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Abstract – The main objective of this paper is to find the necessary and sufficient condition of a given Finsler 
metric to be Einstein in order to classify the Einstein Finsler metrics on a compact manifold. The considered 
Einstein Finsler metric in the study describes all different kinds of Einstein metrics which are pointwise 
projective to the given one. This study has resulted in the following theorem that needs the proof of three 
prepositions. Let F  be a Finsler metric ( 2)n >  projectively related to an Einstein non-projectively flat 
Finsler metric F , then F  is Einstein if and only if FF λ=  whereλ is a constant. A Schur type lemma is 
also proved. 
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1. INTRODUCTION 
 
One important study in projective geometry is to determine a relationship among geometric structures with 
common geodesics as the point sets. Two regular metrics on a manifold are said to be pointwise 
projectively related if they have the same geodesics as the point sets. Two regular metric spaces are said to 
be projectively related if there is a difeomorphism between them such that the pull-back metric is 
pointwise projective to another one. There are some quantities in the projective Finsler geometry which 
are projective invariant. One of the most important of them is the Weyl curvature. The Finsler metrics 
with 0i

kW =  are called Weyl metrics. It is well-known that a Finsler metric is a Weyl metric if and only 
if it is of scalar flag curvature. The Ricci curvature plays an important role in the projective geometry of 
Riemannian-Finsler manifolds. The well-known Ricci tensor was introduced in 1904 by G. Ricci. Nine 
years later Ricci’s work was used to formulate Einstein’s theory of gravitation [1]. A Finsler metric is 
Einstein if the Ricci scalar Ric is a function of x alone. Equivalently 
 

( )ij ijRic Ric x g=  
 

In Riemannian space, if g  and g  are pointwise projectively related Riemannian metrics on 
manifolds of dimensional 3n ≥ , then g  is of constant curvature if and only if g  is of constant curvature. 
The same statement is also true for Einstein metrics. More precisely, it can be said: 

 
Theorem ([2, 3]) Let ( )M g,  be an n-dimensional Riemannian space and g  another Riemannian metric 
pointwise projective to g . Suppose that g  is Einstein, then g  must be Einstein. The paper focuses on the 
Einstein Finsler metrics which are projectively related to the other Einstein Finsler metrics. The question 
that can be raised in the situations where a Finsler metric is projectively related to the Einstein one is: 

                                                            
∗Received by the editor December 10, 2006 and in final revised form August 12, 2007 
∗∗Corresponding author 
 
 



N. Sadegh-Zadeh / et al. 
 

Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A4                                                           Autumn 2007 

422 

When is a Finsler metric Einstein? The contribution of this paper is to give an answer to this question. The 
classification of Einstein Finsler metrics in the compact case is considered. The main proposed theorem is 
as follows: 
 
Theorem 1. Let F  be a Finsler metric ( 2)n >  projectively related to Einstein another Finsler metric F  
of non-zero Ricci scalar, then  
1) F is Einstein if and only if it is a constant coefficient of F  when F is not projectively flat.  
2) F is Einstein if and only if it is of constant Ricci scalar when F is projectively flat. 

The well-known examples of Finsler metrics are the so-called class ( )α β,  -metrics. A Finsler metric 
F on a manifold M is called ( )α β, -metric if it is in the following form: 
 

( ) ( )F βψ α β αϕ
α

= , = ,  
 
where α  is a Riemannian metric and β  is a 1-form on M such that ( ) ( ) i j

ijx y a x y yα , =  and 
( ) ( ) i

ix y b x yβ , =  and ϕ  is a positive C ∞  function on some interval[ ]r r− , . An ( )α β, -metric F is 
projective to α  if and only if the following is satisfied (1): 
 

                                             22 2{ ( ) ( )} 2j i
i j j i ijb b s

L L
βα βαψ β β ψ| |− − − = ,                                            (1) 

 
where ̀ ` "|  is the horizontal derivative with respect to α  and 
 

1 2 2
i j j i

ij

b b
sψ ψψ ψ

α β
| |−∂ ∂

= , = , = .
∂ ∂

 

 
The next consideration of this paper is the study of projectively related Einstein ( )α β, -metrics. The 

Schur type lemma is stated for them. 
 

