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Abstract — In this paper, we are going to study the g-natural metrics on the tangent bundle of Finsler
manifolds. We concentrate on the complex and Kéhlerian and Hermitian structures associated with Finsler
manifolds via g-natural metrics. We prove that the almost complex structure induced by this metric is a
complex structure on tangent bundle if and only if the Finsler metric is of scalar flag curvature. Then we show
that the complex structure is Hermitian if and only if the Finsler metric is of constant flag curvature.
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1. INTRODUCTION

Almost complex structures are some important structures in differential geometry [1]. These structures
obtained many applications in physics. H. E. Brandt has shown that the spacetime tangent bundle, in the
case of Finsler spacetime manifold, is almost complex [2, 3]. Also, he demonstrated that in this case, the
spacetime tangent bundle is complex provided that the gauge curvature field vanishes [4].

The Sasaki-Matsumoto lift GSM defined on the manifold TM = TM — {0} of a Finsler metric tensor
g is extremely important in the analysis of the geometry of a Finsler space F'" = (M, F(x,y)) [5-7].
(N;SM determines a Riemannian structure on TM , which only depends on the fundamental function £ . It
is not difficult to see that GSM does not have a Finslerian meaning. More precisely, GSM is not
homogeneous with respect to the vertical variables y'. Consequently, we cannot study global properties -
as the Gauss-Bonnet Theorem — for the Finsler space F'" by means of this lift [2], [3], [8]. Also, since the
two terms of the metric CN;SM do not have the same physical dimensions, it does not satisfy the principles
of the Post-Newtonian Calculus and so it is not convenient for a gauge theory. For these reasons, R. Miron
introduce a new lift (N;SM to TM , which only depends on the fundamental function F of the Finsler
space F" and is 0-homogeneous on the fibers of the tangent bundle 7M [6].

Kéhler and para-Kéhler structures associated with Finsler spaces and their relations with flag
curvature were studied by M. Crampin and B.Y. Wu [5, 9]. They have found some interesting results on
this matter. In [9], Wu gives some equlvalent statements to the Kahlerity of (TM GSM , J gy ). Also, in
[6] Miron proves that the space (TM GM , J ) is in fact conformal, almost Kéhlerian.

In this paper, by using Finsler metric /' on a manifold M , we introduced a lift metric G on TM
named by the generalized Sasaki metric that Miron’s Metric is a special case of this metric. To continue,
we define an almost complex structure J on the slit tangent bundle ( 7 M R (N}) , by
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and i(aiyi) :q/a(Fz)i.

ox'
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We prove that J isa complex structure on 7. M if and only if the Riemannian curvature of the
Finsler metric F' gets a special form. Then we show that (TM, CN?, J ) is Hermitian if and only if F' is of
! . The integrability condition of J follows that

kF>+c - ~
the base manifold M has a zero flag curvature and (TM,G, J) is Kéhlerian.

There are many connections in Finsler geometry [10, 11]. Throughout this paper, we use the Chern

constant flag curvature k£ whenever q(F?) =

connection on Finsler manifolds.

2. PRELIMINARIES

Let M be an n-dimensional C” manifold. Denote by 7 M the tangent space at x € M, by
™ =U,_,,T.M the tangent bundle of M , and by T. M = TM \{0} the slit tangent bundle of M . A
Finsler metric on M is a function £ : TM — [0,o0) which has the following properties: (i) ' is C~ on
™ ; (i) F' is positively 1-homogeneous on the fibers of tangent bundle 7M , and (iii) for each
Y€ T .M, the quadratic form g, :T M ®T M — R defined by g (u,v):=g,(») u'v’ is positive
definite:

g;‘/(xay) = %[Fz(xay)]yiyj
0

90 .
where u =u' —| ,and v=v'—] .
ox' ox'
Lemma 1. (Euler’s Lemma) Let H be a real-valued function on R of positively homogeneous of degree r.
If H is differentiable away from the origin of R, then

yi%H(y)=rH(y)~
y

Let xeM and F =F M - To measure the non-Euclidean feature of F|, define
C,:TM®TMTM — R by C, (u,v,w):=Cy(y) u'v/w" where

ik

., =L1F?]

g Vit

The family C:={C y}yETMO is called the Cartan torsion. By using the notion of Cartan torsion, for
yeT .M, define mean Cartan torsion I :TM —R by I (u)=1I(y)u’, where
I.(y)=g" Cji (») . Itis well known that I=0 if and only if ' is Riemannian [10].

