| JST (2014) 38A3 (Special issue-Mathematics): 305-309

Iranian Journal of Science & Technology
http://ijsts.shirazu.ac.ir

The uniquenesstheorem for differential pencils
with the jump condition in thefinite interval

A. Neamaty™* and Y. Khalili?

IDepartment of Mathematics, University of Mazandaran, Babolsar, Iran
2Department of Mathematics, Sari Branch, Islamic Azad University, Sari, Iran
E-mail: namaty@umz.ac.ir

Abstract

The purpose of this paper is to investigate the inverse problem for a second order differential eguation the so-
called differential pencil on the finite interval [0,1] when the solutions are not smooth. We establish properties of
the spectral characteristics, derive the Weyl function and prove the uniqueness theorem for thisinverse problem.
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1. Introduction

We consider the boundary value problem L for the
following differential equation in the interval
[0,1],

Y ) + (p? +ipqi(x) + qo(0))y(x) =0, (1)
with the boundary conditions

U(y) =y'(0) — hy(0) =0,
V(y)=y'(1) + Hy(1) =0, ()

and the jump condition

y(@a+0,p) =ay(a—0,p),
y,(a +0, ,0) = azy’(a -0, ,0); (3)

in an interior point x = a. The functions q;(x),
j =01 are complex-valued and g,(x) € W;’[0,1].
Also the coefficients h and H are complex numbers
and a, # +aj;.

Boundary value problems with discontinuities
inside the interval often appear in mathematics,
physics, geophysics, mechanics and other branches
of natural sciences. The boundary value problem
without discontinuities has been studied in
(Neamaty and Mosazadeh, 2010; Neamaty and
Sazgar, 2008; Yurko, 2000; Koyubakan, 2006).
Some aspects for discontinuous boundary value
problems in various formulations have been
considered in (Carlsone, 1994; Hald, 1998;
Neamaty and Khalili, 2010; Amirov, 2006;
Altinisik et al., 2004). In Keskin et a. (2011) and
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Freiling and Y urko (2001), the inverse problem for
classical Sturm-Liouville operators with the jump
condition is studied. The inverse problem theory for
differentia pencils was studied in Neamaty and
Khalili (2013), Yurko (1997) and Yurko (2006).
Here we will study the boundary value problem for
differential pencils with discontinuities that has not
been studied so far. In other words, the main goal of
the present work is to study the inverse problem of
reconstructing the differential  pencils with
discontinuous conditions by using the Weyl
function. The technique employed is similar to
those used in (Neamaty and Khalili, 2013).

In order to study the inverse problem in this
paper, we use the Weyl function. Specia
fundamental system of solutions (FSS) plays an
important role in this method. FSS provides an
opportunity to obtain the asymptotic behavior of the
so-called Weyl solution and Weyl function. Using
these functions, we prove the uniqueness solution
of the inverse problem. In Section 2, we determine
the asymptotic form of the solutions and
eigenvalues and give the Weyl function. In Section
3, we prove the uniqueness theorem and finaly,
Section 4 contains some conclusions.

2. The properties of the spectrum

Let the functions C(x,p), S(x,p), @(x,p) and
Y(x,p) be solutions of Eqg. (1) under the initial
conditions C0,p) = S'(0,p) = @(0,p) =
Y(1,p) =1, C'(0,p) =5(0,p) =0, ¢'(0,p) = h,
Y'(1, p) = —H and the jump condition (3).

Let Cy(x, p) and S,(x, p) be smooth solutions of
Eg. (1) on the interval [0,1] under the initial
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conditions C,(0,p) = S5(0,p) =1 and C}(0,p) =
50,(0,p) = 0. Wehavefor x < a,

{C(x'P) = Co(x'P),
S(X, P) = So(x'P)-

Using the jJump condition (3), we get for x > a,

{C (x,p) = A1 (p)Co(x, p) + B1(p)So(x, p),
S(x,p) = A;,(p)Co(x, p) + Bo(p)So(x, p)-

Denote

Ap) = (P (x, p), 9 (x, p)), (6)

where (y, z) := yz' —y'z is the Wronskian of the
functions y(x) and z(x). The function A(p) is
called the characteristic function for the boundary
value problem L.