2. PRELIMINARIES 
 
Let M  be an n-dimensional C ∞  manifold. Denote by xT M  as the tangent space at x M∈ , and by 

x M xTM T M∈= ∪  as the tangent bundle of M . Each element of TM has the form (x, y), where x M∈  
and xy T M∈ .  Let }0{\0 TMTM = and the natural projection TM Mπ : →  is given by ( )x y xπ , = . 
The pull-back tangent bundle TMπ ∗  is a vector bundle over 0TM  whose fiber vTMπ ∗  at 0v TM∈  is 
just xT M , where ( )v xπ = . Then 
 

0{( ) }x xTM x y v y T M v T Mπ ∗ = , , | ∈ , ∈ .  
 

A Finsler metric on a manifold M  is a function [0 )F TM: → ,∞ , which has the following 
properties:  
(i) F  is C ∞  on 0TM ;  
(ii) ( ) ( ) 0F x y F x yλ λ λ, = , > ;  
(iii) For any tangent vector xy T M∈ , the vertical Hessian of 

2

2
F  given by 

 
21( )

2 i j
ij

y y

g x y F
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, =  

 
is positive definite.  
We obtain a symmetric tensor C defined by 
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( ) ( ) i j k

ijkU V W C y U V W, , = ,C  
 
where i

i
x

U U ∂
∂

= , i
i

x
V V ∂

∂
= , i

i
x

W W ∂
∂

=  and 21
4 [ ] ( )i j kijk y y y

C F y= .  
C  is called the Cartan tensor. It is well known that C=0 if and only if F  is Riemannian. Every Finsler 
metric F  induces a spray 2 ( )i i

i i
x y

G y G x y∂ ∂
∂ ∂

= − ,  by 
 

}][]{[
4
1)},(),(2){,(

4
1:),( 22

llk x
k

yx
ilki

l
jk

k
jlili FyFgyyyx

x
g

yx
x
g

yxgyxG −=
∂

∂
−

∂

∂
= . 

 
The Riemann curvature i

i k
k p p px

R dx T M T M∂
∂

= ⊗ | : →yR  is defined by 
 

                                   
2 2

( ) 2 2
i i i i j

i j j
k k j k j k j k

G G G G GR y y G
x x y y y y y
∂ ∂ ∂ ∂ ∂

:= − + − .
∂ ∂ ∂ ∂ ∂ ∂ ∂

                           (2) 

 
The Riemann curvature has the following properties. For any non-zero vector pT M∈y , 
 

( ) 0 ( ( ) ) ( ( )) pg g T M= , , = , , , ∈ ,y y y y yR y R u v u R v u v  
 
and 

 

                                                                  
1{ }
3

i i
i k l
kl

l k

R RR
y y

∂ ∂
= −

∂ ∂
.                                                              (3) 

 
For a two-dimensional plane pP T M⊂  and a non-zero vector pT M∈y , the flag curvature ( )P y,K  is 
defined by [4] 
 

2

( ( ))
( )

( ) ( ) ( )
,

, :=
, , − ,

y y

y y y

u R u
K y

y y u u y u
g

P
g g g

, 

 
where span{ }P = ,y u . F  is said to be of scalar curvature ( )yλ=K  if for any pT M∈y , the flag 
curvature ( ) ( )P λ, =K y y  is independent of P  containing pT M∈y  that is equivalent to the following 
system in a local coordinate system ( )i ix y,  in TM , 
 

2 1{ }k
i i i
k k y

R F F F yλ δ −= − .  
 

If λ  is a constant, then F  is said to be of constant curvature. The Ricci scalar function of F  is 
given by 
 

2

1 i
iR

F
ρ := . 