The horizontal covariant derivatives of C and I along geodesics raises the Landsberg curvature
Ly T MOTMSOT M —R and mean Landsberg -curvature Jy :T.M — R defined by
L, (u,v,w):=L, (y)u'v'w* and J (u):=J,(y) u' where
L, =C

J

yoand J, =1, y”

ijkl|s

The families L = {Ly} ~and J={J }
yeTM Y7 yeTM
curvature. A Finsler metric is called Landsberg metric and weakly Landsberg metric if L=0 and J =0,

are called the Landsberg curvature and mean Landsberg

respectively [10].
Let us consider the pull-back tangent bundle 7z TM over TM defined by
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7'M = {(u,v)e TM XTM | 7x(u) = z(v)}.

: d
Take a local coordinate system (x') in M, the local natural frame {_1} of T.M determines a local

natural frame 0, |, for ﬁv*TM the fibers of 7' TM , where 0, =, 88i|X), and y = y’ aa_l |.e TM .
X X

The fiber ﬁv*TM is isomorphic to 7, .M where 7z(v) = x. There is a canonical section ¢ of 7' TM

(v)

definedby ¢, = (v,v)/F(v).

Using the coefficients g; and C;, , we define C i P g"C._ where (g”) is the inverse matrix of

ijk >

g; - The formal Christoffel symbols of the second kind are

p 1 kl{agj/ " dg, _ aglj/}

Vi = Eg ox'  ox’  ox'

sjk

They are functions on 7’ M . We can also define some other quantities on 7’ M by
N (e, )=y, vy =Chvi vy,
where y e T, M . The above N ’j are called the nonlinear connection coefficients on TM .

Theorem 2. (Chern connection) The pull-back tangent bundle 7' TM admits a unique linear connection
V', which is torsion-free and almost metric-compatible. The coefficients of this connection in the standard
coordinate system are given by

F[jk = 71_/k -g" {Cis Nt =Cs N +C N7

Let V be the Chern connection on 77 TM and {e.}"_, be alocal orthonormal frame field for 7'TM such
that e, :=¢. Let {@'}", be its dual co-frame field. Put Ve, =0/ ®e ; and Qe = 2Q7 ®e ;» where
{Q/} and {@/} are called respectively, the curvature forms and connection forms of V with respect to
{e}. Put @ :=@ +d(logF)J,. Then {@',w""}., is a local basis for T"(TM). The curvature 2-
forms of Chern connection are

Q =dw -af na).
Since Q’] are 2-forms on TM , they can be expanded as

A . | R
Q/ =—R, & A& +P, 0 """ +=07 0" A",
2 2

1

Since V is torsion free then Q/,, = 0.

Flag curvature: A flag curvature is a geometrical invariant that generalizes what in Riemannian geometry
is called the sectional curvature. Forall xé M and 0# ye T.M, V =V" — is called the transverse
edge. Flag curvature is obtained by carrying out the following computation at t}ice point (x,y)e T M , and
viewing y and V as sections of 77 TM :

yi jR“kl N 74
K(y,V)= OV Rw ¥ .
g, e, V)-[gy. V)]
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where R, =g, R js . - If K is independent of the transverse edge V', then (M, F) is called scalar flag
curvature. The scalar denoted by A = A(x, ), if it has no dependence on either x or y, then the Finsler
manifold is said to be of constant flag curvature [12].

3. LIFT METRIC

For a given Finsler manifold (M, F), we can endow its slit tangent bundle 7. M with a Riemannian
metric, known as the generalized Sasaki metric [8]. It can be described in local coordinates as follows. Let
(x,¥)=(x",»") be the local coordinates on T M . It is well known that the tangent space to 7. M at

(x,y) splits into the direct sum of the vertical subspace VM P span{F} and the horizontal
y

subspace HTM ) = span{g}:

TTM ., =VIM,, , ® HTM

(x.») (x,)

where i_;:i—N’fi.
i al lak

X
M. Matsumoto [13] exter);ded to Finsler spaces F'" the notion of Sasaki lift, considering the tensor field
Gy (0, ) =g, (x,y)dxe' ®dx’ +g,(x,y)8y' ®Fy’,  V(x,y)eTM (1)

It easily follows that (N}SM is a Riemannian metric globally defined on T M and dependent only on the
fundamental function F of the Finsler space F".
Next we consider the F'(TM) -linear mapping J,, : ¥(TM) — yx(TM) , defined by

o d = 0 o

J )= )= =1 2
JSM(5x,) ayl’ JSM(ayl) Sy (i y, ) 2

It is known that J oy 1s an almost complex structure on 7 M depending only on the fundamental function
F which becomes a complex structure on 7 M if and only if the horizontal distribution HT. M s
integrable.

