λ –STRONGLY SUMMABLE AND λ –STATISTICALLY CONVERGENT FUNCTIONS^{*}

F. NURAY

Afyon Kocatepe University, Mathematics Department Afyonkarahisar, Turkey Email: fnuray@aku.edu.tr

Abstract – In this study, by using the notion of (V, λ) -summability, we introduce and study the concepts of λ -strongly summable and λ -statistiacally convergent functions.

Keywords - Statistical convergence, strongly summable function

1. INTRODUCTION

The idea of statistical convergence which is closely related to the concept of natural density or asymptotic density of a subset of the set of natural numbers \mathbb{N} , was first introduced by Fast [1]. The concept of statistical convergence plays an important role in the summability theory and functional analysis. The relationship between the summability theory and statistical convergence has been introduced by Schoenberg [2]. In [3], Borwein introduced and studied strongly summable functions.

Strongly summable number sequences and statistically convergent number sequences were studied in [4] and [5], respectively. In [6], λ -statistically convergent number sequences was defined. In this paper, by taking real valued functions x(t) measurable (in the Lebesque sense) in the interval $(1, \infty)$ instead of sequences we will introduce λ -strongly summable and λ -statistically convergent functions and give some inclusion relations.

Let $\lambda = (\lambda_n)$ be a nondecreasing sequence of positive numbers tending to ∞ such that $\lambda_{n+1} \le \lambda_n + 1$, $\lambda_1 = 1$. A denote the set of all such sequences. For a sequence $x = (x_k)$ the generalized de la Vallee Poussin mean is defined by

$$t_n(x) := \frac{1}{n} \sum_{k \in I_n} x_k,$$

where $I_n = [n - \lambda_n + 1, n]$.

A sequence $x = (x_k)$ is said to be (V, λ) - summable to a number l if $t_n(x) \to l$ as $n \to \infty$. If $\lambda_n = n$, then (V, λ) –summability reduces to (C, 1) summability.

2 λ -STRONGLY SUMMABLE FUNCTIONS

A real valued function x(t), measurable(in the Lebesque sense) in the interval $(1, \infty)$, is said to be strongly summable to *l* if

$$\lim_{n\to\infty}\frac{1}{n}\int_1^n|x(t)-l|dt=0.$$

^{*}Received by the editor July 19, 2009 and in final revised form August 30, 2010

[W] will denote the space of all strongly summable functions. Also, W will denote the space of x(t) such that

$$\lim_{n\to\infty}\frac{1}{n}\int_1^n x(t)dt = l.$$

In this section we will introduce λ -strongly summable function.

Definition 2.1 Let $\lambda \in \Lambda$ and x(t) be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, if

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\int_{n-\lambda_n+1}^n|x(t)-l|dt=0.$$

Then we say that the function x(t) is λ -strongly summable to l. In this case we write $[W, \lambda] - \lim x(t) = l$ and

$$[W,\lambda] \coloneqq \{x(t): \exists l = l_x, [W,\lambda] - \lim x(t) = l\}.$$

If $\lambda_n = n$, then $[W, \lambda]$ is the same as [W].

3λ –STATISTICALLY CONVERGENT FUNCTIONS

x(t) is a real valued function which is measurable(in the Lebesque sense) in the interval $(1, \infty)$, if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{n} |\{t \le n; |x(t) - l| \ge \varepsilon\}| = 0$$

then we say that the function x(t) is statistically convergent to l. Where the vertical bars indicate the Lebesque measure of the enclosed set. In this case we write $S - \lim x(t) = l$ and

$$S \coloneqq \{x(t): \exists l = l_x, S - lim x(t) = l\}.$$

Definition 3.1. Let $\lambda \in \Lambda$ and x(t) be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, if for every $\varepsilon > 0$,

$$\lim_{n \to \infty} \frac{1}{\lambda_n} |\{t \in I_n : |x(t) - l| \ge \varepsilon\}| = 0$$

then we say that the function x(t) is λ -statistically convergent to l. In this case we write $S_{\lambda} - \lim x(t) = l$ and

$$(S,\lambda) \coloneqq \{x(t): \exists l = l_x, S_{\lambda} \text{-} \lim x(t) = l\}.$$

If $\lambda_n = n$, then (S, λ) is the same as S, the set of statistically convergent functions.

