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Abstract 

The purpose of this paper is to investigate the inverse problem for a second order differential equation the so-
called differential pencil on the finite interval ሾ0,1ሿ when the solutions are not smooth. We establish properties of 
the spectral characteristics, derive the Weyl function and prove the uniqueness theorem for this inverse problem. 
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1. Introduction 

We consider the boundary value problem ܮ for the 
following differential equation in the interval 
		ሾ0,1ሿ, 
 
ሻݔᇱᇱሺݕ ൅ ൫ߩଶ ൅ ሻݔଵሺݍߩ݅ ൅ ሻݔሺݕሻ൯ݔ଴ሺݍ ൌ 0,     (1) 
 

with the boundary conditions  
 
ܷሺݕሻ ؔ ᇱሺ0ሻݕ െ ሺ0ሻݕ݄ ൌ 0,			       
ܸሺݕሻ ؔ ᇱሺ1ሻݕ ൅ ሺ1ሻݕܪ ൌ 0,                            (2) 

 
and the jump condition  
 
ሺܽݕ ൅ 0, ሻߩ ൌ ሺܽݕଵߙ െ 0,     		,ሻߩ
Ԣሺܽݕ ൅ 0, ሻߩ ൌ Ԣሺܽݕଶߙ െ 0,  ሻ,                          (3)ߩ

 
in an interior point ݔ ൌ ܽ. The functions ݍ௝ሺݔሻ,		 

݆ ൌ 0,1	 are complex-valued and ݍ௝ሺݔሻ א ଵܹ
௝ሾ0,1ሿ. 

Also the coefficients h and H are complex numbers 
and ߙଶ ് േߙଵ. 

Boundary value problems with discontinuities 
inside the interval often appear in mathematics, 
physics, geophysics, mechanics and other branches 
of natural sciences. The boundary value problem 
without discontinuities has been studied in 
(Neamaty and Mosazadeh, 2010; Neamaty and 
Sazgar, 2008; Yurko, 2000; Koyubakan, 2006). 
Some aspects for discontinuous boundary value 
problems in various formulations have been 
considered in (Carlsone, 1994; Hald, 1998; 
Neamaty and Khalili, 2010; Amirov, 2006; 
Altinisik et al., 2004). In Keskin et al. (2011) and 
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Freiling and Yurko (2001), the inverse problem for 
classical Sturm-Liouville operators with the jump 
condition is studied. The inverse problem theory for 
differential pencils was studied in Neamaty and 
Khalili (2013), Yurko (1997) and Yurko (2006). 
Here we will study the boundary value problem for 
differential pencils with discontinuities that has not 
been studied so far. In other words, the main goal of 
the present work is to study the inverse problem of 
reconstructing the differential pencils with 
discontinuous conditions by using the Weyl 
function. The technique employed is similar to 
those used in (Neamaty and Khalili, 2013). 

In order to study the inverse problem in this 
paper, we use the Weyl function. Special 
fundamental system of solutions (FSS) plays an 
important role in this method. FSS provides an 
opportunity to obtain the asymptotic behavior of the 
so-called Weyl solution and Weyl function. Using 
these functions, we prove the uniqueness solution 
of the inverse problem. In Section 2, we determine 
the asymptotic form of the solutions and 
eigenvalues and give the Weyl function. In Section 
3, we prove the uniqueness theorem and finally, 
Section 4 contains some conclusions. 

2. The properties of the spectrum 

Let the functions ܥሺݔ, ,ሻߩ ܵሺݔ, ,ሻߩ ߮ሺݔ,  ሻ andߩ
߰ሺݔ,  ሻ be solutions of Eq. (1) under the initialߩ
conditions ܥሺ0, ሻߩ 	ൌ 	ܵᇱሺ0, ሻߩ 	ൌ 	߮ሺ0, ሻߩ 	ൌ
	߰ሺ1, ሻߩ ൌ ,Ԣሺ0ܥ ,1 ሻߩ ൌ ܵሺ0, ሻߩ ൌ 0, ߮ᇱሺ0, ሻߩ ൌ ݄, 
߰Ԣሺ1, ሻߩ ൌ െܪ and the jump condition (3). 