Remarking that the pair ((N;SM , J ) is an almost Hermitian structure, we recall the known result
that (TM, (N?SM J oy ) is an almost Kéahlerian space.
The G-natural metric G on TM is defined by

G(a’b)(x,y) =g, (x,y)dx' ®dx’ + (a(Fz)gl.j (x,y)+ b(Fz)yl.yj )0y ®S5y’ (3)

where F? =g, (x,y) ' y; and a:Im(F*)c R* — R*
For b=0 and a = % for any constant c, the metrical structure (3) was studied by R. Miron in [11]
as a homogeneous lift of g, (x,y) to T M .

We are looking for a new almost complex structure paired with G, , to provide a complex structure.

We modify J sy toa F(T: M ) -linear map J . givenin the basis (;,aak) as follows:
) d = 0 o
J (2 =@8 +By v )=, J ()= +5y, " 4
a,b(é‘xl) ( i ﬁy,y )ayk a,b(ay,) (}/1 yzy )5xh ()
where @, [, y and O are functions on T. M to be determined. The condition J i’b = -/ leads to
ay=-1, ay+By+BoF*=0. (5)
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Then the condition
oty (Jos (0, T, (1)) = =G, ) (X.Y)
gives
ac’ =-1, y’=a, 205+0°F’=b, Qapf+BF)a+F*)+ba’=0. (6)

The solution of the system of equation (5), (6) is

1 Ja++Ja+bF? Ja++Ja+bF’
==, ﬁ: 9 7/:\/29 5: B .
Ja F*\Ja(a+bF?) F

We notice that for =0, besides the solution provided by (7), that is

(7

a=——, y=va, P=

, 0= . 8
N )]

Fa’ F?
There also exists the solution

o=-

—, =+a, =0, 0=0. 9
N y=va, B )

Let J be the almost complex structure given by (4), (9). Then we get, without difficulty, the following
theorem:

Theorem 1. The pair (CN;, J ) is almost Hermitian structure on 7. M , where
G(x,y) =g, (x,y)dx' ®dx’ + a(F*) g,(x,y) 5y ® 5y’ (10)

Also, by a simple calculation, we can get the following lemma:

Lemma 2. Let (M, F) be a Finsler manifold with Chern connection. Then we have:

k
[0, 6;1==R:; 0; (11
[aT , aj] =0 (12)
k k
[5158]]:(1—‘” +Li_/)ak’7 (13)
where 0: :=—— and 0, —i.
y ox'
Theorem 3. The Levi-Civita connection V on TM with respect to G is given by the following
equations:
7,0 =t L, 8,410, + LD (.5 4y, 8 —g, 110
V, 0 =a(F*)L;, 5+ 5 e (0,0, +y,6, —g, ¥)]o; (14)
~ 1
Vv, 8, =[C], +5a(F2)yl Rf;]16,-L', o, (15)
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Vs, =[Cl+= a(F )Y Rf,16,-T%, o (16)

Vs8, =T, 6, [ )C"+ R/ )10; (17)

Proof: By the definition of G and Lemma 2 and Koszul formula

2G(V],2)=XG(Y,2)+YG(Z,X)-ZG(X,Y)

~ o~ ~ ~ ~ o~ ~

+G([X, Y], 2)-G([Y,Z], X )+G([Z, X], )

we have:

2M’ g, =

Ly

i (X, y))"'a(F )(Fh +Lhk)ghz(x »)

+a(F*)(, + L) g, (x, 1), (18)

~ 0 o
where M 1: is the horizontal coefficient of V W Since W(F *)=0 and
S
St gg,'(an’) _Fj{k g (%) _F:’k ghj(an’) =0,
then (18) change to

2M} g, =a(F*)L' g, +a(F*)L}g, = 2a(F*)L,.