From Buterin and Shieh (2009) and Freiling and
Yurko (2001), we know that there exists the
solution of the following form for |p| —» o
uniformly inx < a,

(4)

©)

@(x,p) = cos(px — Q(x)) + 0(p~texp(|z|x)), (7)
@' (x,p) = —psin(px — Q(x)) + 0(exp(Izlx)), (8)

where Q(x) = %fox q,(O)dt, A = p?, T = Imp.

Theorem 2.1. By virtue of Liouville’ s formula for
the Wronskian, A(p) does not depend on x, and

A(p) = V(9). (9)

Proof: Let y(x,1) and z(x, 1) be solutions of Eq.
(1) for parameters A and u, respectively. Then

=2 = (@ = wyz Since p(x,2) and P(x,2)
are the solutions of Eg. (1), we have ;—x(y,z) =0.

Therefore  (Y(x, 1), ¢(x, 1)) is constant, i.e,
A(p) dos not depend on x. Now, for x = 1, we have

A(p) = (Y (x, p), 0 (x, p))jx=1
=9y, p)e'(1,p) —¢'(1,p)e(1,p)
=1x¢'(1,p) - (-H)e(1,p)
=¢'(1,p) + Hp(1,p) =V (ep).

The proof is completed.

Definition 2.2. The values of the parameter p for
which the equation (1) has nontrivial solutions
satisfying the boundary conditions (2), are called
the eigenvalues of L and the corresponding
solutions are called the eigenfunctions.

Theorem 2.3. i;) For |p| - o the following
asymptotical formula holds

A(p) = p(—bysin(p — Q(1))

+b,sin(-2Q(a) + Q(1)))

+b,(h + H)cos(p - Q(l))

+b, (h cos (Zp - (2Q(@) + Q(l)))
+H cos(—2Q(a) + Q(l)))
+0(p~texp(|z])),

+
where b, = =22 b, =

2
i,) For sufficiently large k, the function A(p) has
simple zeros of the form

a1—az

P = 2k + iln (‘i’izism(—zq(a) + Q(1)))

+Q(1) + 0(k™1). (20

Proof: We have (see Buterin and Shieh (2009) and
Freiling and Y urko (2001))

Coltx,p) = cos(px — Q)

+W+ o(p~texp(|z|x)),

Co(x,p) = —psin(px — Q1))
+Qo (%) cos(px — Q(x)) + o(exp(Iz]x)),

where Qo (x) = - J,* go(t)dt. Also

So(x, p) = Snlex=et) ’:Qm)
_ Qo)cos(px—Q(x))
p2
So(x, p) = cos(px — Q(x))

+ QoG)sin(px-Q()) +o(ptexp(|z|x)).

+o(p~2exp(ltlx)),

Using (5), the solutions C, (x, p), So(x, p) and the
jump condition (3), we have
A1(p) = by + by cos 2(pa — Q(a))
+ 2%00 (a)sinZ(pa - Q(a))
+o(p~texp(I7la)),
Ax(p) = b, D) 1 0(p-2exp(irla)
Bi(p) = byp SinZ(pa - Q(a))
—2b,Q,(a) cosZ(pa - Q(a)) + o(exp(lrla)),
B2(p) = by + b, cos2(pa — Q(a))
+0(p~texp(|tla)).

