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Abstract – In this paper, we introduce a Satisfaction Function (SF) to compare interval values on the basis of 
Tseng and Klein’s idea. The SF estimates the degree to which arithmetic comparisons between two interval 
values are satisfied. Then, we define two other functions called Lower and Upper SF based on the SF. We 
apply these functions in order to present a new interpretation of inequality constraints with interval 
coefficients in an interval linear programming problem. This problem is as an extension of the classical linear 
programming problem to an inexact environment. On the basis of definitions of the SF, the lower and upper 
SF and their properties, we reduce the inequality constraints with interval coefficients in their satisfactory 
crisp equivalent forms and define a satisfactory solution to the problem. Finally, a numerical example is given 
and its results are compared with other approaches.  
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1. INTRODUCTION 
 
In order to develop a good Operations Research methodology, fuzzy and stochastic approaches are 
frequently used to describe and treat imprecise and uncertain elements present in a decision problem. In 
literature, in the works of fuzzy optimization [1-8], fuzzy parameters are assumed to be with known 
membership functions and in stochastic optimization [9-13], parameters are assumed to have known 
probability distributions. However, in reality to a decision-maker (DM), it is not always easy to specify the 
membership function or probability distribution in an inexact environment. In some of the cases, the use of 
interval coefficients may serve the purpose better. An interval number can be thought of as an extension of 
the concept of a real number and also as a subset of the real line R [14, 15]. As a coefficient, an interval 
signifies the extent of tolerance (or a region) that the parameter can possibly take. However, in decision 
problems, its use doesn't receive the attention it merits. 

In the formulation of realistic problems, a set of intervals may appear as coefficients in the inequality 
(or equality) constraints of an optimization problem or in the selection of the best alternative in a decision-
making problem. Hence, the problem of crisp interval numbers comparison is of perennial interest because 
of its direct relevance in practical modeling and the optimization of real-world processes under 
uncertainty. 

Theoretically, the crisp intervals can only be partially ordered and hence cannot be compared. 
However, when the interval numbers are used in practical applications or when a choice has to be made 
among alternatives, a comparison is needed [16-27]. 
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Numerous definitions of the comparison relation on crisp intervals exist [15, 19, 20, 24, 28-38]. In 
most cases, the authors use some quantitative indices. The values of such indices present the degree to 
which one interval crisp is greater/less than another interval. In some cases, even several indices are used 
simultaneously. Although some of these methods have shown more consistency and better performance in 
difficult cases, none of them may be put forward as the best one. 

In this field, we find the foremost work in [14, 15], where the arithmetic of interval numbers was 
studied. Here, we find two transitive order relations defined on intervals; one as an extension of ‘<’ on the 
real line and the other as an extension of ‘⊆ ’, the concept of set inclusion. But these order relations cannot 
explain the ranking between two partially or fully overlapping intervals. Ishibuchi and Tanaka [20], as an 
advance over Moore, suggested two order relations ‘ LR≤ ’ and ‘ mw≤ ’ in ‘either or survivor’ basis. 
However, there exist a set of a pair of intervals for which both order relations do not hold. Moreover, these 
order relations did not discuss anything on ‘how much greater’ when one interval is known to be greater 
than another. If it is argued that the interval numbers are generated through the inexactness of the problem 
environment, there should be an attempt to satisfy (most likely subjectively) the query ‘how much greater 
one is than another?’ From these points of view, there exist numerous papers about this topic. But now we 
can cite only a few works [7, 24, 29-31, 33-38] which are based on the probabilistic approach. The idea of 
using the probability interpretation of the interval is not, in principle, a novel idea. The attraction of such 
an approach is based on the possibility of obtaining a completed set of probability P(A < B), P(A > B), 
and P(A = B) in order to compare intervals A and B with only one assumption that the intervals are the 
supports of uniform distributions of random values BbAa ∈∈ , . Nevertheless, different expressions for 
probabilities estimation were obtained in the papers [7, 24, 29-31, 33-38]. Recently, Sevastjanov [34] 
proposed an approach which can derive the results of comparison as a probability interval. To do this, he 
used the Dempster-Shafer theory of evidence with its probabilistic interpretation [39-43]. 

From another point of view, Sengupta et al. [32] defined an index to order two intervals in terms of 
value. In Ref. [22], the index has been used to interpret an interval-valued inequality constraint and to 
define its satisfactory equivalent transformation to a crisp set of inequalities for an interval linear 
programming problem. In this paper, we concentrate on the linear programming problem with interval 
coefficients. However, we cannot apply the techniques of the classical linear programming for these 
problems directly. Many researchers have worked on linear programming problems with an interval 
objective function on the basis of order relations between two interval numbers and various techniques 
[19-23, 25-27]. Here, we mention two instances of these works. Tong [21] introduced an interval number 
linear programming problem where all coefficients are interval numbers. He reduced the interval number 
linear programming into two classical linear programming problems by introducing a maximum-value of 
range and a minimum- value of range of inequality and obtained an interval number optimal solution. 
Sengupta et al. [22] explained existing difficulties in using the union and intersection operators in defining 
the maximum- and the minimum-value of range of inequalities in Tong’s approach, respectively. They 
presented another interpretation of inequality constraints with interval coefficients. They also gave an 
interpretation of the interval objective function with respect to ‘Minimization’ according toℑ -index [32]. 
Furthermore, they obtained a satisfactory solution for the problem. As Sengupta and Pal [38] expressed, 
the main disadvantage of using the comparison relations based on conditional probabilities is the 
complexity of calculation due to the presence of decision variables in the constraints, as their crisp 
satisfactory equivalent structure will be complex. In this paper, other interpretations from the constraints 
and the objective function of the interval linear programming problem are presented. To do this, a 
Satisfaction Function (SF) is proposed in order to compare the interval numbers on the basis of Tseng and 
Klein’s idea [44]. The SF is a measure which estimates the satisfaction degree of the arithmetic 
comparison relations between two interval values. The SF also enables one to compare a real number with 
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an interval number. Furthermore, if two crisp values are given, the arithmetic comparisons of those values 
are clear. But in the case of interval values, the SF generates a value in [0, 1]. The value shows the 
satisfaction degree of the DM from the result of the comparison. Continuing, we present some properties 
of the SF. Moreover, two new concepts called Lower and Upper SF based on the SF are defined and some 
of their properties are studied. We also apply these functions in order to interpret the inequality constraints 
with interval coefficients of an interval linear programming problem. In fact, this problem is an extension 
of the classical linear programming problem to an inexact environment. According to the definitions of 
SF, lower and upper SF and their properties, the inequality constraints with interval coefficients are 
reduced in their satisfactory crisp equivalent forms, and we also present the interpretation and realization 
of objective ‘Minimization’ with respect to an inexact environment and the SF concept. Finally, we define 
a satisfactory solution to the problem and illustrate it by a numerical example. Its results are then 
compared with the result of Sengupta et al.’s work [22] and Tong’s work [21]. This paper is organized as 
follows: in Section 2, notations of the interval numbers and the interval arithmetic are briefly explained. 
Section 3 gives an elaborate study on the preference relations between two interval numbers. Section 4 
along with its three subsections define a Satisfaction Function and explain some of its properties. Section 
5 presents the definitions of Upper and Lower Satisfaction Function and some of their properties. Section 
6 introduces an interval linear programming problem and presents an interpretation of inequality 
constraints with interval coefficients based on the SF, the lower and upper SF. Section 7 describes the 
solution of the interval linear programming problem. Section 8 gives a numerical example from [21] and 
shows the efficiency of our methodology compared with other approaches. Section 9 includes conclusions. 
 