By multiplying g” in the above equation we get M i ;=a(F 2)L[i_/ . Similarly, we get

I _ ok a/(Fz) k k k
Nij _Cij + a(Fz) v 5(,’ ty; 51‘ —&; ) )

Then, we prove (14). In a similar way, we get (15), (16), (17).

4. MAIN RESULTS

In this section, we prove that the almost complex structure J on the slit tangent bundle is a complex
1

kF*
(™, G,J ) is Hermitian if and only if (M, F') has a constant flag curvature. Also, for a(F*)=c, we

structure if and only if F is of scalar flag curvature. In the case a(F?*)= , we show that

conclude that almost complex structure on the slit tangent bundle is integrable if and only if the base

manifold has a zero flag curvature. In that case, the slit tangent bundle is Kéhlerian.

Theorem 1. Let (M, F) be a Finsler manifold. Then J is complex structure on 7. M (integrable) if and
only if ' is of scalar flag curvature.

Proof: Using the definition of the Nijenhuis tensor field N, of J, that is,

N, (X,Y)=[JX,JY]-J[JX,Y]-J[X,JY]-[X,Y], V X,Ye (TM),
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we get:

_a;(Fzz)y,- 1;+a/(F2)
a’(F)"' 7 a*(F?)

N,(5,,8)={R}, v, 00} 0r. (19)
It follows by a straightforward computation that N, (0-, a]) =0, N,(9;,0,)=0, whenever
N,(,, 5] ) =0. Therefore, from relations (19), we conclude that J is a complex structure if and only if
the following relation holds:

ko a'(F 2) k k
Rij __az(Fz)(yjdi _yidj ) (20)
: . a’(F?)
This means that F is of the scalar flag curvature — ) .
a (F re 2
The equation (20) suggests that we look for the function a such that — az((l;z)) =k, where k is a constant.
a
For t=F?, solving the equation —a’=/ka” one gets a(F*) = 21 where ¢ is a constant of
kF~ +c¢
integration. For this function a, the equation (20) becomes
ko_ k. ok
R;‘j _k(y,d yi§j ) (21)
which implies that the Finsler metric F is of the constant flag curvature k. By considering the condition
1
a(F*) = ————, we have proved the following theorem.
kF~ +c

1 o ~
Theorem 2. Let (M, F) be a Finsler manifold and a(F*) = i Then (TM,G, J) is Hermitian
+c

if and only if (M, F') has constant flag curvature £.
Now let us consider the Cartan forms

1 oF?

0=——
2 oy

dx', w=g;(x,y)0y" ndx’. (22)

Evidently, & and @ are globally defined on T M and @ is an almost symplectic structure on 7. M . As is
known, between @ and @ there is the relation

d6 = w, (23)

where d is the exterior differential operator. So @ is a closed 2-form. In other words, @ is a symplectic
structure.

Let Q(X,Y)= (N?(jX ,Y) forall Xand Y in T M be the almost symplectic structure associated to the
almost Hermitian structure ((N;, J ) . With a straightforward computation we obtained

Q=+ag,(x,y)0y ndy’ =aw (24)

Note that ((N?, J ) is called a locally conformal almost Kahlerian structure if d€2 = Q A &, where o
is a 1-form on 7M . In the following theorem we consider almost Kéhlerian and Kéhlerian structures of
Finsler manifolds.

Theorem 3. Let (M, F') be a Finsler manifold. Then we have:
1. (G, J) is alocally conformal almost Kéhlerian structure.
2. (TM,G, J) is almost Kihlerian if and only if a(F*) = ¢, where ¢ is a constant.
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Proof: Since d @ =d*6 =0, then from (24) we get
2La’

a

dQ =

dL A Q. (25)

Therefore, statement (i) is proved. Again, with attention to equation (25), € is closed if and only if

a'(F*)=0.

Corollary 4. Let (M, F) be a Finsler manifold. If a(F*) # c, then (TM, é, J ) can not be Kéhlerian.
If a(F*) =c, then from (19) we get N, (5., § )= Rky. 0 . Therefore, we have the following theorem:

Theorem 5. Let (M, F) be a Finsler manifold. If a(F?*) is a scalar function, then the following
statements are mutually equivalent:

(i) (M, F) has zero flag curvature,

(i1) J is integrable,

(i) V.J =0,

(iv) (TM, é, J ) is Kéhlerian.
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