Substituting these coefficients and the functions
Co(x,p),So(x, p) in (5), we obtain

$Ce,p) = (b sin(px — Q)

+b, sin (p(Za +x)— (ZQ(a) + Q(x))))
+0(p~2exp(|z|x)),
C(x,p) = (b cos(px — Q(x))

+b, cos (p(2a - x) - (20(@) - Q) ))
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+o(p~exp(t]x)). M(p) = cos( (1-a) - (Q(1) - Q(a)))
Since +0(P exp(l - a)). (15)
@(x,p) = C(x,p) + hS(x, p), Proof: Using the FSS {C, (x, p), So (x, p)}, we have
we have forx € (a,1],

@(x,p) = by cos(px — Q(x))
+b, cos (p(2a —x)— (ZQ(a) — Q(x)))
+ 0(p~texp(Izlx)), x> a,
@'(x,p) = —b,p sin(px — Q(x))
+bz psin (p(2a —x) — (20(@) — Q)
+ O(exp(l‘clx)), x> a.
Using (2) and (9), we arrive at the characteristic
function A(p).

Now suppose that the function A(p) has simple
zeros of the following form (see Conway (1995))

pi =pr+O0k™), k- o,
where p? are the zeros of the function

A%(p) = —bysin(p — Q(1))
+b,sin(—2Q(a) + Q(1)).

Since

Py = 2km + Lln(

k - oo,

)+,

we arrive at the eigenvalues of the form (10).

Corollary 2.4. It follows from (7), (8) and the
functions ¢ ™ (x, p) in proof of Theorem 2.3 that

lp™ (x,p)| < ClpI™exp(lmplx), 0<x<1. (11)

Denote

—Y(x,p)

bx, p) =— 0= (12)

Let ¢(x,p) be the solution of Eq. (1) under the
boundary conditions U(¢) =1, V(¢) = 0. We st
M(p) = ¢(0,p). The functions ¢(x, p) and M(p)
are called the Weyl solution and Weyl function for
the boundary value problem L, respectively.
Clearly, using the conditions at the point x = 0, we
get

¢(x,p) = S(x,p) + M(p)o(x,p), (13
and
(px,p), d(x,p)) = 1. (14

Lemma 2.5. For |p| = oo,

Y(x,p) = Li(p)Co(x,p) + L(p)So(x,p).  (16)

Taking the Cramer's rule and the initial conditions
Y(x,p) inx =1, weobtain

Ly(p) = cos(p — QD)) + 0(p~exp(Iz])),
L,(p) = psin(p — Q(1)) — Heos(p — Q(1))
+o(exp(|r|)).

Substituting these coefficientsin (16), we have

P(x,p) = cos (p(1 - x) - (Q(1) — Q()))
+0 (p‘lexp(lrl(l - x))), a<x<1. a7

Anadogously taking the FSS {C,(x, p), So(x, p)}
and the jump condition (3), we have

“1

P p) = T (cos(p(2 — a + 1)
~(200) - 0(@) + Qw)))
+cos (p(a +x)— (Q(a) - Q(x))))
+@(cos(p(2 —a—x)
-(20(1) - (@) - Q()))
+cos (p(a —-x) — (Q(a) + Q(x))))
+0 (p‘lexp(lrl(Z —a+ x))), 0<x<a. (18

Using (12) at the point x = 0, we arrive at (15).
Taking the functions ¥ (x, p) in proof of Lemma
2.5, we have

¥'(x,p) = psin(p(1 - ) - (Q(1) - Q)
+0 (exp(lrl(l — x))), a<x<l1,

P'(xp) = p(a1—41)

~(20() - Q(@) + QW)))

+sin (p(a +x) — (Q(a) - Q(x))))

+—p(a1_:a2_1) (sin(p(2 —a —x)

~(20(1) - (@) - Q()))

+sin (p(a -x) = (Qa) + Q(x))))

+0 (exp(ITI(Z —a+ x))), 0<x<a (19

(sin(p(2 —a +x)

Inverse Problem 2.6. Suppose that a and «;, j =
1,2, are known a priori. Our goa is to find
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qo(x),q.(x), h and H from the given Weyl
function M (p).