Let ܥ଴ሺݔ, ,ݔሻ and ܵ଴ሺߩ  ሻ be smooth solutions ofߩ
Eq. (1) on the interval ሾ0,1ሿ	under the initial 
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conditions ܥ଴ሺ0, ሻߩ ൌ ܵ଴

ᇱሺ0, ሻߩ ൌ 1 and ܥ଴
ᇱሺ0, ሻߩ ൌ

ܵ଴ሺ0, ሻߩ ൌ 0. We have for ݔ ൏ ܽ, 
 

൜
,ݔሺܥ ሻߩ ൌ ,ݔ଴ሺܥ ,ሻߩ
ܵሺݔ, ሻߩ ൌ ܵ଴ሺݔ, .ሻߩ

                                         (4) 

 
Using the jump condition (3), we get for ݔ ൐ ܽ, 

 

൜
,ݔሺܥ ሻߩ ൌ ,ݔ଴ሺܥሻߩଵሺܣ ሻߩ ൅ ,ݔሻܵ଴ሺߩଵሺܤ ,ሻߩ
ܵሺݔ, ሻߩ ൌ ,ݔ଴ሺܥሻߩଶሺܣ ሻߩ ൅ ,ݔሻܵ଴ሺߩଶሺܤ .ሻߩ

    (5)  

 
Denote  
 
∆ሺߩሻ ؔ 〈߰ሺݔ, ,ሻߩ ߮ሺݔ,  ሻ〉,                               (6)ߩ

 
where 〈ݕ, 〈ݖ ؔ ᇱݖݕ െ  is the Wronskian of the  ݖԢݕ
functions ݕሺݔሻ and ݖሺݔሻ. The function ∆ሺߩሻ is 
called the characteristic function for the boundary 
value problem ܮ. 

From Buterin and Shieh (2009) and Freiling and 
Yurko (2001), we know that there exists the 
solution of the following form for |ߩ| ՜ ∞ 
uniformly in ݔ ൏ ܽ, 

 
߮ሺݔ, ሻߩ ൌ ݔߩ൫ݏ݋ܿ െ ܳሺݔሻ൯ ൅ ܱ൫ିߩଵ݁݌ݔሺ|߬|ݔሻ൯,    (7) 
 
߮ᇱሺݔ, ሻߩ ൌ െ݊݅ݏߩ൫ݔߩ െ ܳሺݔሻ൯ ൅ ܱ൫݁݌ݔሺ|߬|ݔሻ൯,    (8) 
 

where ܳሺݔሻ ൌ
ଵ

ଶ
׬ ݐሻ݀ݐଵሺݍ
௫
଴ ߣ , ൌ ߬ ,ଶߩ ൌ  .ߩ݉ܫ

 

Theorem 2.1. By virtue of Liouville
,
s formula for 

the Wronskian, ∆ሺߩሻ	does not depend on ݔ, and  
 
∆ሺߩሻ ൌ ܸሺ߮ሻ.                                                    (9) 

 
Proof: Let ݕሺݔ, ,ݔሺݖ ሻ andߣ  .ሻ be solutions of  Eqߤ
(1) for parameters ߣ and ߤ, respectively. Then 
ௗ

ௗ௫
,ݕ〉 〈ݖ ൌ ሺߣ െ ,ݔSince ߮ሺ .ݖݕሻߤ ,ݔሻ and ߰ሺߣ  ሻߣ

are the solutions of Eq. (1), we have 
ௗ

ௗ௫
,ݕ〉 〈ݖ ൌ 0. 

Therefore 〈߰ሺݔ, ,ሻߣ ߮ሺݔ,  ,.ሻ〉 is constant, i.eߣ
∆ሺߩሻ	dos not depend on ݔ. Now, for ݔ ൌ 1, we have  
 

 ∆ሺߩሻ ൌ 〈߰ሺݔ, ,ሻߩ ߮ሺݔ,  ሻ〉|௫ୀଵߩ
          ൌ ߰ሺ1, ,ሻ߮Ԣሺ1ߩ ሻߩ െ ߰Ԣሺ1, ,ሻ߮ሺ1ߩ  ሻߩ

                	ൌ 1 ൈ ߮ᇱሺ1, ሻߩ െ ሺെܪሻ߮ሺ1,  ሻߩ
                 ൌ ߮ᇱሺ1, ሻߩ ൅ ,ሺ1߮ܪ ሻߩ ൌ ܸሺ߮ሻ.     
 
The proof is completed.  
 
Definition 2.2. The values of the parameter ߩ for 
which the equation (1) has nontrivial solutions 
satisfying the boundary conditions (2), are called 
the eigenvalues of ܮ and the corresponding 
solutions are called the eigenfunctions. 
 