2. THE BASIC INTERVAL ARITHMETIC 
 
All lower case letters denote the real numbers and the upper case letters denote the interval numbers or the 
closed intervals on R . Notation I  denotes the set of interval numbers on R . 
2.1. { }aaaRaaaA ≤≤∈== ],[ , where a  and a  are the left and right limit of the interval A  on the real 
line R , respectively. If aa = , then [ ]aaA ,=  is a real number. Also, ( )Am , ( )Aw , and ( )Aμ  respectively 
denote the mid-point, half-width, and length of interval A  which are defined as follows:  
 

( ) ( ) ( ) ( )aaAwaaAm −=+=
2
1,

2
1 , and ( ) aaA −=μ . 

 
2.2. Let { }÷′×′−′+′∈∗′ ,,,  be a binary operation on the set of closed intervals. Then, the binary operation ∗′  
is defined for each IBA ∈,  based on the binary operation ∗  as: { }BbAabaBA ∈∈∗=∗′ , . In case of 
division, it is assumed that B∉0 . 
 

3. PREFERENCE RELATIONS BETWEEN INTERVAL NUMBERS 
 
An extensive research and wide coverage on the interval arithmetic and its applications can be found in 
Moore [14]. Here, we find two transitive order relations defined on intervals: the first one as an extension 
of ‘<’ on the real line as: A B< if and only if a b< , and the other as an extension of the concept of set 
inclusion, i.e., A B⊆  if and only if a b≥  and a b≤ . These order relations cannot explain ranking 
between two overlapping intervals. The extension of the set inclusion here only describes the condition 
that the interval A  is nested in B ; but it cannot order A  and B in terms of value. We need to develop a 
definition of comparison of two interval numbers. 

Ishibuchi and Tanaka [20] approached the problem of ranking two interval numbers more 
prominently. In their approach, in a maximization problem, if intervals A  and B  are two, say, profit 
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intervals, then the maximum of A  and B  can be defined by an order relation LR≤  between A  and B  as 
follows: 
 

LR

LR LR

A B if  and only if a b and a b
A B if  and only if A B and A B
≤ ≤ ≤
< ≤ ≠

 

 
Ishibuchi and Tanaka [20] suggested another order relation mw≤  where, LR≤  cannot be applied, as follows: 
 

( ) ( ) ( ) ( )mw

mw mw

A B if  and only if m A m B and w A w B ,
A B if  and only if A B and A B .
≤ ≤ ≥
< ≤ ≠

 

 
Both of the above order relations LR≤  and mw≤  are anti-symmetric, reflexive, and transitive, and hence, 
define a partial order relation between intervals. Ishibuchi and Tanaka [20] showed that both of the order 
relations never conflict in the sense that there exists no such pair of A  and B ( )BA ≠  so that BA LR≤  and 

AB mw≤  hold. However, in a recent work, Sengupta and Pal [32] showed that there exists a set of pairs of 
intervals for which both LR≤  and mw≤  do not hold. Also, Sengupta et al. [22] proposed a method in order to 
compare two interval numbers based on an acceptability index (see Appendix A).  

According to Sengupta et al.’s approach [22], there exists an important point about the acceptability 
index to be noted: the concept of the acceptability index for the comparison of intervals can in no way be 
treated as analogous to the concept of ‘difference’ of real analysis. For this reason, considering a superior 
reference interval ∗D  for choosing a preferred maximizing alternative between two equi-centred intervals 

1B  and 2B , but not identical, or considering an inferior reference ∗D  for choosing a preferred minimizing 
alternative between 1B  and 2B  makes no sense and yields nothing. Now, we propose a satisfaction 
function to compare any two interval numbers on the real line by the decision-maker’s satisfaction. This 
function does not have the drawback of the acceptability function of ℑ .  
 

4. SATISFACTION FUNCTION 
 
In this section, we use the applied notions by Tseng and Klein [44] (see Appendix B) and define a 
Satisfaction Function (SF) in order to compare two interval values in Subsection a. Then, we study the 
comparison between an interval and a crisp value by the SF. Finally in Subsection c, we consider the 
comparison between two crisp values and show that the SF retains the comparison results of the existing 
crisp values in R.  
 
a) Comparison between two interval values  
 
The satisfaction function S  is defined as follows: 
 
Definition 1. The satisfaction function S  for the interval numbers ],[ aaA =  and ],[ bbB =  ( )( ,BAS <  
( ) ( ))BASandBAS => ,  is defined as follows: 

 

                                     ( ) { }( ) { }( )
( ) ( )BA

AyyxBxByyxAx
BAS

μμ
μμ

+

∈∀>∈+∈∀<∈
=< ,                                 (1) 

 

                                    ( ) { }( ) { }( )
( ) ( )BA

AyyxBxByyxAx
BAS

μμ
μμ

+

∈∀<∈+∈∀>∈
=> ,                                  (2) 

 

                                    ( ) { }( ) { }( )
( ) ( )BA

AyyxBxByyxAx
BAS

μμ
μμ

+

∈∃=∈+∈∃=∈
== ,                                   (3) 
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where ( ) ( ) 0≠+ BA μμ .  
For example, the satisfaction degree of the DM of BA <  may be interpreted on the basis of the subset 
geometric length of elements ( )BA  such that those are less (greater) than all the elements of ( )AB . A 
geometric interpretation of ( )BAS <  has been illustrated in Fig. 1. In fact, Fig. 1 illustrates ( )BAS <  as the 
sum of geometric lengths of sets BA−  and AB − , divided by the sum of the geometric lengths of sets A  
and B  (symbol ‘-‘ denotes the difference between two sets). We can also present similar geometric 
interpretations for ( )BAS >  and ( )BAS = .  
 
Remark 1. If ( ) 0>< BAS , then for a maximization problem (say A  and B  are two interval profits and 
the problem is to choose the maximum profit), interval B  is preferred to A  and for a minimization 
problem (say A  and B  are two interval costs), A  is preferred to B  in terms of value.  
 

  
Fig. 1. { }( ) ,abByyxAx −=∈∀<∈μ { }( ) ,baByyxAx −=∈∃=∈μ { }( )x B x y y A b aμ ∈ > ∀ ∈ = −  

 
Corollary 1. ( ) { }( )

( ) ( )
{ }( )

( ) ( )BA
AyyxBx

BA
ByyxAx

BAS
μμ

μ
μμ

μ
+

∈∃=∈×
=

+

∈∃=∈×
==

22
. 

 
Proof: Let { }ByyxAxX ∈∃=∈=  and { }AyyxBxY ∈∃=∈= . We firstly prove that YX ⊆ . Let 

Xx∈ . Then, Ax∈  and By∈∃  such that yx = . Since yx = , we can write that Bx∈  and Ay∈∃  such 
that yx = . Hence, Yx∈ . Therefore, YX ⊆ . Similarly, we can prove XY ⊆ . Therefore, YX = . With 
attention to the definition of ( )BAS = , the proof of this corollary is completed.  
 
( )BAS <  is the satisfaction degree to which the arithmetic comparison of BA <  is satisfied; ( )BAS >  is to 

which BA >  is satisfied; and ( )BAS =  is to which BA = . The function of S  has the following properties. 
 
Property 1. ( ) ( ) 10,10 ≤>≤≤<≤ BASBAS , and ( ) 10 ≤=≤ BAS . 
 
Proof: It is obvious from the definition of S . 
 
