € (G,B)). fAcB
and for all e € A, F(e) and G(e) are identical
approximations. (F,A) is said to be a soft superset
of (G, B), if (G, B) is a soft subset of (F,A) and is
denoted by (F,A) 3 (G, B). Two soft sets (F,A) and
(G, B) over a common universe U are said to be soft
equal if (F, A) is a soft subset of (G, B) and (G, B) is
a soft subset of (F,A). Moreover, a soft set (F,A)
over U is said to be a null soft set denoted by ¢ if

F(&)= ¢ (null set) for all £ € A, and a soft set
(F,A) over U is said to be absolute soft set
denoted by A if F(&)=U for all £ € A. Also
A°=@ and @°=A. If (F, A) and (G, B) are two soft
sets, then "(F,A) OR (G,B)" denoted by
(F,A)V(G, B) is defined as (F,A)V(G,B) = (0,A x
B) where O(a, ) = F(a) U G(B) for all (a,B) €
A X B.

The union of two soft sets (F,A) and (G, B) over
the common universe U is the soft set (H,C),

where C=AUBforalle € C,

F(e) ife€A/B
H(e) = G(e) ife €B/A
F(e)uG(e) ife€ANB

and (F,A) U (G,B) = (H, 0).

The bi-intersection of two soft sets (F,A) and
(G, B) over the common universe U can be defined
by Feng (Feng 2008) as follow: (F,A) i (G,B) =
(H, C) is the soft set (H,C), where C=ANB and
H(e) = F(e) N G(e) for all e € C. Celik et al.
(Celik et al., 2011) gives restricted sum of two soft
sets (F,A) and (G, B) over a ring R is defined as
(F,A) ®, (G,B) = (H,C) where C=ANB and
H(e) = F(e) + G(e) for all e € C. Whereas the
extended product of two soft sets (F,A) and (G, B)
over a ring R defined by (F,A) ®y (G,B) =
(H, C), where C = AU B and

F(e) ifee A/B
H(e) = G(e) ife€eB/A
F(e)-G(e) ife€ANB

for all e € C. The restricted product of two soft sets
defined by (F,A) ©,(G,B)=(H,C) where
C=AnNnBandH(e) = F(e) - G(e) forall e € C.
From now on, we assume that R is a unitary
commutative ring and all the soft sets are
considered over R. The support of the soft set
(F,A) is defined by Acar et al. (Acar et al., 2011).

Supp(F,A) = {x € A:F(x) # ¢}

A soft set is said to be non-null if its support is
not equal to the empty set.

Definition 2.1. (Acar et al, 2011, Definition 3.1) A
soft set (F,A) over a ring R is called a soft ring
over R if F(x) is a subring of R for all x € A. A soft
subring is defined as R, if (F,A) and (G, B) are soft
rings over R. Then (G, B) is called a soft subring
of (F,A) if B c A and G(X) is a subring of F(x), for
all x € Supp(G, B).

Some results for the quick reference are mentioned
below.

Theorem 2.2. (Acar et al., 2011, Theorem 3.6) Let
(F, A) and (G, B) be soft rings over R. Then

1. If G(x) € F(x), forallx € B c A, then (G,B) is a
soft subring of (F, A).

2. (F,A) T (G,B) is a soft subring of both (F,A)
and (G, B) if it is non-null.

Definition 2.3. (Acar et al., 2011, Definition 4.2) If
[c A and y(x) is an ideal of F(x), for all x €
Supp(y,I) and I € A and y(x) is an ideal of F(x), for
all x € Supp(y, D), then (y, 1) is a soft ideal of (F, A).
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Theorem 2.4. (Acar et al., 2011, Theorem 4.3) Let
(71, |1) and (}/2, |2) be soft ideals of a soft ring

(F,A) over R. Then (y4,1;) fi (y5, 1) is a soft
ideal of (F, A) ifit is non-null.

Theorem 2.5. (Acar et al., 2011, Theorem 4.4) Let
(7;,1,) and (y,,1,) be soft ideals of soft rings
(F,A) and (G,B) overR, respectively. Then

(v1, 1)) T (y3, 1) is a soft ideal of (F,A) f (G, B) if
it is non-null.

Theorem 2.6. (Acar et al., 2011, Theorem 4.6) Let
(F,A) be a soft ring over R. (y4,1;) and (y,, ;) be
soft ideals of over R. If I; and I, are disjoint, then
(v1,11) O (y3, 1) is a soft ideal of (F, A).

Definition 2.7. (Acar et al., 2011, Definition 5.1) A
non-null soft set (F,A) over R is said to be an
idealistic soft ring over R if F(x) is an ideal of R for
all x € Supp(F, A).

In this subsection, the idealistic approach is used.
The notion of soft prime ideal is defined below.

Definition 2.8. Let (F,A) be a soft ring over the
ring R. A non-null soft set (y,[) over R is called
soft prime ideal of (F,A). This is denoted by (y,I)

(7,1)>P (F,A) if it satisfies the following
conditions:

a) | c A.
b) y(X) is an ideal of F(X), for all

X e Supp(y,1)-
¢) For F(a), Fbe(F,A, D
F@)-F(b)e(y,|)= either F(a)e(y,l) or
F(b)e(,l).

