Lorentz characterized the almost convergence through the concept of uniform convergence of de la Vallée-Poussin mean. In this paper, we generalize the notion of almost convergence by using the concept of invariant mean and the generalized de la Vallée-Poussin mean. We determine the bounded linear operators for the generalized σ-conservative, σ-regular and σ-coercive matrices.
MURSALEEN, M., JARRAH, A. M., & MOHIUDDINE, S. A. (2009). ALMOST CONVERGENCE THROUGH THE GENERALIZED DE LA VALLÉE-POUSSIN MEAN. Iranian Journal of Science, 33(2), 169-177. doi: 10.22099/ijsts.2009.2212
MLA
M. MURSALEEN; A. M. JARRAH; S. A. MOHIUDDINE. "ALMOST CONVERGENCE THROUGH THE GENERALIZED DE LA VALLÉE-POUSSIN MEAN", Iranian Journal of Science, 33, 2, 2009, 169-177. doi: 10.22099/ijsts.2009.2212
HARVARD
MURSALEEN, M., JARRAH, A. M., MOHIUDDINE, S. A. (2009). 'ALMOST CONVERGENCE THROUGH THE GENERALIZED DE LA VALLÉE-POUSSIN MEAN', Iranian Journal of Science, 33(2), pp. 169-177. doi: 10.22099/ijsts.2009.2212
VANCOUVER
MURSALEEN, M., JARRAH, A. M., MOHIUDDINE, S. A. ALMOST CONVERGENCE THROUGH THE GENERALIZED DE LA VALLÉE-POUSSIN MEAN. Iranian Journal of Science, 2009; 33(2): 169-177. doi: 10.22099/ijsts.2009.2212