Property 2. ( ) ( ),ABSBAS >=< ( ) ( )ABSBAS <=> , and ( ) ( )ABSBAS === . 
 
Proof: It is obvious from the definition of S . 
 
Property 3. ( ) ( ) ( ) 1=>+<+= BASBASBAS . 
 
Proof: It is easily seen that the following relations are true (in the following, symbol ‘-‘ denotes the 
difference between two sets): 

 
{ } { } BAByyxAxByyxAx −=∈∀>∈∈∀<∈ ∪ , 

 
{ } { } ∅=∈∀>∈∈∀<∈ ByyxAxByyxAx ∩ , 

 
{ } { } ABAyyxBxAyyxBx −=∈∀<∈∈∀>∈ ∪ , 
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{ } { } ∅=∈∀<∈∈∀>∈ AyyxBxAyyxBx ∩ , 
 

{ } BAByyxAx ∩=∈∃=∈ , and ( ) ( ) ( )ABBABABA −−= ∪∩∪∪ . 
 

Using the above relations and properties μ , we can write: 
 

( ) ( ) ( ) =>+<+= BASBASBAS  
 

{ }( ) { }( ) { }( )
( ) ( )BA

AyyxBxByyxAxByyxAx
μμ

μμμ
+

∈∀>∈+∈∀<∈+∈∃=∈×2
 

 
{ }( ) { }( )

( ) ( )BA
AyyxBxByyxAx

μμ
μμ

+

∈∀<∈+∈∀>∈
+  

 
( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( ) .12

=
+
+

=
+

×+−+−
=

BA
BA

BA
BAABBA

μμ
μμ

μμ
μμμ ∩  

 
Property 4. For Ax∈∀  and By∈∀ , yx <  if and only if ( ) .1=< BAS  
 

Proof: At first, suppose yx <  for Ax∈∀  and By∈∀ . Then, { } AByyxAx =∈∀<∈ , { yxBx >∈  

} BAy =∈∀ , and ∅=BA∩ . Hence, according to Definition 1, we obtain: ( ) ( ) ( )
( ) ( )BA

BABAS
μμ
μμ

+
+

=< 1= . 

Conversely, suppose ( ) 1=< BAS . Then, { }( )+∈∀<∈ ByyxAxμ { }( )=∈∀>∈ AyyxBxμ ( ) ( )BA μμ + . 

On the other hand, since { } AByyxAx ⊆∈∀<∈  and { } BAyyxBx ⊆∈∀>∈ , hence, 

{ }( ) ( )AByyxAx μμ ≤∈∀<∈  and { }( ) ( )BAyyxBx μμ ≤∈∀>∈ . Thus, { }( )=∈∀<∈ ByyxAxμ ( )Aμ  

and { }( ) ( )BAyyxBx μμ =∈∀>∈ . So, we conclude that yx <  for all Ax∈  and By∈ . 
 
Property 5. For Ax∈∀  and By∈∀  yx >  if and only if ( ) 1=> BAS . 
 
Proof: The proof of this property is similar to the proof of property 4. 
 
Property 6. BA =  if and only if ( ) 1== BAS . 
 
Proof: Since BA = , then { } BABAByyxAx ===∈∃=∈ ∩ . Thus, ( ) 1== BAS . Conversely, if 
( ) 1== BAS , then { }( ) { }( )AyyxBxByyxAx ∈∃=∈+∈∃=∈ μμ ( ) ( )BA μμ +=  and since { Ax∈  

} AByyx ⊆∈∃=  and { } BAyyxBx ⊆∈∃=∈ , hence, { }( ) ( )AByyxAx μμ =∈∃=∈  and 
{ }( ) ( )BAyyxBx μμ =∈∃=∈ . Since A  and B  are two closed intervals, hence, BA = . 

 
Property 7. If ],[],,[ bbBaaA == , and baab −=− , then ( ) ( )BASBAS <=> . 
 
Proof: If 0≥−=− baab , then ab ≥  and ba ≥ . Therefore, BA ⊇ . Hence, 
{ }=∈∀>∈ AyyxBx { } ∅=∈∀<∈ AyyxBx , { }( ) abByyxAx −=∈∀<∈μ , and 
{ }( ) baByyxAx −=∈∀>∈μ . Therefore, according to Definition 1, ( ) ( )BASBAS >=< . If 0<−=− baab , 

then ab <  and ba < . Therefore, AB ⊇ . Hence, { } { } ∅=∈∀>∈=∈∀<∈ ByyxAxByyxAx , 
{ }( )AyyxBx ∈∀<∈μ  0>−= ba , and { }( ) 0>−=∈∀>∈ abAyyxBxμ . Consequently, from Definition 1, 

we get ( ) ( )BASBAS >=<  . 
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This property explains that if there exists a sequence of equi-centred interval numbers as { }m
iiB 1= , then 

for { }mtr ,...,2,1, ∈∀  and tr ≠ , we will have: ( ) ( )trtr BBSBBS >=< . But for some ∈2121 ,,, ttrr  { }m,...,2,1  
which are distinct, it is not necessary to hold the following equalities:  
( ) ( )

2211 trtr BBSBBS <=< , ( ) ( )
2211 trtr BBSBBS >=< , ( ) ( )

2211 trtr BBSBBS <=> , and ( )=>
11 tr BBS  ( )

22 tr BBS > . 
 
Remark 2. If ],[ aaA =  and ],[ bbB = , then 
 

( )

⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≤

≤≥
−+−

−

≥

≤≥
−+−

−

≤≥≥
−+−

−+−

=<

)..,.(0

,
)()(

,1

,
)()(

,
)()(

abeiotherwise

abandabif
aabb

ab

abif

abandabif
aabb

ab

abandabandabif
aabb

abab

BAS  

 
Proof: According to different situations between the intervals A and B and the definition of ( )BAS < , we 
can easily calculate ( )BAS < .  

Now, we introduce two functions ( )BAS ≤  and ( )BAS ≥  as follows: 
 

( ) ( ) ( )BASBASBAS =+<=≤  and ( ) ( ) ( )BASBASBAS =+>=≥ . 
 

For ( )BAS ≤  and ( )BAS ≥ , the properties 1-7 are rewritten as follows (the following properties are proven 
similar to the properties 1-7): 
 
Property 8. ( ) 10 ≤≤≤ BAS  and ( ) 10 ≤≥≤ BAS . 
 
Proof: According to Property 3, ( ) ( ) 1=>+≤ BASBAS . Hence, ( ) ( )BASBAS >−=≤ 1 . Since 

( ) 10 ≤>≤ BAS , then ( ) 10 ≤≤≤ BAS . Similarly, we can prove ( ) 10 ≤≥≤ BAS . 
 
Property 9. ( ) ( )ABSBAS ≥=≤  and ( ) ( )ABSBAS ≤=≥ . 
 
Proof: It is obvious from the definitions of ( )⋅≥⋅S  and ( )⋅≤⋅S . 
 
Property 10. ( ) ( ) 1=>+≤ BASBAS  and ( ) ( ) 1=≥+< BASBAS . 
 
Proof: This is a direct result of Property 3. 
 
Property 11. For Ax∈∀  and By∈∀ , yx ≤  if and only if ( ) 1=≤ BAS . 
 
Proof: This property is proven similar to Property 4. 
 
Property 12. For Ax∈∀  and By∈∀ , yx ≥  if and only if ( ) 1=≥ BAS . 
 
Proof: This property is proven similar to Property 4. 
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Property 13. If ],[],,[ bbBaaA == , and baab −=− , then ( ) ( )BASBAS ≤=≥  . 
 