Next, we give the definition of soft maximal ideal.

Definition 2.9. Let (F, A) be a soft ring over a
ring R . A softideal (y,I) over the ring R is called
soft maximal ideal of (F,A) denoted by
(7, H>"(F,A) if y(X) is soft maximal ideal
of F(X), for all x € Supp(y, ).

The soft primary ideal and radical soft ideal is
defined as;

Definition 2.10. Let (F, A) be a soft ring over the
ring R. A non-null soft set (y,I) over R is called
soft primary ideal of (F,A)(F,A), denoted by

(v,I) >P' (F,A) if it satisfies the following
conditions:
a) C A

b) Y(X) is an ideal of F(x), for all x € Supp(y, D).

¢) For all F(a),F(b) € (F,A), F(a)-F(b) €
(y,I) = either F(a) € (y,I) orF(b)" € (y,I), for
some NeZ".

Definition 2.11. Let (y, ) be a soft ideal of (F, A)
over the ring R. Then radical of the soft ideal
(7,1) is denoted by rad((y, 1)) and defined as:

rad((y,1)) = {F(a) € (F,A): (F))" € (v, )}.

Proposition 2.12. The radical of a soft primary
ideal is a soft prime ideal.

Proof: Obvious.

3. Primary decomposition of Soft rings

Recall that in a unitary commutative ring R, an
ideal | of R has a primary decomposition if | is
a finite intersection of primary ideals, that is,

n

I :ﬂ Q where Qi are primary ideals of R.
i=1

The primary decomposition | is said to be reduced

if the prime ideals /Q #,/Q;  and
n

\ .Qﬂ JQ; for 1<i<n and i#j.If
j=1

each ideal of a ring can be written as an intersection
of primary ideals (resp. finite intersection of
primary ideals), then ring is said to be ring with
primary decomposition (resp. Laskerian ring).

In this section we will develop the results about
the primary decomposition of soft rings which
plays fundamental roles in commutative algebra.
Also, we prove an analogue to the result that: In a
Noetherian ring every ideal can be written as a
finite intersection of irreducible ideals. Moreover, it
is determined that all proper soft ideals in a soft
Noetherian ring have primary decomposition.

Definition 3.1. Let (7, I ) be a soft ideal of a soft
ring (F,A) over R. We say that (7/, |) has a

primary decomposition if there exist a non-empty
family{(y;,1;):i € N} of soft primary ideals of

( F, A) such that

1.I=N;l, foralli € N;
2.v(x) = N;y;(x), foralli € N.
A short notation (y,I) =M;—; (y;,I;) for primary

decomposition of (}/, | ) is used.

Definition 3.2. A soft ring (F, A) over R is said
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to have a primary decomposition (resp. a Laskerian
soft ring) if each soft ideal of (F,A) has a

primary decomposition (resp. finite primary
decomposition).

Definition 3.3. A soft ring (F, A) is said to be

reduced or irredundant if it has a primary
decomposition, that is, each soft ideal (y,I) =
M;—, (v;, I;), where (y;,1;) are soft primary ideals.
Then

a)rad(y;, I;) # rad(y;, I;), forall i,j € N,i # j;
b) (yi,li) ;@jii (]/J,I]), for all L,] € N.

Definition 3.4. Let (F,A) be a soft ring over R
and (y,I) be soft ideal of (F,A). Then (y,I) is soft
irreducible if (y,I) = (yy,I,) M (v, I,), where

(v1, 1) and (y3, I;) be a soft ideals of (F, A) , and
either (v, 1) = (y1, ) or (v, 1) = (v2, I2).
Definition 3.5. Let (7, 1) and (¥,J) be two soft

ideals of a soft ring (F, A). Then (5, 1) is said to
are (y,J)-primary if (¥,1) is soft primary and

rad ((7,1)) = (7,9).

Definition 3.6. Let (7;,1,) and (7,,1,) be two

soft ideals of (F,A) over R Denote soft ideal

quotient by the set,

((Yl» I,): (Vz'lz)) ={F(a):F(a)(y,, I,) €
(ru, 1)}, where the product

F(a)-7,(b)e(n.1)) for all
}/Z(b)E(}/sz),
((}/1,|1)2(}/2,|2)) is a soft ideal of(F,A).

implies that

Theorem 3.7. Let (F, A) be a soft ring over R and
(vi, 1)) ien be soft ideals of (F,A). The following
conditions are equivalent:

1. Every ascending chain of soft ideals is stationary,
that is,

a) The set of subsets |i of a given set A is ordered

by inclusion.

b) y1(x) € y,(x) € y3(x) S -+ such that y,(x) S
Yn+1(x), for all x € Supp(Nien (¥, 1;)) and

()/1'11) c (YZ!IZ) c ()/3'13) c.-c (Yn! In) c
(F,A).

2. Every non empty set of ideals in (F, A) having a
maximal element.

Proof: Suppose (1) holds. Let us consider S as a

set of all proper soft ideals in a soft ring (F, A).

