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Abstract 

The purpose of this paper is to investigate the inverse problem for a second order differential equation the so-
called differential pencil on the finite interval 0,1  when the solutions are not smooth. We establish properties of 
the spectral characteristics, derive the Weyl function and prove the uniqueness theorem for this inverse problem. 
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1. Introduction 

We consider the boundary value problem  for the 
following differential equation in the interval 
		 0,1 , 
 

0,     (1) 
 

with the boundary conditions  
 

0 0 0,			       
1 1 0,                            (2) 

 
and the jump condition  
 

0, 0, ,		    
0, 0, ,                          (3) 

 
in an interior point . The functions ,		 

0,1	 are complex-valued and 0,1 . 
Also the coefficients h and H are complex numbers 
and . 

Boundary value problems with discontinuities 
inside the interval often appear in mathematics, 
physics, geophysics, mechanics and other branches 
of natural sciences. The boundary value problem 
without discontinuities has been studied in 
(Neamaty and Mosazadeh, 2010; Neamaty and 
Sazgar, 2008; Yurko, 2000; Koyubakan, 2006). 
Some aspects for discontinuous boundary value 
problems in various formulations have been 
considered in (Carlsone, 1994; Hald, 1998; 
Neamaty and Khalili, 2010; Amirov, 2006; 
Altinisik et al., 2004). In Keskin et al. (2011) and 
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Freiling and Yurko (2001), the inverse problem for 
classical Sturm-Liouville operators with the jump 
condition is studied. The inverse problem theory for 
differential pencils was studied in Neamaty and 
Khalili (2013), Yurko (1997) and Yurko (2006). 
Here we will study the boundary value problem for 
differential pencils with discontinuities that has not 
been studied so far. In other words, the main goal of 
the present work is to study the inverse problem of 
reconstructing the differential pencils with 
discontinuous conditions by using the Weyl 
function. The technique employed is similar to 
those used in (Neamaty and Khalili, 2013). 

In order to study the inverse problem in this 
paper, we use the Weyl function. Special 
fundamental system of solutions (FSS) plays an 
important role in this method. FSS provides an 
opportunity to obtain the asymptotic behavior of the 
so-called Weyl solution and Weyl function. Using 
these functions, we prove the uniqueness solution 
of the inverse problem. In Section 2, we determine 
the asymptotic form of the solutions and 
eigenvalues and give the Weyl function. In Section 
3, we prove the uniqueness theorem and finally, 
Section 4 contains some conclusions. 

2. The properties of the spectrum 

Let the functions , , , , ,  and 
,  be solutions of Eq. (1) under the initial 

conditions 0, 	 	 0, 	 	 0, 	
	 1, 1, 0, 0, 0, 0, , 

1,  and the jump condition (3). 
Let ,  and ,  be smooth solutions of 

Eq. (1) on the interval 0,1 	under the initial 
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conditions 0, 0, 1 and 0,

0, 0. We have for , 
 

, , ,
, , .

                                         (4) 

 
Using the jump condition (3), we get for , 

 
, , , ,
, , , .

    (5)  

 
Denote  
 
∆ 〈 , , , 〉,                               (6) 

 
where 〈 , 〉   is the Wronskian of the 
functions  and . The function ∆  is 
called the characteristic function for the boundary 
value problem . 

From Buterin and Shieh (2009) and Freiling and 
Yurko (2001), we know that there exists the 
solution of the following form for | | ∞ 
uniformly in , 

 
, | | ,    (7) 

 
, | | ,    (8) 

 
where , , . 

 

Theorem 2.1. By virtue of Liouville
,
s formula for 

the Wronskian, ∆ 	does not depend on , and  
 
∆ .                                                    (9) 

 
Proof: Let ,  and ,  be solutions of  Eq. 
(1) for parameters  and , respectively. Then 
〈 , 〉 . Since ,  and ,  

are the solutions of Eq. (1), we have 〈 , 〉 0. 

Therefore 〈 , , , 〉 is constant, i.e., 
∆ 	dos not depend on . Now, for 1, we have  
 

 ∆ 〈 , , , 〉|  
          1, 1, 1, 1,  

                	 1 1, 1,  
                 1, 1, .     
 
The proof is completed.  
 
Definition 2.2. The values of the parameter  for 
which the equation (1) has nontrivial solutions 
satisfying the boundary conditions (2), are called 
the eigenvalues of  and the corresponding 
solutions are called the eigenfunctions. 
 
Theorem 2.3. ) For | | ∞ the following 
asymptotical formula holds 
 
         ∆ 1   

2 1  

1  

                   	 2 2 1   

                   	 2 1  

                   | | , 
 
where ,  .  

) For sufficiently large , the function ∆  has 
simple zeros of the form 
 

 2 2 1 	  

                  1 .	                            (10) 
 
Proof: We have (see Buterin and Shieh (2009) and 
Freiling and Yurko (2001)) 
 
 ,  

                | | , 

   ,  
                 | | , 
 
where .	Also 
 

 ,  

                 | | , 

 ,  

               | | . 
 

Using (5), the solutions , ,	 ,  and the 
jump condition (3), we have  
 
 2  

                 2  

                  | | , 

 | | , 

 2  
          	 2 2 | | , 

2  
           | | . 
 

Substituting these coefficients and the functions 
, , ,  in (5), we obtain  

 
 ,  

              2 2  

              	 | | , 

 ,  

              2 2  
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              	 | | . 
 