Proof: This property is proven similar to Property 7. 
If ( )BAS <¬  is defined as ( )BAS ≥ , then we conclude that: ( )( ) ( ) ( )BASBASBAS <¬=≥=<¬ . 
 
Remark 3. If ],[ aaA =  and ],[ bbB = , then  
 

( )

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪

⎨

⎧

<

≠≤≤≤
−+−

−

≥≤
−+−

−+−

≥≤
−+−

−+−

≤≤

=≤

)..,.(0

,
)()(

)(2

,
)()(
)(2)(

,
)()(
)(2)(

,1

abeiotherwise

baandababif
bbaa

ab

baandbaif
bbaa
aaab

baandbaif
bbaa
bbab

baandbaif

BAS  

 
Proof: ( )BAS ≤  can be calculated in a similar way to Remark 2.  
 
Remark 4. Suppose ],[ aaA =  and ],[ bbB = , then: 

1) ( ) baBAS >⇔>≥ 0 ,                                           2) ( ) baorbaBAS >>⇔>> 0 , 
3) ( ) baBAS <⇔>≤ 0 ,                                           4) ( ) baorbaBAS <<⇔>< 0 . 

Proof: From Remarks 2 and 3, these conditions are easily proven. 
 
Remark 5. (1) If ],[ aaA =  and ],[ bbB = , then 
 

( )

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

≤<≤
−+−

−

≤<≤
−+−

−

≤<≤
−+−

−

≤<≤
−+−

−

≤≤

==

.
)()(

)(2

,
)()(

)(2

,
)()(

)(2

,
)()(

)(2

,0

baabif
bbaa

aa

ababif
bbaa

ab

abbaif
bbaa

bb

babaif
bbaa

ba

aborbaif

BAS  

 
(2) ( ) abaorbabBAS <≤<≤⇔>= 0 . 
 
Proof: (1) ( )BAS =  can be calculated in a similar way to Remark 2. (2) With attention to part (1) of 
Remark 5, this condition is easily proven. 
 
Remark 6. ( ) 1=< BAS  or ( ) 1=> BAS  if and only if ( ) 0== BAS . 
 
Proof: This is a direct result of Property 3. 
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Remark 7. Suppose ],[ aaA =  and ],[ bbB = . Then, we have: 1) If 0>−=− baab , then ( ) == BAS  

ab
bb

ba
bb

−

−
=

−

− . 2) If 0<−=− baab , then ( )
ab
aa

ba
aa

BAS
−

−
=

−

−
== . 

 
Proof: It is easily proven by Remark 5. 
 
Remark 8. For any two intervals IBA ∈, , we have: ( ) 0>< BAS , or  ( ) 0>> BAS , or  ( ) 0>= BAS . 
 
Proof: It is a direct result of Property 3. 
Geometric interpretations of parts (1) and (2) of Remark 4 are presented in Fig. 2 and Fig. 3, respectively.  
 

  
Fig. 2. ( ) ( ) ( )

( ) ( ) 0
2

>
−+−

−
===≥

bbaa
ba

BASBAS  

 

 
           baandba >/>                              baandba >>                                 baandba >>/  
 

Fig. 3. In Figs. (a), (b), and (c) according to definition ( ).. >S : ( ) 0>> BAS  
 
For parts (3) and (4) of Remark 4, we can present similar geometric interpretations to parts (1) and (2) of 
Remark 4. 
 
b) Comparison between an interval and a crisp value 
 

In this subsection, we use the defined SF of the previous subsection in order to compare an interval 
value and a crisp value. 
 
Proposition 1. If Rk ∈  and ],[ aaA =  where Raa ∈,  and aa ≠ , then  
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kASAkS  

 
and ( ) ( ) 0==== kASAkS . 
 
Proof: This proposition is proven by Property 2 and the definitions of ( ) ( )kASkAS >< , , and ( )kAS = . To 
prove this proposition, the crisp value Rk ∈  can be written as [ ]kkk ,= . First, we prove the first relation. 
According to Property 2, we have: ( ) ( )kASAkS <=> . Hence, we calculate ( )kAS < . If aka <≤ , then 
according to the definition of ( )kAS < , we can write: 
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( ) [ ]{ }( ) [ ]{ }( )
( ) [ ]( )kkA

AyyxkkxkkkkxAx
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,
,,
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=<  

 

                                    
{ }( ) [ ]{ }( )

( )
[ [( ) ( )
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A
AyyxkkxkxAx

−

∅+
=

∈∀>∈+<∈
=

μμ
μ

μμ ,,

aa
ak

−
−

=  . 

The other cases of ( )kAS <  are similarly proven. The other relations can be proven similar to the first 
relation. 
 
c) Comparison between two crisp values 
 

For two crisp values Rlk ∈, , ( ) ( ) 0=+ lk μμ . Hence, the defined SF in the previous section cannot be 
applied to compare two crisp values directly. For this reason, the crisp values k  and l  are represented by 
two interval values having lengths limited to 0, that is, two crisp values are considered as two interval 
values. Then, we can apply the function of S  for those values. 
 
Definition 2. For two crisp values k  and l , the function of S  for the comparison of k  and l  are defined 
as follows:  
 

( ) ( ) ( ) ( ) ( ) ( )ΔΔ→ΔΔΔ→ΔΔΔ→Δ
===>=><=< LKSlkSandLKSlkSLKSlkS

hhh 000
lim,lim,lim , 

 
where for 0>Δh , we have: ],[],[ hlhlLandhkhkK Δ+Δ−=Δ+Δ−= ΔΔ . 
 
Proposition 2. For two crisp values k  and l , we have: 
 

( ) ( ) ( )
⎩
⎨
⎧ =

==
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⎨
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otherwise
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lkS
otherwise
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Proof: This proposition is proven by Definition 2. Now, we prove the first relation. From Definition 2, we 
can write: 
 

                                       
( ) ( )

{ }( ) { }( )
( ) ( ) .lim

lim

0

0

ΔΔ

ΔΔΔΔ
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ΔΔ→Δ
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With attention to the assumption lk < , 0>Δ∃ h  such that ∅=ΔΔ LK ∩ . Then, we can write: 
 

( ) .1
4

22lim
0

=
Δ

Δ+Δ
=<

→Δ h
hhlkS

h
 

 
Now, if lk = , then according to (4) we conclude: ( ) 0

4
00lim

0
=

Δ
+

=<
→Δ h

lkS
h

, 
and if lk > , then we have: ( ) 0

4
00lim

0
=

Δ
+

=<
→Δ h

lkS
h

. 
The other relations can be proven similar to the first relation. 

Proposition 2 considers the crisp values as interval values. Thus, the comparison results using 
Proposition 2 are the same as crisp values comparison results in R.  

 
5. DEFINITIONS OF UPPER AND LOWER SATISFACTION FUNCTIONS 

 
In this section, two new concepts are introduced. Also, some of their properties are studied. In the next 
section, we will apply these two concepts in order to interpret inequality constraints of a linear 
programming problem with interval coefficients. 



Linear programming problem with… 
 

Autumn 2007                                                           Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A4 

379

Definition 3. Suppose A  and B  are two interval numbers. Then, the upper satisfaction functions 
( ) ( ) ( ) ( )( )BASandBASBASBASei UUUU ≤≥<> ,,,.,.  are defined as follows: 

 

( ) { }( )
( ) ( )BA

ByyxAx
BASU μμ

μ
+

∈∀>∈
=> , ( ) { }( ) { }( )

( ) ( )BA
ByyxAxByyxAx

BASU μμ
μμ

+

∈∃=∈+∈∀>∈
=≥ , 

 

( ) { }( )
( ) ( )BA
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BASU μμ

μ
+

∈∀>∈
=< , ( ) { }( ) { }( )

( ) ( )BA
AyyxBxAyyxBx

BASU μμ
μμ

+

∈∃=∈+∈∀>∈
=≤ . 