Since the soft ideals are ordered by inclusion, it is
implied that every ascending chain of soft ideal in
S has an upper bound. By using Zorn's lemma, S
contains a soft maximal element. As S contains
proper ideals, the maximal element in S is a proper

soft ideal of (F, A). Thus, there is a soft maximal
ideal for inclusion among all proper soft ideals.
Hence every non empty set of ideals in ( F, A) has

a maximal element.
Conversely, assume that (yy,I;) € (v, 1) S
(y3,13) € -++ is being an ascending chain of soft
ideals. Suppose (y,I) =U;ey (¥1, 1), and S be the
set of soft ideals that are properly contained in
(y,I). Therefore, S contains a maximal element.
Since every nonempty set of ideals has a maximal
element, for some n € N, each (y;,I;) is contained
in (Y, I,,). Hence
o 1) = Wntv Ing1) = Wnsz fng2) = = @, D).
Thus, every ascending chain of soft ideals is
stationary.

Definition 3.8. Let (F, A) be a soft ring over a ring
R and (y;,1;);ey be soft ideals of (F,A). (F,A) is
said to be soft Noetherian if it holds any one of the
following conditions:

1. Every ascending chain condition on soft ideals is
stationary, that is,

a)l, €1, € I; S - there exists a positive integer
nsuchthatl, = I,,.

b) y1(x) € y2(x) € y3(x) S - such that y,,(x) =

Yns1(x), forall x € Supp(Nien(yi, I;)) and it can
be represented by a chain,

1) € (2 1) € (v3,13) €+ € (Yn, 1)
c (F,A)
2. Every non-empty set of soft ideals of (F,A) is
contained in the soft maximal ideal.

Example 3.9. Let (y4,1;) and (y,, I,) be soft ideals
of a soft ring (F,A) over a ring R Consider the
ringR=A=Zand I, =1, =1; =7Z—{0}. Let us
consider the set-valued function F:A— P(R)
given by F(x) = xZ. Then (F, A) is a soft ring over
R. Now consider the functions 7; : |, = P(R),
for 1<i<3, given by, y;(x)=8xZy,(x) =
4x7,y3(x) = 2xZ, where x € Supp(y;,I;). Thus

(rv 1) € (r2, L) < (3, 13) < (F,A) and (y3,13) is
a soft maximal ideal of (F, A).

Remark 3.10. Ascending chain of soft ideals needs
not to be stationary. For instance consider the ring

R=Z+XQ[X],A=Qand I, = %Z. Consider the
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set valued function F:A— P(R) such that
F(a) = {G) ,a € Supp(F,A)}. Consider the
function p;: 1, > P(R) given by y(a)=
{(g):a € Supp(y;, I;)}. This gives I; €I, € I3 €

- and y;(x) € y,(x) S y3(x) € . So,

(ro 1) € 02 12) € (v3,15) © (Va u) S -
Hence, we get a non-terminating ascending chain of
soft ideals. This is a non Noetherian ring. Here the

soft maximal ideal of the soft ring is ( F, A) itself.

Definition 3.11. Let (F, A) be a soft ring over a

ring R . Then the soft prime ideal (¥, 1) is said to
be a minimal soft prime ideal if it is minimal in
Soec( F, A) with respect to inclusion.

Proposition 3.12. The following conditions hold
for conductor ideals.

L. w.D<cwD:Q)D

2. (r,D: D) O @D <E WD

3. (,D:@CD): (L) =

(,D:@C,D) Oy (1, L)

4, (. D:@D) =0y (G 1): (D),
where (]/, I) =fﬁ]$f=1 (an In)

5. (. D:@D) =M=y (v D: Cndn)),
where (ZJ) = ®n((n']n)

foralln € N.
Pr oof:
1. Hence obvious.

2. Let F(a) € ((y, I): ((,])), where {(b) =
Supp({,]). Then F(a){(b;) € (y,I). Now for any
{(b;) € Supp(¢,)), it follows F(a){(b;)I(b;) €
(v, D). Hence ((v,D: (5,))) On G, € v, D.
3. Let F(a)n(b) € ((y, D: (Z,])). Then
F(@n®)i() € (r,D:(,))),  where  be€
Supp(n,L) and c € Supp(¢,]) and n(b){(c) €
(L) Oy ED.
Hence F(a) € ((v,D): (¢,.))) Oy (0, 1L).

Similarly, the existence of the converse can be
proved.
4. Let F(a){(b) € (y,I). Then F(a){(b) €
(Y I, for b€ Supp((,J]). Thus F(a)€
(o 1): (D)), for meN, and F(a)€
M=y (P 1)1 (6, ))).  Hence  ((v,D:(()) <
M=, ((Vnr L) (€, ))) and vice versa.
5. Let F(a){(b) € (y,I) where (b)=
01 (b)), (b){5(b) ... for b € Supp({,]). Hence
F(@) 05y (0 D: G ).
Thus (v, D: (¢,))) €@z (0, D: Gnidn))

and vice versa.

Theorem 3.13. Let (F, A) be a soft Noetherian ring
over R. Each soft ideal (y,I) of (F,A) over R is a
finite intersection of soft irreducible ideals.

Proof: Suppose on the contrary, that the soft ideal
(y, D) can't be written as a finite intersection of soft irreducible
ideals. Set N = {(y,)|(y,I) cannot be written as finite

product of soft irreducible ideals} . Since (F,A) is

a soft Noetherian, there exist a maximal ideal
(y',I") € N, such that (y',I") can't be written as a
finite product of soft irreducible ideals.