3. Uniqueness theorem

Now we prove the uniqueness theorem for the
solution of the inverse problem. We consider
together with L = L(qy(x), q;(x), h, H) a boundary
value problem L = L(go(x),d,(x),h, H) of the
same form (1)-(2) but with different coefficients. If
acertain symbol denotes an abject related to L, then
the same symbol will denote the analogs object
related to L.

Theorem 3.1. If M(p) = M(p) then L = L. Thus,
the specification of the Weyl function uniquely
determines the BVP(L).

Proof: Let us define the matrix

P(x,p) = [Pu(x, p)] (20)

j k=12’

by the formula

p) ] _ [exp) ¢xp)
P(x,p) [t?)’(x,p) @’(x,p)] - [tp’(X.p) ¢’ (o)) @)

By virtue of (14), thisyields

{Pn(x,p) = U™, )@’ (x,p) — U (x, )@’ (x, ), 22)
P (x,p) = UV (x, p)(x, p) — U™ (x, p)P(x, p).

Also we have

{(p(xr ,0) = Pll(xr p)(é(xr ,0) + P12(x' ,D)(é,(x, ,0), (2 )
¢(X, p) = Pll(x' p)¢(xr p) + P12(x: p)(l)'(x, P)

Using (13) and (22), we obtain

+M(P)pU ™, )P (x,p), (24)
Py (x,p) = SU™V(x, p)@(x, p) — @YU~V (x, p)S(x, p)
—M ()Y (x, p)G(x, p),

where M(p) = M(p) — M(p). Since M(p) = M(p)
deduce that M(p) = 0, and consequently, for each
fixed x in [0,1] the functions Py (x,p), k = 1,2,
areentirein p.

Fix e > 0. Denote G, = {p € C: |p — pi| = &}. It
follows from (12), (17), (18), (19) and the function
A(p) in Theorem 2.3 that

{P,-l(x,p) = U (x,p)S (x,p) — SU™D(x, p)@' (x, p)

[ (x, p)| < Clp|™ exp(lImp|(2 — a + x)), x € [0,a),
™, p)| < Clol™ exp(Iimpl(1 - 1)), x € (@11 (25)

[A(p)| = Clplexp(|Impl), p € G, (26)

x€[0,a), pEG,, (27)
|p™ (x, p)| < ClpI™ " exp(—|Imp|x),
x € (a 1], p€G,.

{|¢(m)(x’p)| < Clp|™* exp(|1mp|(1 —a+ x)),

It follows from (11), (22) and (27) that for 0 <
x<1, pegG,,

[Py (x, p)| < C, [P (x,p)| < Clpl ™.

Therefore Pll(x, p) = Pl(x) and PIZ(X’ p) =0
for each 0 < x < 1. Together with (23), thisyields

Py (x)@(x, p) = p(x,p), PL(x)P(x,p) = ¢p(x,p). (28)

First let x € (a,1]. Taking (12), (17) and the
functions ¢(x,p) and A(p) in Theorem 2.3, we

haveas |p| - o, argp € (O.E).

280 = exp (i(Q@) — Q)) (1],

P(xp)

D) prp (~iQE) ~ Q@))[1, (29)
where [1] = 1+ 0(p™1). It follows from (28) and
(29) that

PG = exp (i (@ - 0) ) 111,
P =ew(-i(0-0w))L @30

and consequently, Q(x) = Q(x) fora < x <1 and
P(x) =1

Now, let x € [0, a). Analogously taking (7), (12),
(18), the function A(p) in Theorem 2.3 and
equalities Q(a) = Q(a) and Q(1) = Q(1), we get
for |p| » o, argp € (0,%),

P&xp) _ exp (i(Q(x) - Q(x))) (1,

?(x.p)
2= exp (=i(Q() = Q) 11 (31)

One has from (28) and (31) that

P = exp (i (0 - ) ) 1],
P =ew(-i(0-0))1L @2

and consequently, Q(x) = Q(x) for 0 < x < a and
Pi(x)=1.