 
Also, the lower satisfaction functions ( ) ( ) ( )BASBASBASei LLL ≥<> ,,.,.( , and ( ))BAS L ≤  are defined 

as follows: 
 

( ) { }( )
( ) ( )BA

AyyxBx
BASL μμ

μ
+

∈∀<∈
=> , ( ) { }( ) { }( )

( ) ( )BA
AyyxBxAyyxBx

BASL μμ
μμ

+

∈∃=∈+∈∀<∈
=≥ , 

 

( ) { }( )
( ) ( )BA
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BASL μμ

μ
+

∈∀<∈
=< , ( ) { }( ) { }( )

( ) ( )BA
ByyxAxByyxAx

BASL μμ
μμ

+

∈∃=∈+∈∀<∈
=≤ . 

 
According to Definition 3, we can simply obtain the following corollaries. 
 
Corollary 2. ( ) ( )ABSBAS UU <=>  and ( ) ( )ABSBAS UU ≤=≥ . 
 
Proof: It is obvious from Definition 3. 
 
Corollary 3. ( ) 10 ≤>≤ BASU  and ( ) 10 ≤≥≤ BASU . 
 
Proof: It is obvious that { } AByyxAx ⊆∈∀>∈ , so { }( ) ( )AByyxAx μμ ≤∈∀>∈ . Hence, 

( ) 10 ≤>≤ BASU . In a similar way to the proof of Property 3, we can write { }( )=∈∃=∈ ByyxAxμ  
( )BA∩μ . Since BBA ⊆∩ , then ( ) ( )BBA μμ ≤∩ . On the other hand, { }( ) ( )AByyxAx μμ ≤∈∀>∈ . 

According to the recent two relations, we deduce ( ) 10 ≤≥≤ BASU . 
 
Corollary 4. ( ) ( )ABSBAS LL <=>  and ( ) ( )ABSBAS LL ≤=≥ . 
 
Proof: It is obvious from Definition 3. 
 
Corollary 5. ( ) 10 ≤>≤ BASL  and ( ) 10 ≤≥≤ BASL . 
 
Proof: The proof of this corollary is similar to the proof of Corollary 3. 
Geometric interpretations of the concepts of upper and lower satisfaction functions are presented in Fig. 4 
and Fig. 5. The following two properties are direct results of the definitions of LS , US , and SF. 
 
Property 14. ( ) ( ) ( )BASBASBAS LU >+>=>  and ( ) ( ) ( )BASBASBAS LU ≥+≥=≥ . 
 
Proof: It is a direct result of definitions LS , US , and SF. 
 
Property 15. ( ) ( ) ( )BASBASBAS LU <+<=<  and ( ) ( ) ( )BASBASBAS LU ≤+≤=≤ . 
 
Proof: It is a direct result of definitions LS , US , and SF. 
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Fig. 4. ( ) ( ) ( )bbaa

baBASU
−+−

−
=> ,                                        Fig. 5. ( ) ( ) ( )bbaa

ba
BASU

−+−

−
=≥ , 

           ( ) ( ) ( )bbaa
ba

BASL
−+−

−
=> .                                                   ( ) ( ) ( )bbaa

bb
BASL

−+−

−
=≥ . 

                                                                             
Property 16. The functions of ( ).. >US  and ( ).. >LS  are transitive, i.e.,  
1) ( ) ( ) ( ){ }CBSBASMinSupCASICA UUIBU >>≥>∈∀ ∈ ,, . 
2) ( ) ( ) ( ){ }CBSBASMinSupCASICA LLIBL >>≥>∈∀ ∈ ,, . 
Here, I  is a set of overlapping intervals. 
 
Proof: (1) Suppose IccCaaA ∈== ],[],,[ , and ( ) 0=> CASU . Then, according to the definition of US , we 
conclude that ca ≤ . On the other hand, for each IbbB ∈= ],[ , and according to the definition of US , the 
following three cases are considered: 
(1) If bca ≤≤ , then ( ) 0=> BASU and ( ) 0≥> CBSU . 
(2) If cba ≤≤ , then ( ) 0=> BASU and ( ) 0=> CBSU . 
(3) If cab ≤≤ , then ( ) 0≥> BASU and ( ) 0=> CBSU . 
With attention to cases (1), (2), and (3), we conclude that ( ) ( ) ( ){ }CBSBASMinSupCAS UUIBU >>≥> ∈ , . Now, 
suppose ICA ∈,  and ( ) 0>> CASU . Then, from the definition of US , we conclude that ( ) => CASU f

ca − , 
where ( ) ( )ccaaf −+−=  and ca > . On the other hand, for each IB∈ , and according to the definition of US , 
the following three cases are considered: 
(1) If bca ≥> , then ( ) ( )CASCBS UU >≤=> 0 . 
(2) If cba ≥≥ , then ( ) => BASU g

ba − ( ) =>≤ CASU f
ca − , where ( ) ( )bbaag −+−= , or 

( ) => CBSU h
cb − ( ) =>≤ CASU f

ca − , where ( ) ( )ccbbh −+−= . Because otherwise, we will have: 
( )BASU >  ( )CASU >>  and ( ) >> CBSU ( )CASU > . According to the recent relations, we have: 

 
( )BASU > ( )CASU >> ( )( ) ( )( ) ( )( ) ( )( )bbcaaacaccbaaaba −−+−−>−−+−−⇒ , 

 
                                                 bcbabaacaccbcababaca +−++−>+−+−⇒ .                                          (5) 

 
Similarly,  

 
                              ( ) >> CBSU ( )CASU > cacabcbcbacbcbacacab −++−−>−++−−⇒ .                       (6) 
 
Now, summing two inequalities (5) and (6), we get: ( )( ) 0>−− acbb . This contradicts the fact that  

cba ≥≥  and bb ≥ . Therefore, ( )BASU > ( )CASU >≤  or ( ) ≤> CBSU ( )CASU > . 
(3) If cab >≥ , then ( ) ( )CASBAS UU >≤=> 0 . 
From cases (1), (2), and (3), we have ( ) ( ) ( ){ }CBSBASMinSupCASICA UUIBU >>≥>∈∀ ∈ ,,, . 
(2) This part is proven similar to part (1). 
 
Corollary 6. For any three intervals BA, , and C  on R : 
1) If ( ) ( ) 00 >>>> CBSandBAS UU , then ( ) 0>> CASU . 
2) If ( ) ( ) 00 >>>> CBSandBAS LL , then ( ) 0>> CAS L . 
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Proof: (1) Since ( ) 0>> BASU  and ( ) 0>> CBSU , ba >  and cb > . Therefore, ca > . This shows that 
( ) 0>> CASU . (2) This part is proven similar to part (1). 

 
Property 17. The functions of ( ).. >US  and ( ).. >LS  are anti-reflexive, i.e., 
1) ( ) 0=>∈∀ AASIA U .                          2) ( ) 0=>∈∀ AASIA L . 
 
Proof: This property is obvious from the definitions of ( )⋅>⋅US  and ( )⋅>⋅LS .  
 