Also (y',1") is not a soft irreducible ideal,
therefore there exists (y;,1;) and (y,,I,) such that
the restricted intersection of (yy,I) M (y,, 1) =
(y',I') implies either (y',I') € (y1, 1) or (¥',I') <
(Y2, I;). The maximality of (y’,I') implies that
(y1,1,) € N and (y,,1I,) ¢ N. This implies (yy,1;)
and (y,, ;) can be written as the finite intersection
of soft irreducible ideals, that is, (y’,1") can be
written as the finite intersection of soft irreducible
ideals which is a contradiction. Hence, it is proved.

Theorem 3.14. Let (F, A) be a soft Noetherian ring
over a ring. Every soft irreducible ideal of (F, A4) is
a soft primary ideal of (F, A).

Proof: Let (y,I) be a soft irreducible ideal over
(F,A). Then for any F(a), F(b) € (F, A), such that
F(a)F(b) € (y,I) and F(b) & (y,I). This
gives,((y,1): F(a)) € ((r,): F(a)?) €
((y, I):F(a)3) C .- is an ascending chain of soft
ideals of (F, A) over R . Since (F, A) is Noetherian,
(o, D:F@N) = (o, D: F(@*), for N=n.
Now, we will see that whether this soft ideal
(y,I) can be written as the restricted intersection of
two soft ideals or not.
D=
(0, D®F(@)™ - (F,A) m ((y, D®F (D) -
(F,A)), foralln € N.
If F(a) € (y,1),theny(a) € y(a) + F(a)"F(c) and y(a) S
y(a) + F(b)F(d) where F(c),F(d) € (F,4). This implies
@D <€ (@, D®F(@" - (F,A) A (¢, D®F (b) -
(F,A).
Conversely, assume that y(c) € ((y, D®AF(a)™ -
(F,A) m ((r, D®F(b) - (F,A))
and  y(c) = y(b) + F(@)"F(c) = y(by) + F(b)F(d).
For ¢ € Supp(y,I)
y(©) - F(a) = y(by) - F(a) + F(a)"*F(c)

= y(b) - F(a) + F(a)F (b)F(d)
Since F(a)F(b) € (y,I), therefore F(a)"*1F(c) €
(y,I). Also, F(c) € ((y, D@F(a)™ - (F,A)) and
y(c) € (y,1), therefore ((y, D®AF(a)™ - (F,A)) m
((y, D®.F() - (F,A)) c @D

As (y,I) is irreducible, hence
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. D < ((r,D®nF(a)" - (F,A)), due to the fact
that F(b) & (y,I). So,
@D = (0. ® F@" - (F,A4).

This proves that F(a)™ € (y,I) is soft primary.
Thus, in a Noetherian ring every soft irreducible
ideal is soft primary ideal.

Theorem 3.15. Every soft Noetherian ring is a soft
Laskerian ring.

Proof: Follows directly from (Theorem 3.13 and
Theorem 3.14).

Theorem 3.16. Let (7/, | ) be (f, P) soft primary
ideal of a soft ring (F,A) over a ring R and
F(a)e(F,A). The following holds,

1. If F(a)€ (y,I), then ((y,l):F(a))z
. D.
2. If F(b)¢& (y,I), then ((y,1):F(a)) <

¢,P) is a soft primary ideal.

Pr oof:

1. It is given that F (a) € (y,I). Since (y,I) is a soft
ideal, therefore Fla)y(B) € (y, D).
Hence ((y, N:F (a)) C (y,I). The -converse is
directly from (proposition 2.12), that is,
((y, nD:F (a)) 2 (y,I). Thus, equality holds.

2. Suppose F(b) € ((y, 1):F(a)), then F(b)F(a) €
(y,D). Since F(a) & (y,I), therefore F(b)™ € (y,I)
which gives F(b) € rad(y,I) = (§,P). Thus, from
(proposition  6)((y,):F(a)) € (¢§,P) and (y,I) <
((y,D:F(a)) < (&, P). Now taking the radical of above
inclusion;  rad(y,I) € rad((y,I): F(a)) € rad(¢, P).
Since rad(y,I) = (,P), rad((y,D):F(a)) = (¢,P).
Now to verify that rad((y,I): F(a)) is soft primary
ideal, let us consider that F(x),F(y) € (F,A) with
F(x),F() € ((v,):F(a)) and F(y) & rad((y,]):F(a)) =
(&,P) =rad(y,I). This implies F(x) € ((y, 1):F(a)). Hence

((y, D): F(a)) is (&, P) soft primary.

Remark 3.17. If the soft ideal (y,I) is a (f, P)

soft primary ideal of a soft ring (F,A). Then for
F(a) e (y,I) it is not necessary that
((y,D:F(a)) # (F,A). For instance, consider ring
R=17,=1{01,23}, its subsets P ={0,1,2} and
I ={0,1}. The set-valued function
F:A— P(R) given by F(x) ={y €R:x.y €
{0,2}}.  Therefore, F(0)=F(2) =127, F(1) =
F(3) = {0,2}. We see, all these sets are subrings of
R Hence (F,A) is a soft ring over R Now
consider the function »:l — P(R) given by
y(x) ={y €R:x-y =0}. This implies y(0) =
Z4,v(1) = {0}. So (y,I) = {Z,,{0}}. The mapping

&P — P(R) is defined as

§(x) ={y€ERix.y =0}, $(0)=12,%(1) ={0}
and £(2) = {0,2}. So (§,P) = {Z,,{0},{0,2}}. It is
observe that (€, P) is a soft prime ideal and (y,I) is
(¢, P) soft primary ideal. For F(0) € (y,I), clearly

((y,D):F(0)) = {F(0),F(2)} < (F,A) but
(r,D:F(a)) 2 (F,A).