Theorem 3.1. Let $\lambda \in \Lambda$ and x(t) be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, then

(i) $[W, \lambda] \subset (S, \lambda)$ and the inclusion is proper.

(ii) If x(t) is bounded and $S_{\lambda}-x(t) = l$ then $[W, \lambda] - \lim x(t) = l$ and hence $W - \lim x(t) = l$ provided x(t) is not eventually constant.

(iii) If x(t) is bounded then $(S, \lambda) = [W, \lambda]$.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4

Proof: (i) Let $\varepsilon > 0$ and $[W, \lambda] - \lim x(t) = l$. We write

$$\int_{t \in I_n} |x(t) - l| dt \ge \int_{\substack{t \in I_n \\ |x(t) - l| \ge \varepsilon}} |x(t) - l| dt \ge \epsilon |\{t \in I_n: |x(t) - l| \ge \varepsilon\}|.$$

Therefore $[W, \lambda] - \lim x(t) = l$ implies S_{λ} -lim x(t) = l. Define a function x(t) by

$$x(t) = \begin{cases} t, & n - (\lambda_n)^{\frac{1}{2}} + 1 \le t \le n \\ 0, & \text{otherwise.} \end{cases}$$

Then x(t) is not a bounded function and for every $\varepsilon(0 < \varepsilon \le 1)$,

$$\lim_{n\to\infty}\frac{1}{\lambda_n}|\{t\in I_n: |x(t)-0|\geq \varepsilon\}| = \lim_{n\to\infty}\frac{(\lambda_n)^{\frac{1}{2}}}{\lambda_n} = 0,$$

i.e., S_{λ} -lim x(t) = 0. But

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\int_{n-\lambda_n+1}^n|x(t)-0|dt=\infty,$$

i.e., $x(t) \notin [W, \lambda]$. Therefore, the inclusion is proper.

(ii) Suppose that S_{λ} -lim x(t) = l and x(t) be a bounded function, say $|x(t) - l| \le M$ for all t. Given $\varepsilon > 0$, we have that

$$\frac{1}{\lambda_n} \int_{t \in I_n} |x(t) - l| \, dt = \frac{1}{\lambda_n} \int_{\substack{t \in I_n \\ |x(t) - l| \ge \varepsilon}} |x(t) - l| \, dt + \frac{1}{\lambda_n} \int_{\substack{t \in I_n \\ |x(t) - l| < \varepsilon}} |x(t) - l| \, dt$$
$$\leq \frac{M}{\lambda_n} |\{t \in I_n \colon |x(t) - l| \ge \varepsilon\}| + \varepsilon$$

which implies that $[W, \lambda] - \lim x(t) = l$. Also, we have, since $\frac{\lambda_n}{n} \le 1$ for all n,

$$\begin{split} \frac{1}{n} \int_{1}^{n} (x(t) - l) \, dt &= \frac{1}{n} \int_{1}^{n - \lambda_{n}} (x(t) - l) \, dt + \frac{1}{n} \int_{t \in I_{n}} (x(t) - l) \, dt \\ &\leq \frac{1}{n} \int_{1}^{n - \lambda_{n}} |x(t) - l| \, dt + \frac{1}{n} \int_{t \in I_{n}} |x(t) - l| \, dt \\ &\leq \frac{2}{\lambda_{n}} \int_{t \in I_{n}} |x(t) - l| \, dt. \end{split}$$

Hence [W] - lim x(t) = l, since $[W, \lambda] - lim x(t) = l$. (iii) This follows from (i) and (ii).