Property 18. The functions of ( ).. ≥US  and ( ).. ≥LS  are reflexive, i.e., 
1) ( ) 1=≥∈∀ AASIA U .                           2) ( ) 1=≥∈∀ AASIA L . 
 
Proof: This property is obvious from the definitions of ( )⋅≥⋅US  and ( )⋅≥⋅LS . 
 
Property 19. The functions of ( ).. >US  and ( ).. >LS  are anti-symmetric, i.e., for any two interval 
numbers IBA ∈, , we have: 
1) If ( ) 0>> BASU , then ( ) 0=> ABSU .                      2) If ( ) 0>> BAS L , then ( ) 0=> ABS L . 
 
Proof: (1) Suppose IbbBaaA ∈== ],[],,[ , and ( ) 0>> BASU . Then, from the definition of ( )⋅>⋅US , we 
have: ba > . Again, applying the definition of ( )⋅>⋅US  and ab < , we conclude that ( ) 0=> ABSU . 
(2) This part is proven similar to part (1). 
 
Property 20. The functions of ( ).. >US  and ( ).. >LS  are strict order relations on the set of overlapping 
intervals, i.e., the functions of ( ).. >US  and ( ).. >LS  have the properties of anti-reflexive, transitive, and 
anti-symmetry on the set of overlapping intervals. 
 
Proof: According to Properties 16, 17, and 19, it is concluded that ( ).. >US  and ( ).. >LS  are strict order 
relations on the set of overlapping intervals.  
 
Property 21. For any two interval numbers IBA ∈,  we have: 
1) ( ) ( ) ( ) 000 ><><⇔>< BASorBASBAS LU . 
2) ( ) ( ) ( ) 000 >≤>≤⇔>≤ BASorBASBAS LU . 
3) ( ) ( ) ( ) 000 >>>>⇔>> BASorBASBAS LU . 
4) ( ) ( ) ( ) 000 >≥>≥⇔>≥ BASorBASBAS LU . 
 
Proof: (1) Suppose ],[],,[ bbBaaA == , and ( ) 0>< BAS . Then, according to part (2) of Remark 4, we 
have ab >  or ab > . If ab > , then according to the definition of ( )⋅<⋅LS , ( ) 0>< BAS L . Now, if ab > , 
then according to the definition of ( )⋅<⋅US , ( ) 0>< BASU . Conversely, if ( ) >< BASU 0 or ( ) 0>< BAS L , 
then with attention to Property 15, it is easily proven that ( ) 0>< BAS . Parts (2), (3), and (4) are proven 
similar to part (1). 

Now, using the properties of SF, US , and LS , we present a satisfactory crisp equivalent structure for 
an inequality constraint with interval coefficients. Of course, Tong [21] and Sengupta et al. [22] have 
presented two interpretations for the inequality constraints with interval coefficients, separately. Also, the 
difficulties of their approaches have been expressed in Appendix C. 
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6. LINEAR PROGRAMMING PROBLEM WITH INTERVAL COEFFICIENTS 
 
In this section, the linear programming problem with interval coefficients is introduced as follows: 
 

                                                  

[ ]

[ ] [ ]
.,...,10

,,...,1,,

,,

1

1

njx

mibbxaatosubject

xccZMinimize

j

ii

n

j
jijij

j

n

j

jj

=∀≥

=∀≥

=

∑

∑

=

=

                                            (7) 

 
Two interpretations of the inequality constraints of problem (7) have been presented by Tong [21] and 
Sengupta et al. [22]. We briefly explain the interpretations in Appendix C. The reasons for these 
approaches have been given in [21, 22], respectively. Now, we will interpret the inequality constraints of 
problem (7) by SF, US , and LS . 
Let ],[],,[ bbBaaA == , and x  be a singleton variable. According to the SF, the acceptability condition of 

BAx ≤  may be defined as: ( ) 0>≤ BAxS . 
Now, we will give two examples in order to illustrate our purpose before we present the 

interpretations of BAx ≤  and BAx ≥ . 
1) Fig. 6 definitely satisfies the original interval inequality for 4<x  because ( ) 0>≤ BAxS . However, an 

optimistic DM may remain under-satisfied with the condition of 4<x  and for getting a greater 
satisfaction, it may be preferable to increase the value of x  to some extent that ( )AxBSU <  does not 
pass over an assumed and fixed threshold. 

2) In Fig. 7, the original interval inequality condition for BAx ≤  is not denied for 5.4<x  because 
( ) 0>≤ BAxS . But a pessimistic DM may not be satisfied if the right limit of Ax  spills over the right 

limit of B . To attain the required level of satisfaction, the DM may even like to reduce the value of x  
such that bxa ≤ .  

 

                      
         Fig. 6. [ ]3,1=A  and [ ]4,2=B                                                         Fig. 7. [ ]3,2=A  and [ ]9,1=B  

         This Fig. denotes BAx ≤  for 5.1=x .                                 This Fig. denotes BAx ≤  for 1=x .  
 
With attention to the above two remarks and the optimistic case, we propose an equivalent form of the 
interval inequality relation as follows:  

 

                                                          
( )
( ) [ ]⎩

⎨
⎧

∈≤<
>≤

⇒≤
,1,0

,0
αAxBS

BAxS
BAx

U

                                                        (8) 

 
where α  may be interpreted as an assumed and fixed optimistic threshold by the DM. Now, according to 
the definitions of SF, US , relation (8), and Remark 4, we obtain a satisfactory crisp equivalent form of the 
interval inequality relation as follows: 

 
( )
( ) ( )⎪⎩

⎪
⎨
⎧

−+−≤−

≥−<
⇒≤

,

,

xaabbbxa

xablyequivalentorbxa
BAx

αα

ε
 

 
where 0>ε  is a small positive value. 



Linear programming problem with… 
 

Autumn 2007                                                           Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A4 

383

Similarly, for BAx ≥  and the optimistic case, we propose an equivalent form of the interval inequality 
relation as follows: 
 

( )
( ) [ ]⎩

⎨
⎧

∈≤>
>≥

⇒≥
,1,0

,0
αAxBS

BAxS
BAx

L

 

 
where α  may be interpreted as an assumed and fixed optimistic threshold by the DM. 
Similarly, we obtain a satisfactory crisp equivalent form of BAx ≥  by the following pair: 

 
( )
( ) ( )⎪⎩

⎪
⎨
⎧

−+−≤−

≥−>

,

,

xaabbxab

bxalyequivalentorbxa

αα

ε
 

 
where 0>ε  is a small positive value. 
 

7. AN INTERVAL LINEAR PROGRAMMING PROBLEM AND ITS SOLUTON 
 

Let us consider problem (7) in the previous section. As was described in the previous section, a 
satisfactory crisp equivalent system of the constraints of problem (7), in the optimistic case, can be 
generated as follows:  
 

( ) ( ) ,,...,1

,,...,1

11

11
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j
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j
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where α  may be interpreted as an assumed and fixed optimistic threshold by the DM, and 0>ε  is a small 
positive value. 
The working of SF, US , and LS  may be summarized by the following principles: 
- S-Function: The positions (of beginning and end) of an interval and its length compared with those of 

another interval specify the grade to which the DM is satisfied with the superiority (inferiority) of the 
former compared with the latter.  

- ( )LU SS -Function: The position of end (beginning) of an interval and its length compared with those 
of another interval specifies the grade to which the DM is satisfied with the superiority (inferiority) of 
the former compared with latter. 