Theorem 2.3. ݅ଵ) For |ߩ| ՜ ∞ the following 
asymptotical formula holds 
 
         ∆ሺߩሻ ൌ ߩ൫݊݅ݏ൫െܾଵߩ െ ܳሺ1ሻ൯  

൅ܾଶ݊݅ݏ൫െ2ܳሺܽሻ ൅ ܳሺ1ሻ൯ቁ 

൅ܾଵሺ݄ ൅ ߩ൫ݏ݋ሻܿܪ െ ܳሺ1ሻ൯ 

                   ൅ܾଶ ቀ݄	ܿݏ݋ ቀ2ߩ െ ൫2ܳሺܽሻ ൅ ܳሺ1ሻ൯ቁ  

                   ൅ܪ	ݏ݋ܿ൫െ2ܳሺܽሻ ൅ ܳሺ1ሻ൯ቁ 

                   ൅ܱ൫ିߩଵ݁݌ݔሺ|߬|ሻ൯, 
 
where ܾଵ ൌ

ఈభାఈమ
ଶ

, ܾଶ ൌ
ఈభିఈమ

ଶ
 .  

݅ଶ) For sufficiently large ݇, the function ∆ሺߩሻ has 
simple zeros of the form 
 

௞ߩ  ൌ ߨ2݇ ൅ ݈݅݊ ቀ
ିଶ௕మ௜

௕భ
൫െ2ܳሺܽሻ݊݅ݏ ൅ ܳሺ1ሻ൯ቁ	  

                  ൅ܳሺ1ሻ ൅ ܱሺ݇ିଵሻ.	                            (10) 
 
Proof: We have (see Buterin and Shieh (2009) and 
Freiling and Yurko (2001)) 
 
,ݔ଴ሺܥ  ሻߩ ൌ ݔߩ൫ݏ݋ܿ െ ܳሺݔሻ൯ 

                ൅
ொబሺ௫ሻ ௦ ௜௡൫ఘ௫ିொሺ௫ሻ൯

ఘ
൅  ,ሻ൯ݔ|߬|ሺ݌ݔଵ݁ିߩ൫݋

଴ܥ   
ᇱሺݔ, ሻߩ ൌ െߩ ݔߩ൫݊݅ݏ െ ܳሺݔሻ൯ 

                 ൅ܳ଴ሺݔሻ ݔߩ൫ݏ݋ܿ െ ܳሺݔሻ൯ ൅  ,ሻ൯ݔ|߬|ሺ݌ݔ൫݁݋
 
where ܳ଴ሺݔሻ ൌ

ଵ

ଶ
׬ ݐሻ݀ݐ଴ሺݍ
௫
଴ .	Also 

 

 ܵ଴ሺݔ, ሻߩ ൌ
௦௜௡൫ఘ௫ିொሺ௫ሻ൯

ఘ
 

                 െ
ொబሺ௫ሻ௖௢௦൫ఘ௫ିொሺ௫ሻ൯

ఘమ
൅  ,ሻ൯ݔ|߬|ሺ݌ݔଶ݁ିߩ൫݋

 ܵ଴
ᇱሺݔ, ሻߩ ൌ ݔߩ൫ݏ݋ܿ െ ܳሺݔሻ൯ 

               ൅
ொబሺ௫ሻ௦௜௡൫ఘ௫ିொሺ௫ሻ൯

ఘ
൅  .ሻ൯ݔ|߬|ሺ݌ݔଵ݁ିߩ൫݋

 
Using (5), the solutions ܥ଴ሺݔ, ,ݔ ܵ଴ሺ	ሻ,ߩ  ሻ and theߩ

jump condition (3), we have  
 
ሻߩଵሺܣ  ൌ ܾଵ ൅ ܾଶ ݏ݋ܿ 2൫ܽߩ െ ܳሺܽሻ൯ 

                 ൅
ଶ௕మ
ఘ
ܳ଴ሺܽሻ2݊݅ݏ൫ܽߩ െ ܳሺܽሻ൯ 

                  ൅݋൫ିߩଵ݁݌ݔሺ|߬|ܽሻ൯, 

ሻߩଶሺܣ  ൌ ܾଶ
௦௜௡ଶ൫ఘ௔ିொሺ௔ሻ൯

ఘ
൅ ܱ൫ିߩଶ݁݌ݔሺ|߬|ܽሻ൯, 

ሻߩଵሺܤ  ൌ ܾଶߩ ܽߩ2൫݊݅ݏ െ ܳሺܽሻ൯ 
          	െ2ܾଶܳ଴ሺܽሻ ܽߩ2൫ݏ݋ܿ െ ܳሺܽሻ൯ ൅  ,ሺ|߬|ܽሻ൯݌ݔ൫݁݋
ሻߩଶሺܤ ൌ ܾଵ ൅ ܾଶ ܽߩ2൫ݏ݋ܿ െ ܳሺܽሻ൯ 
           ൅ܱ൫ିߩଵ݁݌ݔሺ|߬|ܽሻ൯. 
 