It is easy to see that $(S, \lambda) \subset S$ for all λ , since $\frac{\lambda_n}{n} \leq 1$. Now we prove the following inclusion.

Theorem 3.2. $S \subset (S, \lambda)$ if and only if

F. Nuray

$$\liminf_{n \to \infty} \frac{\lambda_n}{n} > 0. \tag{*}$$

Proof: For given $\varepsilon > 0$, we have

$$\{t \le n: |x(t) - l| \ge \varepsilon\} \supset \{t \in I_n: |x(t) - l| \ge \varepsilon\}.$$

Therefore,

$$\begin{aligned} \frac{1}{n} |\{t \le n: |x(t) - l| \ge \varepsilon\}| \ge \frac{1}{n} |\{t \in I_n: |x(t) - l| \ge \varepsilon\}| \\ \ge \frac{\lambda_n}{n} \frac{1}{\lambda_n} |\{t \in I_n: |x(t) - l| \ge \varepsilon\}|. \end{aligned}$$

Hence by using (*) and taking the limit as $n \to \infty$, we get $x(t) \to l(S)$ implies $x(t) \to l(S, \lambda)$. Conversely, suppose that $\liminf_{n\to\infty} \frac{\lambda_n}{n} = 0$. We can choose a subsequence (n_j) such that $\frac{\lambda_{n_j}}{n_j} < \frac{1}{j}$. Define a function x(t) by x(t) = 1 if $t \in I_{n_j}$, j = 1, 2, ... and x(t) = 0 otherwise. Then $x(t) \in [W]$ and hence $x(t) \in S$. But $x(t) \notin [W, \lambda]$ and Theorem 3.1(ii) implies that $x(t) \notin (S, \lambda)$. Hence (*) is necessary.

Finally, we conclude this paper with a definition which generalizes Definition 2.1 of Section 2 and two theorems related to this definition.

Definition 3.2. Let $\lambda \in \Lambda$, p is a real number and x(t) be a real valued function which is measurable (in the Lebesque sense) in the interval $(1, \infty)$, if

$$\lim_{n\to\infty}\frac{1}{\lambda_n}\int_{n-\lambda_n+1}^n|x(t)-l|^pdt=0.$$

Then we say that the function x(t) is λp -strongly summable to *l*. In this case we write $[W_p, \lambda] - \lim x(t) = l$ and

$$[W_p, \lambda] \coloneqq \{x(t): \exists l = l_x, [W_p, \lambda] - lim x(t) = l\}.$$

If $\lambda_n = n$, then $[W_p, \lambda]$ is the same as $[W_p]$, the set of strongly p-Cesaro summable functions.

Theorem 3.3. Let $1 \le p < \infty$. If a function x(t) is λp -strongly summable to l, then it is λ -statistically convergent to l.

The proof of the theorem is similar to that of Theorem 3.1.(i). So it was omitted.

Theorem 3.4. Let $1 \le p < \infty$. If a bounded function x(t) is λ -statistically convergent to l, then it is λp -strongly summable to l.

The proof of the theorem is similar to that of Theorem 3.1.(ii). So it was omitted.

REFERENCES

- 1. Fast, H. (1951). Sur la convergence statistique. Collog. Math., 2, 241-244.
- Schoenberg, I. J. (1959). The integrability of certain functions and related summability methods. *Amer. Math. Monthly*, 66, 361-375.
- 3. Borwein, D.(1965). Linear functionals with strong Cesaro summability. Journal London Math.Soc., 40, 628-634.
- 4. Maddox, I. J. (1967). Space of strongly summable sequences. Oxford(2), Quart. J. Math, 345-355.
- 5. Fridy, J. A. (1985). On statistical convergence. Analysis, 5, 301-313.
- 6. Mursaleen, M. (2000). λ –Statistical convergence. *Math. Slovaca*, 50(11), 111-115.

Iranian Journal of Science & Technology, Trans. A, Volume 34, Number A4

338