Proposition 3.18. If (7;,l,) and (y,,l,) be
primary decomposition ideals of a soft ring (F, A)
over a ring R. Then (,,1)®_ (7,,1,) is a

primary decomposition soft ideal of (F,A), where
11 n 12 = (p.

Proof: Obvious.

Proposition 3.19: Let (yy,1;) and (v, 1) (75, 1,)
be primary decomposition ideals of a soft ring
(F,A) over R. Then (y1,1;) A (y3,15) need not
to be a primary decomposition ideal of (F, A).

Proof: Obvious.

Remark 3.20. Let (y4,1;) and (y,,I,) be primary
decomposition of soft ideals of a soft ring (F,A)
over R. So

(@ V1, 11) @ (¥, I;) need not be a primary
decomposition soft ideal of (F, 4).

(b) (y1,11) On (¥2,1,) need not be a primary
decomposition soft ideal of (F, A).
(¢) (yi,h) M (yyI;) need not be a primary
decomposition soft ideal of (F, 4).

Theorem 3.21. Every soft ideal of a soft
Noetherian ring contains the power of its soft
radical.

Proof: Let (y,I) be a soft ideal of a soft ring
(F,A). Take F(a;) €rad(y,I), where a;€
Supp(F,A). Then F(a;))™ € (y,I), for some
n; € N. Put n:1+2(q —1), then (y,D"™ is
generated by F(a,)™ - F(ay)™ - F(ag)™s -+ F(a;)™,
where Y,m; =n. At least one M =1 making

each F(a;)™, an element of (y,I). Hence (y, )™ <
o, D.

Theorem 3.22. Restricted product of two soft
ideals is contained in their restricted intersection.

Proof: Let (y4, ;) and (y3, I;) be two soft ideals of
soft ring (F, A) over aring R Take y;(a)y,(a) €
(1, 11) On (v, 1) where y4(a) € (v4, 11, v2(a) €
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(y2,I;) and a € Supp((y1,1;) On (¥2,15)). Since
acelj NIy, hence y1(@)y,(a) € (v, ) and

¥1(2)y2(a) € (y2, ). Thus  yi(a)y,(a) € (yy, 1) M
(2, I2)- Hence,

(yllll)en(VZ'IZ) c (Y1! Il) M ()/2112)'

Proposition 3.23. Let (y,I) be a soft prime ideal
and (1, 11), V2, 1), -+, (W, 1) any n >0 soft
ideals of (F,A). The following statements are
equivalent:

1. (y,I) contains (yj, Ij), for some j.

2. My (v 1) € (v, D) and On (v, 1) <
@, D for1<i<n.

Proof: Obvious.

Theorem 3.24. Let (v, D), (v, 1), (v2, 12), -+, (¥ns In)
be a set of n + 1 soft ideals of (F,A) over R such
that (y,I) =M=, (¥;,I;), is a reduced primary
decomposition of soft ideal (y,I). Let (¢,P) be a
soft prime ideal of (F, A) of R. Then the following
statements are equivalent:

1.(¢,P) = (¢, P;), for some i, where (&;,P;) =
rad(y; I;).

2. There exists an element of soft set F(a) € (F,A4)
such that ((y,I):F(a)) is a (&, P) soft primary
ideal.

3. There exists a F(a) € (F,A) such that (¢,P) =

rad((y,1): F(a)).
Proof: Obvious.

Theorem 3.25. Let (y,I) and (&, P) be soft ideals
of soft ring (F,A) over a ring R. Then (y,I) is a
soft primary for (¢, P) if and only if

(@) (r,D € (¢, P) Srad((y,D)

(b) If F(a)F(b) € (y,I) and F(a) ¢ (y,I), then
F(b) € (¢, P).

Proof: Suppose (a) and (b) holds. If F(a)F(b) €
(v,) and F(a) & (y,I), then F(b)€ (§,P)c
rad((y,1)). Thus, the element F(b)"™ € (y,I) for
some n > 0. Therefore, (y,I) is a soft primary
ideal. To show (y,I) is soft primary for (§,P). We
need only show that (¢,P) =rad((y,I)). By (a),
(&,P) S rad((y, D). If F(b)€ (y,I), then for
some positive integer N such that F(b)™ € (y,I).
If N=1, then F(b)" € (y,[) € (§,P). If n> 1,
then F(b)" 'F(b) € (y,I) with F(b)" ' ¢ (y,I)
by the minimality of n, by (b), F(b) € (&, P). Thus,
for F(b) € rad((y,I)), it gives F(b) € (&, P) The
converse implication is obvious.