 
Therefore, the Ricci scalar function is positive homogeneous of degree 0 in y . This means that 

( )x yρ ,  depends on the direction of the flag pole y  but not its length. The Ricci tensor of a Finsler 
metric F  is defined by 
 

1{ }
2 i j

k
ij k y y

Ric R:= . 

 
Ricci-flat manifolds are Riemannian manifolds whose Ricci tensor vanishes. In physics they are 

important because they represent vacuum solutions to Einstein’s equations. 
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Definition 2.1. [5] A Finsler metric is said to be an Einstein metric if the Ricci scalar function is a 
function of x  alone, equivalently 
 

,)( ijgxRic ρ=  or 2
00 )( FxRic ρ= . 

 
Ricci-flat manifolds are special cases of Einstein manifolds. We now consider projectively related 

Finsler metrics on M , i.e. the metrics having the same geodesics as the point sets. 
 
Definition 2.2. [6] A Finsler space nF  is projective to another Finsler space n

F , if and only if there exists 
a one-positive homogeneous scalar field ( )P x y,  on TM  satisfying 
 

( ) ( ) ( )i i ix y G x y P x y yG , = , + , .  
 

Let iG  and i i iG PyG = +  be sprays on n -manifold M . The Riemann curvatures are related by 
[7] 

 
                                                                 i i i i

k k kk R E yR δ τ= + + ,                                                          (4) 
 

where  
 

2 k
kE P P y|:= − ,  

 
3( )k kk k y y

P PP Eτ |= − + .  
 
Definition 2.3. [6] Let ),( FM  be a Finsler space. Assume that a function P  on TM  is C ∞  on 

}0{\TM  satisfying 
 

( ) ( ) 0,P y P yλ λ λ= ,∀ >  
 
(a) P  is called a Funk function if it satisfies the following system of PDEs 
 

k kP PP| .= .  
 
(b) P  is called a weak Funk function if it satisfies the following system of PDEs 
 

2k
ky P P| = .  

 
Lemma [8] Let ( )M F,  be a Finsler space. A Finsler metric F is pointwise projective to F  if and only if 
 

0k k
ll

F y Fy
|

|

∂
− = .

∂
 

 
Then 
 

i i iG PyG = + ,  
 
where 
 

2

k
k yFP
F

|= .  
 
By the above lemma an ( )α β, -metric in the form of (1.1) is pointwise projective to α  if and only if 
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                                               2( ) ( )k k
l l k k l lb y yϕ α β α β α ϕ β β. | | . |′′ ′− = − .                                             (5) 

 
Now, we are going to study the Weyl curvature of spray as an important projective invariant. The Weyl’s 
projective invariant is constructed from the Riemann curvature. Define [7] 
 

,)(
1

1)( i
k

m
k

m
mk

i
k

i
k

i yRR
yn

RRyW δδ −
∂
∂

+
−−=  

 
where .

1
1

1
1

m
mR

n
Ric

n
R

+
=

+
=  y x xW T M T M: →  is a linear transformation satisfying ( ) 0yW y = . We 

call 
0

y y TM
WW

∈
:=  the Weyl curvature. W  is a projective invariant under projective transformations [9]. 

 
Theorem ([6]) A Finsler metric is of scalar curvature if and only if 0W = . 
 
Proof of Theorem 1. 
In the following, we prove theorem1. 
 