The objective of a conventional linear programming problem is to maximize or minimize the value of its 
(one only, single-valued) objective function satisfying a given set of restrictions. But, a single-objective 
interval linear programming problem contains an interval-valued objective function. The objective 
function of problem (7), paying attention to the function of S, can be reduced into a linear three-objective 
programming problem as follows: 
 

Min {left limit of the interval objective function}, 
Min {right limit of the interval objective function}, 

Max {length of the interval objective function}, 
Sub. To {set of feasibility constraints}. 

 
The principle of function S indicates that for the minimization problem, an interval with a smaller left and 
right limit value is inferior to an interval with a greater left and right limit value. Hence, in order to obtain 
the minimum of the interval objective function, considering the left and right limit value of the interval-
valued objective function is our primary concern. We reduce the interval objective function into a linear 
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bi-objective function by its left and right limit value, i.e., the linear programming problem with an interval 
objective function can be reduced into a linear programming problem with a linear bi-objective function as 
follows: 
 

Min {left limit of the interval objective function}, 
                                            Min {right limit of the interval objective function},                                        (9) 

Sub. To {set of feasibility constraints}. 
 

We consider the length as a secondary attribute, only to confirm whether it is within the acceptable 
limit of the DM. If it is not, one has to increase the extent of length (uncertainty) according to his 

satisfaction and thus to obtain a longer interval among non-dominated alternatives. We can obtain the non-
dominated solutions via problem (9). Problem (9) can be expressed as simultaneously minimizing the left 
and right limit of the interval objective function. Here, a weighted function ⎟⎟

⎠
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n

j
jj
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j
jj xcxc

1
2

1
1 λλ  is 

introduced to obtain some non-dominated solutions, where 01 ≥λ  and 02 ≥λ  are the weights of the left 

and right endpoints of Z , respectively, with 121 =+ λλ . Taking 11 =λ  is regarded as an optimistic opinion 
of minimizing Z  because the best situation is considered, whereas taking 12 =λ  is regarded as a 
pessimistic opinion because it is concerned with the worst situation. Considering that the DM is optimistic 
or pessimistic, we can reduce the linear bi-objective programming problem (9) into a linear programming 

problem, i.e., if the DM is optimistic, we will consider the following problem: 
 

Min {left limit of the interval objective function}, 
Sub. To {set of feasibility constraints}. 

 
The above linear programming problem is the necessary equivalent form of the original problem with 
attention to the presented point of view. Mathematically, we have: 
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where α  may be interpreted as an assumed and fixed optimistic threshold by the DM, and 0>ε  is a small 
positive value. 
It is only when there exists the possibility of multiple solutions, the comparative lengths are required to be 
calculated and then in favor of a maximum available length, we get the solution. 

 
8. NUMERICAL EXAMPLE 

 
Let’s refer to Ref. [21]. Here, there is a very good example of using interval numbers in an optimization 
problem: 

There are 1000 raised chickens in a chicken farm and they are raised with two kinds of forages –soya 
and millet. It is known that each chicken eats 1.000-1.130 kg of forage every day and that for good weight 
gain, at least 0.21-0.23 kg of protein and 0.004-0.006 kg of calcium are needed every day. Per kg, soya 
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contains 48-52% protein and 0.3-0.8% calcium at a price of 0.38-0.42 Yuan. Millet contains 8.5-11.5% 
protein and 0.3% calcium per kg at a price of 0.20 Yuan. How should the two kinds of forages be mixed in 
order to pay the least expense for the mixed forage? 

Most of the used parameters in this problem are inexact and we can appropriately display the 
parameters in terms of simple intervals. Let 1x  kg of soya and 2x  kg of millet be needed in the whole 
chicken farm every day. Then, the optimization problem can be formulated as follows: 
 

[ ]
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[ ] [ ] [ ]
[ ] [ ]
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xx
xxtosubject

xxZMinimize

 

 
This problem is solved using Tong’s approach, Sengupta et al.’s approach, and the presented approach in 
this paper. Finally, we compare the obtained solutions by ℑ -index and S -function. 
1) Tong’s approach gives the following solution for this problem: 
 

[ ] [ ]1050,57.234, 111 =′′′= xxx , [ ] [ ]250,43.765, 222 =′′′= xxx , and [ ]491,22.242=TongZ . 
 

2) The crisp equivalent form of this problem, with attention to the presented point of view by Sengupta et 
al. is as follows: 
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3)  The crisp equivalent form of the problem with attention to the presented point of view in this paper is 

as follows: 
 

                                               ( ) ( )

( )
.0,

,24003.0003.0005.0
,4003.0008.0

,2021003.0085.004.048.0
,210115.052.0

,11301000.
,2.038.0

21

21

21

21

21

21

21

≥
−≥++

+≥+
−≥+++

+≥+
≤+≤

+=

xx
xx

xx
xx

xx
xxtosub

xxzMin

αα
ε

ααα
ε

                              (12) 

 
In problems (11) and (12), [ ]1,0∈α  is an assumed and fixed optimistic threshold by the DM. The obtained 
results from solving problems (11) and (12) are presented in Tables 1 and 2 (problems (11) and (12) are 
solved at ,1.0 h×=α  where 10,...,1,0=h , and in problem (12), the DM assumes that 1.0=ε . See Tables 1 
and 2). 
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Table 1. The obtained results from Sengupta et al.’s approach (optimistic case) 
 

α  1x  2x  [ ]∗∗= zzZ sengupta ,α  
0 571.4286 428.5714 [302.8571,325.7143] 

0.1 520.548 479.452 [293.6986,314.5206] 
0.2 444.4445 592.5926 [287.4074,305.1852] 
0.3 358.9743 735.0428 [283.4188,297.7778] 
0.4 305 825 [280.9,293.1] 
0.5 305 825 [280.9,293.1] 
0.6 305 825 [280.9,293.1] 
0.7 305 825 [280.9,293.1] 
0.8 305 825 [280.9,293.1] 
0.9 305 825 [280.9,293.1] 
1 305 825.0001 [280.9,293.1] 

 
 

Table 2. The obtained results from the presented approach in this paper (optimistic case) 
 

α  1x  2x  [ ]∗∗= zzZ ,α  
0 305 825.0001 [280.9,293.1] 

0.1 293.8312 747.5649 [261.1688,272.92] 
0.2 289.6725 710.3275 [252.1411,263.73] 
0.3 276.3819 723.6181 [249.7487,260.8] 
0.4 263.1579 736.8421 [247.3684,257.89] 
0.5 250 750 [245,255] 
0.6 236.9077 763.0923 [242.6434,252.12] 
0.7 234.8148 765.1852 [242.2667,251.66] 
0.8 234.8148 765.1852 [242.2667,251.66] 
0.9 234.8148 765.1851 [242.2666,251.66] 
1 234.8148 765.1852 [242.2667,251.66] 

 
Table 3. Comparison of the obtained solutions from the three approaches using ℑ -index 

 
α  ( )Tongsengupta ZZ <ℑ α  ( )TongZZ <ℑ α  ( )senguptaZZ αα <ℑ  ( )αα ZZ sengupta <ℑ  
0 0.3853 0.6101 1.5566 - 

0.1 0.4636 0.7643 2.2758 - 
0.2 0.5276 0.8348 2.6125 - 
0.3 0.5777 0.8570 2.7803 - 
0.4 0.6101 0.8791 3.0254 - 
0.5 0.6101 0.9012 3.3333 - 
0.6 0.6101 0.9233 3.6554 - 
0.7 0.6101 0.9269 3.7082 - 
0.8 0.6101 0.9269 3.7082 - 
0.9 0.6101 0.9269 3.7082 - 
1 0.6101 0.9269 3.7082 - 

 
Since problem (10) is a minimization problem, our solutions give better expected values at ,1.0 h×=α  
where 10,...,1,0=h . Also, the obtained solutions from the recent two models and Tong’s approach are 
compared using ℑ -index and S -function (see Tables 3 and 4). In column 5 of Table 3, symbol ‘-‘ shows 
( ) ( )αα ZmZm sengupta >  for ,1.0 h×=α where 10,...,1,0=h . In this case,ℑ -index is not defined. 