Substituting these coefficients and the functions 
,ݔ଴ሺܥ ,ሻߩ ܵ଴ሺݔ,   ሻ in (5), we obtainߩ
 
 ܵሺݔ, ሻߩ ൌ

ଵ

ఘ
൫ܾଵ ݔߩ൫݊݅ݏ െ ܳሺݔሻ൯ 

              ൅ܾଶ ݊݅ݏ ቀߩሺ2ܽ ൅ ሻݔ െ ൫2ܳሺܽሻ ൅ ܳሺݔሻ൯ቁቁ 

              ൅	ܱ൫ିߩଶ݁݌ݔሺ|߬|ݔሻ൯, 

,ݔሺܥ  ሻߩ ൌ
ଵ

ఘ
൫ܾଵ ݔߩ൫ݏ݋ܿ െ ܳሺݔሻ൯ 

              ൅ܾଶ ݏ݋ܿ ቀߩሺ2ܽ െ ሻݔ െ ൫2ܳሺܽሻ െ ܳሺݔሻ൯ቁቁ 
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              ൅	݋൫ିߩଵ݁݌ݔሺ|߬|ݔሻ൯. 
 
Since  
 

߮ሺݔ, ሻߩ ൌ ,ݔሺܥ ሻߩ ൅ ݄ܵሺݔ,  ,ሻߩ
 
we have  
 
 ߮ሺݔ, ሻߩ ൌ ܾଵ ݔߩ൫ݏ݋ܿ െ ܳሺݔሻ൯ 

              ൅ܾଶ ݏ݋ܿ ቀߩሺ2ܽ െ ሻݔ െ ൫2ܳሺܽሻ െ ܳሺݔሻ൯ቁ 

              ൅	ܱ൫ିߩଵ݁݌ݔሺ|߬|ݔሻ൯,																										ݔ ൐ ܽ, 
߮ᇱሺݔ, ሻߩ ൌ െܾଵߩ ݔߩ൫݊݅ݏ െ ܳሺݔሻ൯   

              ൅ܾଶ ݊݅ݏߩ ቀߩሺ2ܽ െ ሻݔ െ ൫2ܳሺܽሻ െ ܳሺݔሻ൯ቁ 

              ൅	ܱ൫݁݌ݔሺ|߬|ݔሻ൯,																																		ݔ ൐ ܽ. 
 

Using (2) and (9), we arrive at the characteristic 
function ∆ሺߩሻ. 

Now suppose that the function ∆ሺߩሻ has simple 
zeros of the following form (see Conway (1995))  
 

	௞ߩ ൌ ௞ߩ
଴ ൅ ܱሺ݇ିଵሻ,					݇ ՜ ∞,	 

 
where ߩ௞

଴ are the zeros of the function  
 
       ∆଴ሺߩሻ ൌ െܾଵ݊݅ݏ൫ߩ െ ܳሺ1ሻ൯ 
                  ൅ܾଶ݊݅ݏ൫െ2ܳሺܽሻ ൅ ܳሺ1ሻ൯. 
 
Since  
 
௞ߩ
଴ ൌ ߨ2݇ ൅ ݈݅݊ ቀ

ିଶ௕మ௜

௕భ
൫െ2ܳሺܽሻ݊݅ݏ ൅ ܳሺ1ሻ൯ቁ ൅ ܳሺ1ሻ, 

݇ ՜ ∞, 
 
we arrive at the eigenvalues of the form (10).  
 