Theorem 3.26. Let (V; I)r ()/11 11)! (VZ' 12)1 T (VZ' In)
are soft ideals of a soft ring (F, A). Then,

1. rad(rad (7, 1)) =rad(y,1).

@D On 1, 11) On V2, I2)

2.rad ( On On (Vnr In)

) =A% (o ).
Proof:
1. Let F(a)erad(rad(y,1))- Then F(a) erad(y.1)

for Ne N . Hence, by definition there exist a
positive integer m such that (F(a)n)m e(}/,l).
Thus F(a)erad(y,!).

Conversely, Let F(a)erad(;/,l). Then by
definition of soft radical ideal, it is implied that
F(a) erad(y,!). Hence F (a) e rad(rad (,1)).

2. Let us consider an element
F(a) em, rad(y; I;). Then there are

m,m,, -+, m, >0 such that F ()" €(7,1,),
foreach J.If M=mM +M, +---+ M, then
F(a)™ = F(a)™F(a)™2 --- F(a)™
€ (1, 11) On (2, 1) On = On (Vs In)-

Hence

M7, rad(y; I;)

c rad((yl,ll) Qn (VZ'IZ) Oﬁ Oﬁ (Yn! [n))
Since we know that

1 1) On (2, 12) On - On Vo In)
cmiz, i 1.
We have Tad((yph) On 2 1) On = On W ln))
cmiz, rad(y;, ).

Theorem 3.27. Let (F,A) be a soft ring over a
ring R If soft prime ideal (y;,I;)1<i<n are soft
primary ideals for the soft prime ideal (f, P),

then M, (y;,[;) is also a soft primary ideal
belonging to (5, P).

Proof: Let (}/,I): M, (y;,I;). Then, by

(Theorem 3.26),

rad(y,I) = rad M=, (v, [;) =Mz, rad(y;, ;) =
(¢,P), and by using (Theorem 3.25), (y,I) S
(&, P)Srad(y,). If F(a)F(b)€ (y,I) and
F(a) ¢ (y,I), F(a)F(b) € (y;,I;) for some i.
Since (y;,1;) is (€, P) soft primary, F(b) € (¢, P).
Consequently, (y,I) itself is (¢, P) soft primary.

Theorem 3.28. Let (y,1I) be a soft ideal of a soft
ring (F,A) over a ring R. If (y,I) has a primary
decomposition of soft rings, then (y,I) has a
reduced primary decomposition.

Proof: Let (y,I) =M, (y;,I;) be intersection of
soft primary ideals and some soft primary ideals (7i W )

are contained in(yq,I;) M (Y2, ) MM (Yi—q, [i—1) M
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Girvliv) M@ (Yo, L), so (v, 1) = (yo, 1) M
(Yo, L) M@ (Viog, li—1) M Vigr, fivr) @@
(Y, 1) 1s also a primary decomposition. By
eliminating the superfluous (y;,1;") and reindexing
we have

@D = (i 1) ™ (ya, 1) ™ @ (v, [x) with no soft
primary ideal (y;,[;) contained in the intersection of

others  (¥;,1j). Let (81,P1), (§2,P2),+, (§p Pr)  be
distinct prime ideals in the set

{rad(y, 1), rad(yz, 1), -+, rad (v, I)}. Let (v, 1))
where 1<i<h be the intersection of all the
(v:, 1;) that belong to the soft prime ideal (&;, P;).
Each (y{, ;") is soft primary for (¢;, P;). Clearly no
(yi, I;") contains the intersection of all soft primary
ideals, therefore

0, D =0, (v I) =A; (v, 1)). Hence (v,
has a reduced primary decomposition of soft rings.

4, Primary decomposition of Soft modules

Recall that a module M is said to be Noetherian
(resp. artinan) if every ascending chain (resp.
descending chain) of sub modules of M is
stationary. A proper sub module C of a R-module
M is said to be a primary sub module if r € R,b &
M and rb € C, this gives "M € C for some
positive integer n.

Definition 4.1. A soft set (G, B) over a R— module
M s called a soft module if each G (b) is a sub

module of M, for all b € Supp(G,B) (see Sun et

al., 2008 Definition 10).

In this section we introduce the algebraic notions
in soft sense, such as soft Noetherian module, soft
primary module and primary decomposition of soft
modules. Throughout this section all rings are
commutative with identity and all modules are
unitary.

Definition 4.2. Let (G, B) be a soft module over

an R-module M . It is said to be soft Noetherian
module, if the following conditions are equivalent,
1. Every ascending chain of soft sub modules is
stationary, that is,

a) The set of subsets of 3 of a given set B are
ordered by inclusion,

B cB, cB < such that B =B, for
nxN.

b) (Gl' Bl) g (Gz, Bz) g (Gg, B3) g cecy there eXlSt
a positive integer n such that

(Gn, Bn) = (GN, By ) ,for N> N and chain takes

form (Gy, By) € (G2, B3) € (G3,B3) S - S (Gy, By).
2. Every non-empty set of soft sub modules of

(G, B) is contained in soft maximal sub module.

Definition 4.3. A soft module (F, A) satisfies the

maximal condition (resp. minimum condition) on
soft sub modules if every non-empty set of soft sub

modules of (F,A) contains a maximal (resp.

minimal) element (with respect to set theoretic
inclusion).