Proposition 3.1. Let ( )M F,  be a Finsler space of dimension 2n > . F  is Einstein metric if and only if 
 

,
1

)1(3
kk

i
i Ry

n
nVy
+
−

−=  

 
where 3

01
i i i i

k k k knV W R Ric y+= − −   
 
Proof: (i) Assume that F  is Einstein. By definition of the Weyl tensor, we have 
 

,
1

3
1
2

0

2
2

. kkkk
i

ik
i

i Ric
n

FFR
n
nRyRyWy

+
+

+
−

−−=−  

 
then 
 

2
.1

2 FR
n
nRyVy kkk

i
i +

−
−−= , 

 
since F  is Einstein 
 

2
.2 FRRy kk = , 

 
therefore, 
 

,
1

)1(3
. kkk

i
i yR

n
nVy
+
−

−=  

 
this completes the proof (i).  
(ii) Suppose 
 

,
1

)1(3
. kkk

i
i yR

n
nVy
+
−

−=  

 
by definition of the Weyl tensor, we have 
 

),
1
2( . ikk

i
ik

i
i yR

n
nRyVy
+
−

+=− δ  
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and therefore 
 

,
1

)1(3
1
2 2

. kkk Ry
n
nFR

n
nRy

+
−

=
+
−

+  

 
by a simple computation and since 2n > , it is concluded that, 
 

2
.2 FRRy kk = . 

 
This implies 
 

0)( .2 =kF
R

. 

 
Therefore F  is Einstein.  
 
Proposition 2.3. Let F  be a Finsler metric ( 2)n >  projectively related to Einstein, another Finsler 
metric F  with projective factor P . If F  is Einstein, then 2( ) 0E

kF . =  where 2 k
kE P P y|= − .  

 
Proof: Let W  and W  be the Weyl curvatures of F  and F . For Einstein Finsler metric F  we have 
 

,
1

)1(3
. kkk

i
i yR

n
nVy
+
−

−=  

 
therefore, 
 

k
ik

k
i

ik
i

i Ry
n
ny

n
Ric

RyWy
1

)1(3)
1

3
( 0

+
−

−
+

+= , 

 
but i

kW  is invariant under projective transformation, then 
 

k
ik

k
i

ik
i

ik
i

i yR
n
ny

n
RicRyWyWy

1
)1(3)

1
3( 0

+
−

−
+

+== , 

 
therefore 

 

                               ,0)(
1

)1(3)(
1

3
)( 00 =−

+
−

−−
+

+− k
i

k
i

k
i

k
i

k
i

i yRR
n
nyRicyRic

n
y

RRy                    (6) 

 
but from (2, 3) we have 
 

( 1)Ric Ric n E= + − ,  
 
and this implies that 

 
                                                                            .ERR +=                                                                       (7) 
 
Also, from (3) and (4) 
 

3 3 ( ) ( ) ( )ii i i i
kl l l k k k l k l l kklR E E yR τ δ τ δ τ τ. . . .= + − − − + − ,  

 
therefore 
 

0 03 3 ( 2) ( 1)l l llRic n E nRic τ.= + − − + ,  
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by substituting the above with that in (4), it is concluded: 
 

2 3 3( 1)(( 2) ( 1) )
3( 1) 1

i ii
k k k k k

y nEy F n E y n y Ey
n n

τ τ.

−
+ + − − + −

+ +
 

 
22( 2) ( 2) 0

1 1k k
n n FEy E
n n .

− −
= − + = ,

+ +
 

 
thus 
 

22 ( 2 ) 0
1 k k

n E F Ey
n .

−
− = ,

+
 

 
since 2>n , 0)( .2 =kF

E . 
 
Proposition 3.3. Let F  be a Finsler metric ( 2)n >  projectively related to Einstein, another Finsler 
metric F  of non-zero Ricci scalar, then  

1) F is Einstein if and only if 0)( . =kF
F , when F is not projectively flat.  

2) F is Einstein if and only if it is of constant Ricci scalar when F is projectively flat. 
 
Proof: Assume F  is Einstein. If F is projectively flat then F  is projectively flat, too. Invoking 
preposition 12.1 in [10] we obtain F which is of scalar curvature, and since it is Einstein then F is of 
constant flag curvature, and therefore it is constant Ricci scalar. 