Corollary 2.4. It follows from (7), (8) and the 
functions ߮ሺ௠ሻሺݔ,   ሻ in proof of Theorem 2.3 thatߩ
 
ห߮ሺ௠ሻሺݔ, ሻหߩ ൑ 0				ሻ,ݔ|ߩ݉ܫ|ሺ݌ݔ௠݁|ߩ|ܥ ൑ ݔ ൏ 1.     (11) 
 
Denote  
 

Ԅሺݔ, ሻߩ ൌ
ିநሺ௫,ఘሻ

୼ሺఘሻ
.                                               (12) 

 
Let ߶ሺݔ,  ሻ be the solution of Eq. (1) under theߩ

boundary conditions ܷሺ߶ሻ ൌ 1, ܸሺ߶ሻ ൌ 0.	We set 
ሻߩሺܯ ൌ ߶ሺ0, ,ݔሻ. The functions ߶ሺߩ  ሻߩሺܯ ሻ andߩ
are called the Weyl solution and Weyl function for 
the boundary value problem ܮ, respectively. 
Clearly, using the conditions at the point ݔ ൌ 0, we 
get  
 
߶ሺݔ, ሻߩ ൌ ܵሺݔ, ሻߩ ൅ ,ݔሻ߮ሺߩሺܯ  ሻ,                     (13)ߩ
 
and  
 
〈߮ሺݔ, ,ሻߩ ߶ሺݔ, 〈ሻߩ ൌ 1.                                        (14) 
 
Lemma 2.5. For |ߩ| ՜ ∞,  
 

ሻߩሺܯ ൌ ט
ଵ

௜ఈభ௕భఘ
ݏ݋ܿ ቀߩሺ1 െ ܽሻ െ ൫ܳሺ1ሻ െ ܳሺܽሻ൯ቁ    

              ൅݋൫ିߩଵ݁݌ݔሺ1 െ ܽሻ൯.                            (15) 
 
Proof: Using the FSS ሼܥ଴ሺݔ, ,ሻߩ ܵ଴ሺݔ,  ሻሽ, we haveߩ
for ݔ א ሺܽ, 1ሿ, 
 
߰ሺݔ, ሻߩ ൌ ,ݔ଴ሺܥሻߩଵሺܮ ሻߩ ൅ ,ݔሻܵ଴ሺߩଶሺܮ  ሻ.        (16)ߩ
 

Taking the Cramer's rule and the initial conditions 
߰ሺݔ, ݔ ሻ inߩ ൌ 1, we obtain 
 
ሻߩଵሺܮ       ൌ ߩ൫ݏ݋ܿ െ ܳሺ1ሻ൯ ൅ ܱ൫ିߩଵ݁݌ݔሺ|߬|ሻ൯, 
ሻߩଶሺܮ       ൌ ߩ൫݊݅ݏߩ െ ܳሺ1ሻ൯ െ ߩ൫ݏ݋ܿܪ െ ܳሺ1ሻ൯ 
                ൅݋൫݁݌ݔሺ|߬|ሻ൯. 
 

Substituting these coefficients in (16), we have  
 

߰ሺݔ, ሻߩ ൌ ݏ݋ܿ ቀߩሺ1 െ ሻݔ െ ൫ܳሺ1ሻ െ ܳሺݔሻ൯ቁ  

൅ܱ ቀିߩଵ݁݌ݔ൫|߬|ሺ1 െ ܽ	 ,ሻ൯ቁݔ ൏ ݔ ൑ 1.            (17) 
 

Analogously taking the FSS ሼܥ଴ሺݔ, ,ሻߩ ܵ଴ሺݔ,  ሻሽߩ
and the jump condition (3), we have 
 

  ߰ሺݔ, ሻߩ ൌ
ఈభ
షభାఈమ

షభ

ସ
ሺܿݏ݋ሺߩሺ2 െ ܽ ൅   ሻݔ

                െ൫2ܳሺ1ሻ െ ܳሺܽሻ ൅ ܳሺݔሻ൯ቁ 

                ൅ܿݏ݋ ቀߩሺܽ ൅ ሻݔ െ ൫ܳሺܽሻ െ ܳሺݔሻ൯ቁ൰ 

                 ൅
ఈభ
షభିఈమ

షభ

ସ
ሺܿݏ݋ሺߩሺ2 െ ܽ െ  ሻݔ

                  െ൫2ܳሺ1ሻ െ ܳሺܽሻ െ ܳሺݔሻ൯ቁ 

                  ൅ܿݏ݋ ቀߩሺܽ െ ሻݔ െ ൫ܳሺܽሻ ൅ ܳሺݔሻ൯ቁ൰ 

     ൅ܱ ቀିߩଵ݁݌ݔ൫|߬|ሺ2 െ ܽ ൅ ሻ൯ቁ, 0ݔ ൑ ݔ ൑ ܽ. (18) 
 

Using (12) at the point ݔ ൌ 0, we arrive at (15).  
Taking the functions ߰ሺݔ,  ሻ in proof of Lemmaߩ
2.5, we have  
 