Definition 4.4. Let (F, A) be a soft ring over a
ring R and (G, B) be a soft module over an R -

module M. If (7/, |) is a soft prime ideal of
(F.A).

r,D © (G,B) ={y(a)G(b):a € Supp(y,I),b €
Supp(G, B)} is a soft submodule of (G, B).

Example 45. For R=M =7Z, A=B =N and
I = 2N, let us consider the set value function

F:A—> P(R) given by F(x) = {xZ:x € A}.
Then (F,A) is a soft ring over R. Also, consider
an R-module M and G:B— P(M ) given by

G(b) = M, for all b € B. Take (G,B) as a soft
module over an R-module M. Now again consider

yil— P(R) given by y(x) = 3xZ. Then (y,1)
is a soft ideal of (F,A). As (y,)®(G,B) = 3xZ -
Z = 3xZ, forX € SJpp(y, I ) is a soft sub module
of (G, B).

Theorem 4.6. A soft module (G,B) satisfies the
ascending (resp. descending) chain condition on
soft sub modules if and only if (G, B) satisfies the
maximal (resp. minimal) condition on soft sub
modules.

Proof: Suppose (G,B) satisfies the minimal
condition on  soft sub  modules and
(G1,BY) 5 (G, By) 5 (G3,B3) 5 -~

is a chain of soft sub modules. Then the set
{(G;,B))|li =1} has a minimal element, say
(Gn, Bp). Consequently, for i>=n we have
(G, B,) 3 (G;, By) by hypothesis and
(G, By, € (G,B;) by minimality. Hence
(G, B,) = (G;, B;) for each i = n, therefore, (F,A)
satisfies the descending chain  condition.
Conversely, suppose (G, B) satisfies the descending
chain condition and S is a non-empty set of soft sub
modules of (G,B), and a soft sub module
(Gy, By) € S. If S has no minimal element, then for
each soft sub module (G,B) in S there exists at
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least one soft submodule (G',B’) in S such that
(G,B) 3 (G',B"). For each (G, B) in S, choose one
such (G',B'). This choice then defines a function

f:S>S by BrH>B. There is a
function: N — § such that ¢(0) = (G,, By) and
e(n+1) =f(e(n)) = (). Thus if (G, B,) €S
denotes ¢@(n) then there is a sequence
(Go, BO) 5 (GlﬂBl) 5 (GZlBZ) 5 (63133) 5
This contradicts the descending chain condition.
Therefore, S must have a minimal element. Hence
(G, B) satisfies minimum condition. The proof for
ascending chain condition and maximum conditions
is analogous.

Definition 4.7. Let (F, A) be a soft ring over a ring
R and (G, B) be a soft module over an R-module M
A non-null soft subset of (H,C) of soft module
(G,B) is said to be soft primary submodule, if it
satisfies the following conditions;

a)C<SB

b)H(c) is submodule of G(c) for all c€
Supp(H, C).

¢) F(a) € (F,A) such that F(a)"G(b) € (H,C) for
all G(b) € (G,B) andn € N.

Theorem 4.8. Let ( F, A) be a soft ring over a ring
R and (G, B) be a soft module over an R-module

M. Then (H,C) be a soft primary sub module of
(G,B) such that, (§,Q)={F(a)€ (F,A):F(a)(G,B) <

(H,C)} is soft primary ideal in (F, 4)

Proof: Let F(a;)F(ay) € (§,Q) and F(a,) ¢
(¢,Q). Then F(a,)(G,B) & (H,C) for all b€
Supp(G,B). Consequently, there exist G(b) €
(G,B). F(a)G(h) & (H,C) but F(a)(F(a)G(h)) €
(H,C). Since (H,C) is a soft primary submodule
F(a,)(G,B) € (H,C) for some n, that is, F(a,)" €
(&, Q). Therefore, (¢, Q) is soft primary.

Example 4.9. For R=M =Z, A=B=N and
C = 3N, let us consider the set value function

F:A-> P(R) given by F(x) = {xZ:x € A}.
Then (F,A) is a soft ring over R. Also consider a
R-module M and G:B—> P(M ) given by

G(b) =M for all b €B. Then (G,B) is a soft
module over a R-module M. Now again consider
CcBand H:C—> P(M) given by H(m) =
2mZ is soft submodule of (G, B). It is observe that
(£,Q) ={F(2),F(4),-,F(2n):n € N} is a soft
primary submodule of (G, B).

Definition 4.10. Let (F,A) be a soft ring over a
ring R and (G, B) be a soft module over an R -

module M. A soft primary submodule (H,C) of a
soft module (G,B), is said to be a (o, P)-soft
primary submodule of (G, B) if

(0,P) =rad(§,Q) = {F(a) €

(F,A):F(a)™(G,B) € (H,C) for n = 0}, where
(§,Q) ={F(a) € (F,A):F(a)(G,B) < (H,C)} is
soft primary ideal in (F, A).

Definition 4.11. Let (F, A) be soft ring over a ring
R and (G, B) be soft module over an R-module M
A soft submodule (H,C) of (G,B) has a primary
decomposition if (H,C) =M}, (H;, C;) with each
(H;, C;) is a (o3, P;)-soft primary submodule of
(G, B), where (o;, P;) is a soft prime ideal of (F, A).