Tables 3 and 4 indicate our solutions are better than both Tong’s solution and Sengupta et al.’s 
solutions for all the values of ,1.0 h×=α  where 10,...,1,0=h . 

 
 
 
 



Linear programming problem with… 
 

Autumn 2007                                                           Iranian Journal of Science & Technology, Trans. A, Volume 31, Number A4 

387

Table 4. Comparison of the obtained solutions from the three approaches using S -function 
 

α  ( )Tongsengupta ZZS <α  ( )TongZZS <α  ( )senguptaZZS αα <  ( )αα ZZS sengupta <  
0 0.6085 0.7583 1 0 

0.1 0.6546 0.8371 1 0 
0.2 0.6971 0.8729 1 0 
0.3 0.7343 0.8860 1 0 
0.4 0.7583 0.8990 1 0 
0.5 0.7583 0.9120 1 0 
0.6 0.7583 0.9250 1 0 
0.7 0.7583 0.9271 1 0 
0.8 0.7583 0.9271 1 0 
0.9 0.7583 0.9271 1 0 
1 0.7583 0.9271 1 0 

 
9. CONCLUSIONS 

 
In this paper, we defined a satisfaction function to compare interval numbers. The SF was defined based 
on the measure of length of an interval and Tseng and Klein’s idea [44]. Also, some of its properties were 
studied. Then, we defined the upper and lower satisfaction functions based on the SF. These functions 
constitute two strict order relations on the set of overlapping intervals. Also, an interval linear 
programming problem was introduced. Then, the functions of SF, US , and LS were applied in order to 
interpret inequality constraints with interval coefficients. According to the definitions of SF, US , and LS  
and their properties, the inequality constraints with interval coefficients were reduced in their satisfactory 
crisp equivalent forms. Furthermore, we explained the interpretation and realization of the objective of 
“Minimization” with respect to an inexact environment and the SF concept. Finally, a satisfactory solution 
of the problem for every grade [ ]1,0∈α  was obtained. Also, the presented approach in this paper and the 
presented approaches by Sengupta et al. [22] and Tong [21], with a described good example in [21, 22] 
were compared. 
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APPENDIX A 
 

Sengupta et al. [22] proposed a method in order to compare two interval numbers based on the acceptability index as 
follows: 
 
Definition A1. Let ≺  be an extended order relation between the intervals of ],[ aaA =  and ],[ bbB =  on the real 
line R , then for ( ) ( )BmAm ≤ , we construct a premise BA ≺  which implies that A  is inferior to B (or B  is 
superior to A ). Here, the term ‘inferior to’ (‘superior to’) is analogous to ‘less than’ (‘greater than’). 
 
Definition A2. Let I  be the set of all closed intervals on the real line R . Here, we further define an acceptability 

function [ )∞→×ℑ ,0: II  such that ( )BA ≺ℑ  or ( )BA,≺ℑ , or, in short, ( ) ( )( )
( ) ( )( )AwBw

AmBm
+
−

=ℑ≺ , 

where ( ) ( ) .0≠+ BwAw  ≺ℑ  may be interpreted as the grade of acceptability of the ‘first interval to be inferior to the 
second interval’. 
 

The grade of acceptability of BA ≺  may be classified and interpreted further on the basis of comparative 
position of mean and width of interval B  with respect to those of interval A . If ( ) 0=ℑ BA ≺ , then the premise ‘ A  
is inferior to B ’ is not accepted. If ( ) 10 <ℑ< BA ≺ , then the interpreter accepts the premise ( )BA ≺  with different 
grades of satisfaction ranging from zero to one (excluding zero and one). If ( ) 1≥ℑ BA ≺ , then the interpreter is 
absolutely satisfied with the premise ( )BA ≺  or in other words, he accepts that ( )BA ≺  is true. 
 

APPENDIX B 
 
Tseng and Klein [44] used two notions of indifference and dominance in order to compare two fuzzy 
numbers as follows: 
 
Definition B1.[44] If A  and B  are two fuzzy numbers, then ( )BAR ,  and ( )ABR ,  are two fuzzy 
preference relations and are defined as follows: 
 

( ) ( ) ( )
( ) ( )

dominates   , areas where A B area where A and B are indifferentR A B
areaof A areaof B

+
=

+
, 

 

( ) ( ) ( )
( ) ( )

dominates   , areas where B A area where A and B are indifferentR B A
areaof A areaof B

+
=

+
. 

 
( )BAR ,  and ( )ABR ,  are interpreted as the degree to which A  is preferred to or indifferent to B  and B  is 

preferred to or indifferent to A , respectively. 
 

APPENDIX C 
 

C1. Tong’s Approach [21] 
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Tong deals with the interval inequality relations in a separate way. For the minimization problem (7), 
Tong first transforms each inequality constraint into 12 +n  crisp inequalities to yield: 

{ }12,...,2,1 +== nk
ii kDD , which are the solutions of the i th set of 12 +n  inequalities. On the other hand, Tong 

defines a characteristic formula (CF): i

n

j
jij bxa ≥∑

=1

 of the i th inequality relation, where ],[ ijijij aaa ∈  and 
],[ iii bbb ∈ . Now, if the i th CF generates solution iD  such that ∪

12

1

+

=

=
n

k

k
ii DD , then the CF is called a 

maximum-value of range of inequality and if the CF generates solution iD  such that ∩
12

1

+

=

=
n

k

k
ii DD , then it is 

called a minimum-value of range of inequality. Tong then defines the minimum and the maximum of the 
optimal objective value of the problem using the maximum- and minimum-value of inequalities, 
respectively. In fact, Tong uses the union and intersection operators to define the maximum- and 
minimum-value of range of inequalities, respectively. The reasons of Tong’s approach have been given in 
[21].  

Sengupta et al. [22] explained the existing difficulties in using the union and intersection operators in 
defining the maximum- and minimum-value of range of inequalities, respectively. 
 
C2. Sengupta et al.’s Approach [22] 
 

Sengupta et al. use the acceptability index [22], the Moore’s concept of set-inclusion, and the points 
of view of optimistic and pessimistic in order to interpret the inequality constraints with interval 
coefficients. With attention to these concepts, they proposed a satisfactory crisp equivalent form of the 
interval inequality relation as follows: 
 

                                                       
( ) [ ]⎪⎩

⎪
⎨
⎧

∈≤ℑ
≤

⇒≤
,1,0

,
αAxB

bxaBAx
≺

 

 
where α  may be interpreted as an assumed and fixed optimistic threshold by the DM. Similarly, for 

BAx ≥ , they proposed the satisfactory crisp equivalent form by the following pair: 
 

( ) [ ].1,0
,

∈≤ℑ
≥

αBAx
bxa
≺

 

 
As Sengupta et al. [22] explained, the relation of ℑ -index does not make any sense among equi-

centred interval numbers. The reasons for Sengupta et al.’s approach have been given in [22].  
 
 
 
 
 
 

 
 
 
 
  
  
  
  
  
  
 