߰ᇱሺݔ, ሻߩ ൌ ݊݅ݏߩ ቀߩሺ1 െ ሻݔ െ ൫ܳሺ1ሻ െ ܳሺݔሻ൯ቁ 

                ൅ܱ ቀ݁݌ݔ൫|߬|ሺ1 െ ሻ൯ቁݔ ,								ܽ ൏ ݔ ൑ 1,    

߰ᇱሺݔ, ሻߩ ൌ
ଵିଵߙሺߩ ൅ ଶߙ

ିଵሻ
െ4

ሺ݊݅ݏሺߩሺ2 െ ܽ ൅  ሻݔ

 െ൫2ܳሺ1ሻ െ ܳሺܽሻ ൅ ܳሺݔሻ൯ቁ  

 ൅݊݅ݏ ቀߩሺܽ ൅ ሻݔ െ ൫ܳሺܽሻ െ ܳሺݔሻ൯ቁ൰ 

 ൅
ఘ൫ఈభ

షభିఈమ
షభ൯

ିସ
ሺ݊݅ݏሺߩሺ2 െ ܽ െ  ሻݔ

 െ൫2ܳሺ1ሻ െ ܳሺܽሻ െ ܳሺݔሻ൯ቁ 

 ൅݊݅ݏ ቀߩሺܽ െ ሻݔ െ ൫ܳሺܽሻ ൅ ܳሺݔሻ൯ቁ൰ 

൅ܱ ቀ݁݌ݔ൫|߬|ሺ2 െ ܽ ൅ ሻ൯ቁݔ ,			0 ൑ ݔ ൑ ܽ.          (19)  
 
Inverse Problem 2.6. Suppose that ܽ and ߙ௝, ݆ ൌ
1,2, are known a priori. Our goal is to find 
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,ሻݔ଴ሺݍ  from the given Weyl ܪ ሻ, ݄ andݔଵሺݍ
function ܯሺߩሻ. 

3. Uniqueness theorem 

Now we prove the uniqueness theorem for the 
solution of the inverse problem. We consider 
together with ܮ ൌ ,ሻݔ଴ሺݍሺܮ ,ሻݔଵሺݍ ݄,  ሻ a boundaryܪ
value problem ܮ෨ ൌ ,ሻݔ෤଴ሺݍ൫ܮ ,ሻݔ෤ଵሺݍ ෨݄ ,  ෩൯ of theܪ
same form (1)-(2) but with different coefficients. If 
a certain symbol denotes an object related to ܮ, then 
the same symbol will denote the analogs object 
related to ܮ෨. 
 
Theorem 3.1. If ܯሺߩሻ ൌ ܮ ሻ thenߩ෩ሺܯ ൌ ෩.ܮ  Thus, 
the specification of the Weyl function uniquely 
determines the BVP(ܮ). 
 
Proof: Let us define the matrix  
 

ܲሺݔ, ሻߩ ൌ ൣ ௝ܲ௞ሺݔ,  ሻ൧௝,௞ୀଵ,ଶ,                 (20)ߩ
 
by the formula  
 

 ܲሺݔ, ሻߩ ቂఝ෥ሺ௫,ఘሻ		 థ෩ሺ௫,ఘሻ
ఝ෥ᇲሺ௫,ఘሻ థ෩ᇲሺ௫,ఘሻ

ቃ ൌ ቂ ఝሺ௫,ఘሻ	 థሺ௫,ఘሻ
ఝᇲሺ௫,ఘሻ థᇲሺ௫,ఘሻ

ቃ.      (21)  
 
By virtue of (14), this yields  
 

ቊ ௝ܲଵሺݔ, ሻߩ ൌ ߮ሺ௝ିଵሻሺݔ, ,ݔሻ߶෨ᇱሺߩ ሻߩ െ ߶ሺ௝ିଵሻሺݔ, ሻߩ ෤߮ ᇱሺݔ, ,ሻߩ

௝ܲଶሺݔ, ሻߩ ൌ ߶ሺ௝ିଵሻሺݔ, ሻߩ ෤߮ሺݔ, ሻߩ െ ߮ሺ௝ିଵሻሺݔ, ,ݔሻ߶෨ሺߩ 		.ሻߩ
  (22) 