Definition 4.12. Let (F, A) be soft ring over a ring
R and (G, B) be soft module over an R-module M.
A soft sub module (H,C) =mj-, (H;,C;) of (G,B)
has a primary decomposition with no (H,C) €
mm}-‘:l (H]-,Cj) for | # j and the soft prime ideals
(&;,P;) are all distinct. Then the soft primary
decomposition is said to be reduced primary
decomposition.

Theorem 4.13. Let (F, A) be a soft ring over a ring
R and (G, B) be a soft module over an R-module M.
If a soft submodule (H, C) of (G, B) has a primary
decomposition, then (H,C) has a reduced primary
decomposition.

Proof: Obvious

Theorem 4.14. Let (F, A) be a soft ring over a ring
R and (G, B) be a soft module over an R-module M
satisfying ascending chain condition on soft sub
modules. Every soft sub module (H,C) of (G,B)
has a reduced soft primary decomposition.

Proof: Let S be the set of all soft sub modules of
(G, B) that do not have a primary decomposition.
Clearly, there is no soft primary sub module in S.
We show S is in fact empty. Suppose on the

contrary that S is nonempty, then S contains a
soft maximal element say (H,C). Since (H,C) is
not soft primary, there exist F(a) € (F,A) and
G(b) € (G,B)\(H, C) such that F(a)G(b) € (H, ()
but F(a)"G(b) ¢ (H,C) for all n > 0. Consider
(G, B,) ={G(b) € (G,B): F(a)"G(b) € (H,C)}.

Then each (G, By,) is soft sub module of (G, B) and
the chain by inclusion is (G4, B;) € (G, B,) €
(G3, B3) € --. By hypothesis there exists K >0
such that (G, B;) € (Gy,By) fori=k. Let
(K,D) = {G(b):G(b) = F(a)*G(b') + H(c)} be
soft sub module of (G,B) Clearly, (H,C) <
(G, By) m (K,D). To show equilty, if G(b) €
(Gy, By) m (K, D), then G(b) = G(b") + K(d) and
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F(a)*G(b) = F(a)*G(b") + F(a)*K(d) € (H,C).
Therefore, (H,C) = (Gy, By) M (K,D). Now by
maximality of (H,C) in S, (G, By) and (K,D)
must have primary decomposition. Thus S is
empty and every soft sub module has a primary
decomposition.

Lemma 4.15. Let (F, A) be a soft ring over a ring
R and (G, B) be a soft module over an R -module
M. Let (y,I) be a soft prime ideal of (F,A) and
(H,C) is (y,D)-soft primary sub module of soft
Noetherian module (G,B), then there exist a
smallest integer M such that

D™ O (G,B) c (H,C).

Proof: Recall that there exist primary ideal (o, Q)
such that rad (o, Q) = (y,I), for some soft primary
sub module (H, C) Suppose y(a) € (y,I) such that
y(a)™G(b) € (H,C), for all b € Supp(G,B) and
n; = 1. Take m = max(nq,n,, -+, n;), hence for
all a € Supp(y,I) we get y(a)™G(b) € (H, (),
where b € Supp(G,B). Thus (y,)™ ©® (G,B) c
(H,0).

Now we present the Krull intersection theorem in
soft sense.

Theorem 4.16. Let (F, A) be a soft ring over a ring

R, (y,I) be a soft ideal of (F,A) and (G, B) be a
soft module over an R-module M If (H,C) =
@?10=1 (y' I)n O (G' B)’ then (% I) O (H: C) =
(H,C).

Proof: Let us assume that (y,I) © (H,C) =
(G,B). Since we know that (H,C) is a soft sub
module, therefore (y,I) © (H,C) € (H,C). This
implies (G,B) € (H,C) and hence, (H,C) =
(G,B).

If we take (y,I) © (H,C) # (G,B), then by
(lemma 4.15) (y,I) © (H,C) has a soft primary
decomposition,  that is, (y,[)On(H,C) =
M, (H;, C;), where each (H;,C;) is (o;, P;) soft
primary sub module and (g;, P;) is soft prime ideal
of (F,A). Since (H,C) is a soft submodule,
therefore (y,1) © (H,C) € (H,C). Now we show
the converse inclusion. If (y,I) < (o;, P;) for some
fixed i, then by (lemma 4.15) there is an integer M
such that, (0;,P)™ ©® (G,B) c (H;,C;). Hence,
(H,0) =ng, (v,D" O (G,B) c (v, D" O (G,B) c
&, P)™ O (G,B) © (H;, Cy).

Since (H , C) (@ ( Hi 5 C| ) , therefore there exists

ce Supp(H,C) and ae Supp(y, 1) such that

y(@H(0) € (v,) © (H,0) < (H;,C;), where (H,,C))

is soft primary sub module and y(a)(G,B) < (H;, C;)
for some n > 0. Thus (H,C) < (y,) © (H,C).

5. Conclusion

This paper describes a detailed study of the primary
decomposition in soft rings and modules. We
analyzed the algebraic structure of soft Noetherian
rings and soft Noetherian modules. This work is
focused, proving a form of Krull intersection
theorem in soft rings and modules. To extend this
work, one can study the algebraic properties of soft
Noetherian rings and soft Laskerian rings.
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