In the other case, let F  not be projectively flat. Since F  is Einstein, 0)( .2 =kF
R  and by the above 

proposition 2( ) 0E
kF . = , then there exist a function ( )xξ  where )(2 x

F
ER ξ=− . F  is projectively related to F , 

by (7) we have
222 F

E
F
R

F
R

+= .  
But F  is Einstein and Finsler metric of non-zero Ricci scalar, so there is a non-zero function ( )xλ  

such that 2
)( FxR λ= . It can be concluded that ( ) 0F

kF . = . It is clear, conversely. 
F  is projectively related to F , so it can be said that 

 
                                                                          ii iG PyG= + ,                                                                 (8) 
 
where 2

k
kF y

FP |= . By the above proposition, there is a function of x  only, where ( )F f x F=  
then 2

k
kf y

fP |= . By using the formula of iG  mentioned previously, it can be concluded 
 

[ ] [ ]2

.

222
)(

4
})(){(

4
1 FfFyf

f
gFyFfg

f
G llkllk xy

k
x

il

x
k

yx

ili −+−=  

 

.
4

2
F

f
gf

PyG
il

xii l
++=  

 
By (8), f  as a constant is obtained. 
 

3. FINSLER METRICS PROJECTIVELY RELATED TO  
EINSTEIN RIEMANNIAN METRICS 

 
Consider ( )F ϕ α β= ,  is projectively related to Riemannian metric α  of constant sectional curvature. It 
is important to find a sufficient condition of ( )F ϕ α β= ,  in which α  and β  are Riemannian metric and 
a 1-form on M  to be Einstein. By the Beltrami Theorem, any Riemannian metric of constant sectional 
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curvature is projectively flat. Some type of ( )α β, -metrics is considered in [11]. 
 
Corollary 3.1. Any ( )α β, -metric projectively related to Einstein Riemannian metric α  of non-constant 
sectional curvature is Einstein if and only if it is Riemannian. 
By using Akbar-Zadeh’s theorem [12], the main theorem proved in reference [13] and the above theorem 
1, the Finsler metrics on a connected compact boundaryless manifold projectively related to an Einstein 
Riemannian manifold can be classified. 
 
Corollary 3.2. Let F be a Finsler metric on a connected compact boundaryless manifold, projectively 
related to Einstein Riemannian metric F  ( 2)n > . F can be classified in the following conditions: 
(a) F  is of non-constant sectional curvature. 
In this case, F is Riemannian if and only if F is Einstein. 
(b) F  is of constant sectional curvature. In this case, the following statements are valid for F: 
- F is Riemannian if it is Einstein of negative Ricci scalar. 
- F is Riemannian if it is a reversible Einstein metric of positive Ricci scalar.  
- F is locally Minkowski if it is Einstein of zero Ricci scalar. 
 

4. SCHUR TYPE LEMMA 
 
Corollary 3.3. The Ricci scalar of any Einstein Finsler metric ( 2)n >  projectively related to another one 
of constant Ricci scalar is necessarily constant.  
In other words, the Ricci scalar of any Einstein ( )α β, - metric ( 2)n >  projectively related to Einstein 
Riemannian metric α  is necessarily constant.  
The Funk metric on a strongly convex domain Ω  in nR  is non-reversible, positively complete and 
projectively flat with 1

4K = − . The Hilbert metric on Ω  is obtained from Funk metric by symmetrization. 
It is reversible, complete and projectively flat with 1K = − . 
 
Example 3.1. The pair of Funk metrics on the unit ball n nB R⊂  are given by 
 

nn
x RBTy

x

yxyxyxy
yF =∈

−

><±><−−
=± ,

1

,),(
:)( 2

2222

, 

 
where | . |  and <,>  are the representative of the standard Euclidean norm and inner product. The Hilbert 
metric is Riemannian. It is complete with constant curvature 1K = − . 
 

nn
xH RBTy

x

yxyxy
yF =∈

−

><−−
= ,

1

),(
:)( 2

2222
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