 
Also we have  
 

 ൜
߮ሺݔ, ሻߩ ൌ ଵܲଵሺݔ, ሻߩ ෤߮ሺݔ, ሻߩ ൅ ଵܲଶሺݔ, ሻߩ ෤߮ ᇱሺݔ, ,ሻߩ
߶ሺݔ, ሻߩ ൌ ଵܲଵሺݔ, ,ݔሻ߶෨ሺߩ ሻߩ ൅ ଵܲଶሺݔ, ,ݔሻ߶෨ᇱሺߩ .ሻߩ

    (23) 

 
Using (13) and (22), we obtain  
 

ە
ۖ
۔

ۖ
ۓ ௝ܲଵሺݔ, ሻߩ ൌ ߮ሺ௝ିଵሻሺݔ, ,ݔሻܵԢ෩ሺߩ ሻߩ െ ܵሺ௝ିଵሻሺݔ, ሻߩ ෤߮ ᇱሺݔ, ሻߩ

൅ܯ෡ሺߩሻ߮ሺ௝ିଵሻሺݔ, ሻߩ ෤߮ ᇱሺݔ, ,ሻߩ

௝ܲଶሺݔ, ሻߩ ൌ ܵሺ௝ିଵሻሺݔ, ሻߩ ෤߮ሺݔ, ሻߩ െ ߮ሺ௝ିଵሻሺݔ, ሻߩ ሚܵሺݔ, ሻߩ

െܯ෡ሺߩሻ߮ሺ௝ିଵሻሺݔ, ሻߩ ෤߮ሺݔ, ,ሻߩ

   (24) 

 
where ܯ෡ሺߩሻ ൌ ሻߩ෩ሺܯ െܯሺߩሻ. Since ܯ෩ሺߩሻ ൌ  ሻߩሺܯ
deduce that ܯ෡ሺߩሻ ൌ 0, and consequently, for each 
fixed ݔ in ሾ0,1ሿ the functions  ௝ܲ௞ሺݔ, ,ሻߩ ݇ ൌ 1,2, 
are entire in ߩ. 

Fix ߝ ൐ 0. Denote ܩఌ ൌ ሼߩ א ԧ:	|ߩ െ |௞ߩ ൒  ሽ. Itߝ
follows from (12), (17), (18), (19) and the function 
∆ሺߩሻ in Theorem 2.3 that  
 

൞

																
ห߰ሺ௠ሻሺݔ, ሻหߩ ൑ ௠|ߩ|ܥ ሺ2|ߩ݉ܫ|൫݌ݔ݁ െ ܽ ൅ ሻ൯ݔ , ݔ א ሾ0, ܽሻ,

ห߰ሺ௠ሻሺݔ, ሻหߩ ൑ ௠|ߩ|ܥ ሺ1|ߩ݉ܫ|൫݌ݔ݁ െ ሻ൯ݔ , ݔ א ሺܽ, 1ሿ.    (25) 

 
|∆ሺߩሻ| ൒ |ߩ|ܥ ሻ|ߩ݉ܫ|ሺ݌ݔ݁ ߩ			, א  ఌ,                 (26)ܩ
 

ە
ۖ
۔

ۖ
߶หۓ

ሺ௠ሻሺݔ, ሻหߩ ൑ ௠ିଵ|ߩ|ܥ ሺ1|ߩ݉ܫ|൫݌ݔ݁ െ ܽ ൅ 									,ሻ൯ݔ
ݔ																																																													 א ሾ0, ܽሻ,						ߩ א ,ఌܩ
ห߶ሺ௠ሻሺݔ, ሻหߩ ൑ ௠ିଵ|ߩ|ܥ 																								,ሻݔ|ߩ݉ܫ|ሺെ݌ݔ݁
ݔ																																																																	 א ሺܽ, 1ሿ,			ߩ א .ఌܩ

   (27) 

 
It follows from (11), (22) and (27) that for		0 ൑

ݔ ൑ ߩ			,1 א     ,ఌܩ
 

| ଵܲଵሺݔ, |ሻߩ ൑ |				,ܥ ଵܲଶሺݔ, |ሻߩ ൑  .ଵି|ߩ|ܥ
 

Therefore ଵܲଵሺݔ, ሻߩ ൌ ଵܲሺݔሻ and Pଵଶሺx, ρሻ ൌ 0 
for each	0 ൑ ݔ ൑ 1. Together with (23), this yields  
 