Since  
 

, , , , 
 
we have  
 
 ,  

              2 2  

              	 | | ,																										 , 
,    

              2 2  

              	 | | ,																																		 . 
 

Using (2) and (9), we arrive at the characteristic 
function ∆ . 

Now suppose that the function ∆  has simple 
zeros of the following form (see Conway (1995))  
 

	 ,					 ∞,	 
 
where  are the zeros of the function  
 
       ∆ 1  
                  2 1 . 
 
Since  
 

2 2 1 1 , 

∞, 
 
we arrive at the eigenvalues of the form (10).  
 
Corollary 2.4. It follows from (7), (8) and the 
functions ,  in proof of Theorem 2.3 that  
 

, | | | | ,				0 1.     (11) 
 
Denote  
 

,
,
.                                               (12) 

 
Let ,  be the solution of Eq. (1) under the 

boundary conditions 1, 0.	We set 
0, . The functions ,  and  

are called the Weyl solution and Weyl function for 
the boundary value problem , respectively. 
Clearly, using the conditions at the point 0, we 
get  
 

, , , ,                     (13) 
 
and  
 
〈 , , , 〉 1.                                        (14) 
 
Lemma 2.5. For | | ∞,  
 

1 1     

              1 .                            (15) 
 
Proof: Using the FSS , , , , we have 
for , 1 , 
 

, , , .        (16) 
 

Taking the Cramer's rule and the initial conditions 
,  in 1, we obtain 

 
      1 | | , 
      1 1  
                | | . 
 

Substituting these coefficients in (16), we have  
 

, 1 1   

| | 1 , 	 1.            (17) 
 

Analogously taking the FSS , , ,  
and the jump condition (3), we have 
 

  , 2   

                2 1  

                 

                 2  

                  2 1  

                   

     | | 2 , 0 . (18) 
 

Using (12) at the point 0, we arrive at (15).  
Taking the functions ,  in proof of Lemma 
2.5, we have  
 

, 1 1  

                | | 1 ,								 1,    

,
4

2  

 2 1   

  

 2  

 2 1  

  

| | 2 ,			0 .          (19)  
 
Inverse Problem 2.6. Suppose that  and ,
1,2, are known a priori. Our goal is to find 
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, ,  and  from the given Weyl 
function . 

3. Uniqueness theorem 

Now we prove the uniqueness theorem for the 
solution of the inverse problem. We consider 
together with , , ,  a boundary 
value problem , , ,  of the 
same form (1)-(2) but with different coefficients. If 
a certain symbol denotes an object related to , then 
the same symbol will denote the analogs object 
related to . 
 
Theorem 3.1. If  then . Thus, 
the specification of the Weyl function uniquely 
determines the BVP( ). 
 
Proof: Let us define the matrix  
 

, ,
, ,

,                 (20) 
 
by the formula  
 

 , , 		 ,
, ,

, 	 ,
, ,

.      (21)  
 
By virtue of (14), this yields  
 

, , , , , ,

, , , , , .		
  (22) 

 
Also we have  
 

 
, , , , , ,
, , , , , .

    (23) 

 
Using (13) and (22), we obtain  
 

, , , , ,

, , ,
, , , , ,

, , ,

   (24) 

 
where . Since  
deduce that 0, and consequently, for each 
fixed  in 0,1  the functions  , , 1,2, 
are entire in . 

Fix 0. Denote :	| | . It 
follows from (12), (17), (18), (19) and the function 
∆  in Theorem 2.3 that  
 																

, | | | | 2 , 0, ,

, | | | | 1 , , 1 .    (25) 

 
|∆ | | | | | ,			 ,                 (26) 
 

, | | | | 1 ,									
																																																													 0, ,						 ,

, | | | | ,																								
																																																																	 , 1 ,			 .

   (27) 

 
It follows from (11), (22) and (27) that for		0
1,			 ,    

 
| , | ,				| , | | | . 

 
Therefore ,  and P x, ρ 0 

for each	0 1. Together with (23), this yields  
 

, , , , , .   (28) 
 

First let , 1 . Taking (12), (17) and the 
functions ,  and ∆  in Theorem 2.3, we 

have as | | ∞,	 arg 0, ,   
 

,

,
1 , 

	
,

,
1 ,               (29) 

 
where 1 1 . It follows from (28) and 
(29) that  
 

1 ,	  

1 ,              (30) 
 
and consequently,  for 1 and 

1. 
Now, let 0, . Analogously taking (7), (12), 

(18), the function ∆  in Theorem 2.3 and 
equalities  and 1 1 , we get 

for | | ∞,	 arg 0, ,   
 

,

,
1 , 

,

,
1 .                (31) 

 
One has from (28) and (31) that  
 

1 ,	         

1 ,              (32) 
 
and consequently,  for 0  and 

1.  
Thus  for all 0 1, and 

consequently  for any 0 1. 
Also since 1, we have , ,  
and , , , hence, ,
		and . Therefore . The proof is 

completed. 
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4. Conclusions 

Through review of the papers, it is revealed that 
there is not an inverse problem for differential 
pencils with a discontinuity. This is a lack for such 
problems and it is studied. In particular, the some 
methods in the inverse problem theory for Sturm–
Liouville operators like the transformation operator 
do not give reliable results for differential pencils 
with discontinuity. The method of the spectral 
mappings is appropriate for the Weyl function to 
play an important role in. Thus we investigated this 
problem and obtained some new results. 
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