Thus Q(x) =Q(x) for dl 0<x<1, and
consequently g,(x) = g;(x) for any 0 <x < 1.
Also since P;(x) = 1, we have ¢(x,p) = §(x,p)
and ¢ (x, p) = (x, p), hence, qo(x) = Go(x), h =
h and H=H. Therefore L =L. The proof is
compl eted.
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4. Conclusions

Through review of the papers, it is revealed that
there is not an inverse problem for differentia
pencils with a discontinuity. Thisis alack for such
problems and it is studied. In particular, the some
methods in the inverse problem theory for Sturm—
Liouville operators like the transformation operator
do not give reliable results for differential pencils
with discontinuity. The method of the spectra
mappings is appropriate for the Weyl function to
play an important role in. Thus we investigated this
problem and obtained some new results.

Aknowledgement

The authors would like to express ther
thankfulness for the valuable comments and
suggestions made by the anonymous reviewers.

References

Altinisik, N., Kadakal, M., & Mukhtarov, O. S. (2004).
Eigenvalues and eigenfunctions of discontinuous
Sturm-Liouville problems with  eigenparameter
dependent boundary conditions. Acta Mathematica
Hungarica, 102(1-2), 159-193.

Amirov, R. Kh. (2006). On Sturm-Liouville operators
with discontinuity conditions inside an interval.
Journal of Mathematical Analysis and Applications,
317(1), 163-176.

Buterin, S. A., & Shieh, C. T. (2009). Inverse nodal
problems for differential pencils. Applied Mathematics
Letters, 22(8), 1240-1247.

Carlsone, R. (1994). An inverse spectral problem for
Sturm-Lioville operator with discontinues coefficients.
Proceedings of the American Mathematical Society,
120(2), 475-484.

Conway, J .B. (1995). Functions of One Complex
Variable. Springer-Verlag, New Y ork.

Freiling, G., & Yurko, V. A. (2001). Inverse Surm-
Liouville Problems and their Applications. NOVA
Science Publisher, New Y ork.

Hald, O. H. (1998). Discontinues inverse eigenvaue
problems. Communications on Pure and Applied
Mathematics, 37(5), 539-577.

Keskin, B., Sinan, A., & Yakin, N. (2011). Inverse
spectral problems for discontinuous Sturm-Liouville
operator with eigenparameter dependent boundary
conditions. Communications de la Faculté des
Sciences de I'Université d'Ankara, Series Al, 60(1),
15-25.

Koyunbakan, H. (2006). A new inverse problem for the
diffusion operator. Applied Mathematics Letters,
19(10), 995-999.

Neamaty, A., & Sazgar, E. A. (2008). Asymptotic
eigenvalues for Sturm-Liouville problem with
neumann conditions in two turning points case. Iranian
Journal of Science & Technology, Transaction,
32(A4), 289-296.

Neamaty, A., & Mosazadeh, S. (2010). On the canonical
solution and dua equations of Sturm-Liouville
problem with singularity and turning point. Iranian
Journal of Science & Technology, Transaction,
34(A1), 71-88.

Neamaty, A., & Khadlili, Y. (2010). The eigenvalue
problems for differential equations with jump
condition and turning point. Far East Journal of
Mathematical Sciences, 37(1), 1-7.

Neamaty, A., & Khalili, Y. (2013). The differential
pencils with turning point on the haf line. Arab
Journal of Mathematical Sciences, 19(1), 95-104.

Yurko, V. A. (1997). An inverse problem for systems of
differential equations with nonlinear dependence on
the spectral parameter. Differential Equations, 33(3),
388-394.

Yurko, V. A. (2000). An inverse problem for pencils of
differential operators. Shornik: Mathematics, 191(10),
1561-1586.

Yurko, V. (2006). Inverse spectral problems for
differential pencils on the half-line with turning points.
Journal of Mathematical Analysis and Applications,
320(1), 439-463.