ଵܲሺݔሻ ෤߮ሺݔ, ሻߩ ൌ ߮ሺݔ, ,ሻߩ ଵܲሺݔሻ߶෨ሺݔ, ሻߩ ൌ ߶ሺݔ,  ሻ.   (28)ߩ

 
First let ݔ א ሺܽ, 1ሿ. Taking (12), (17) and the 

functions ߮ሺݔ,  ሻ in Theorem 2.3, weߩሻ and ∆ሺߩ

have as |ߩ| ՜ ∞,	 arg ߩ א ቀ0,
గ

ଶ
ቁ,   

 
ఝሺ௫,ఘሻ

ఝ෥ሺ௫,ఘሻ
ൌ ݌ݔ݁ ቀ݅൫ܳሺݔሻ െ ෨ܳሺݔሻ൯ቁ ሾ1ሿ, 

	
థሺ௫,ఘሻ

థ෩ሺ௫,ఘሻ
ൌ ݌ݔ݁ ቀെ݅൫ܳሺݔሻ െ ෨ܳሺݔሻ൯ቁ ሾ1ሿ,               (29) 

 
where ሾ1ሿ ൌ 1 ൅ ܱሺିߩଵሻ. It follows from (28) and 
(29) that  
 

ଵܲሺݔሻ ൌ ݌ݔ݁ ൬݅ ቀܳሺݔሻ െ ෨ܳሺݔሻቁ൰ ሾ1ሿ,	  

ଵܲሺݔሻ ൌ ݌ݔ݁ ൬െ݅ ቀܳሺݔሻ െ ෨ܳሺݔሻቁ൰ ሾ1ሿ,              (30) 
 
and consequently, ܳሺݔሻ ൌ ෨ܳሺݔሻ for ܽ ൏ ݔ ൑ 1 and 
ଵܲሺݔሻ ൌ 1. 
Now, let ݔ א ሾ0, ܽሻ. Analogously taking (7), (12), 

(18), the function ∆ሺߩሻ in Theorem 2.3 and 
equalities ܳሺܽሻ ൌ ෨ܳሺܽሻ and ܳሺ1ሻ ൌ ෨ܳሺ1ሻ, we get 

for |ߩ| ՜ ∞,	 arg ߩ א ቀ0,
గ

ଶ
ቁ,   

 
ఝሺ௫,ఘሻ

ఝ෥ሺ௫,ఘሻ
ൌ ݌ݔ݁ ቀ݅൫ܳሺݔሻ െ ෨ܳሺݔሻ൯ቁ ሾ1ሿ, 

థሺ௫,ఘሻ

థ෩ሺ௫,ఘሻ
ൌ ݌ݔ݁ ቀെ݅൫ܳሺݔሻ െ ෨ܳሺݔሻ൯ቁ ሾ1ሿ.                (31) 

 
One has from (28) and (31) that  
 

ଵܲሺݔሻ ൌ ݌ݔ݁ ൬݅ ቀܳሺݔሻ െ ෨ܳሺݔሻቁ൰ ሾ1ሿ,	         

ଵܲሺݔሻ ൌ ݌ݔ݁ ൬െ݅ ቀܳሺݔሻ െ ෨ܳሺݔሻቁ൰ ሾ1ሿ,              (32) 
 
and consequently, ܳሺݔሻ ൌ ෨ܳሺݔሻ for 0 ൑ ݔ ൏ ܽ and 
ଵܲሺݔሻ ൌ 1.  
Thus ܳሺݔሻ ൌ ෨ܳሺݔሻ for all 0 ൑ ݔ ൑ 1, and 

consequently ݍଵሺݔሻ ൌ ሻ for any 0ݔ෤ଵሺݍ ൑ ݔ ൑ 1. 
Also since ଵܲሺݔሻ ൌ 1, we have ߮ሺݔ, ሻߩ ൌ ෤߮ሺݔ,  ሻߩ
and ߶ሺݔ, ሻߩ ൌ ߶෨ሺݔ, ሻݔ଴ሺݍ ,ሻ, henceߩ ൌ ,ሻݔ෤଴ሺݍ ݄ ൌ
෨݄		and ܪ ൌ ܮ ෩. Thereforeܪ ൌ ෩.ܮ  The proof is 
completed. 
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4. Conclusions 

Through review of the papers, it is revealed that 
there is not an inverse problem for differential 
pencils with a discontinuity. This is a lack for such 
problems and it is studied. In particular, the some 
methods in the inverse problem theory for Sturm–
Liouville operators like the transformation operator 
do not give reliable results for differential pencils 
with discontinuity. The method of the spectral 
mappings is appropriate for the Weyl function to 
play an important role in. Thus we investigated this 
problem and obtained some new results. 
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