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Abstract – In this paper, first the properties of one and two-dimensional differential transforms are presented. 
Next, by using the idea of differential transform, we will present a method to find an approximate solution for 
a Volterra integro-partial differential equations. This method can be easily applied to many linear and 
nonlinear problems and is capable of reducing computational works. In some particular cases, the exact 
solution may be achieved. Finally, the convergence and efficiency of this method will be discussed with some 
examples which indicate the ability and accuracy of the method. 
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1. INTRODUCTION 
 

The purpose of this paper is to employ the two-dimensional differential transforms method for Volterra 
integro-partial differential equations, which are often encountered in many branches of physics, chemistry 
and engineering. The solution of integral and integro-differential equations has a major role in the fields of 
science and engineering. When a physical system is modelled under the differential sense, it finally gives a 
differential equation, an integral equation or an integro-differential equation. There are various techniques 
for solving an integral or integro-differential equation, e. g. Galerkin, wavelet Galerkin, Haar wavelet 
method [1-5], Adomian decomposition method [6, 7], homotopy perturbation method (HPM) [8], 
polynomial solution [9] and multi-level iteration method [10]. Such methods are based on developing and 
analyzing numerical methods for solving one-dimensional integral equations. But in two-dimensional 
cases so far, a small amount of work has been done (see [11, 12]). 

Differential transforms method (DTM) is a semi analytical-numerical technique and is an iterative 
procedure that depends on Taylor series expansion. The concept of the differential transforms was first 
proposed by Zhou [13]. By useing this method, it is possible to solve differential equations [14-24], 
difference equations [24], differential-difference equations [25], KDV equations [26] fractional 
differential equations [27, 28], two-dimensional integral equations [11, 12] and integro-differential 
equations [29, 30]. In this paper, we apply one and two-dimensional differential transform method to solve 
the Volterra integro-partial differential equations of the form: 
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, , , , ,
,

  , , , , , , ,
                           (1) 

 
where ,  is an unknown function, , , , ,  and  are some two variable given functions, 
functions ,  and , , , ,  are two known continuous functions defined respectively on 
0, 0,  and , , , , : 0 , 0 , ∞ ∞  and  is a given 

constant. The completion conditions related to Eq. (1) are as follows: 
 

                             ∑  ∑  ∑  
,
|  , , , 1,2,                            (2) 

 
and 

 

                              ∑  ∑  ∑  
,
|  , ,  , 1,2,                            (3) 

 
where  and  are known constant coefficients, and ,  for 1,2 are known functions. 

 
2. DIFFERENTIAL TRANSFORM 

 
a) One- Dimensional Differential Transform 
 
Definition 2.1. Consider the analytical function of one variable , which is defined on 0,  
and . One- dimensional differential transform of  is denoted by  and is defined on 

0  as the following: 
 

                                                                  
!

| ,                                                             (4) 
 

where  is the original function and  is called the transformed function. 
Inverse differential transform of  in the Eq. (4) is defined as follows:  
 
                                                            ∑  ∞ .                                                        (5) 

 
Since  is an analytical function, it is clear that . By combination of Eqs. (4) and (5), 
with 0, the function  can be written as: 

 

                                                            ∑  ∞
!

| .                                                       (6) 
 

The fundamental mathematical properties of one-dimensional differential transform can readily be 
obtained and are summarized in the following theorem. 
 
Theorem 2.2. If ,  and  are one-dimensional differential transforms of the functions 

,  and  respectively, then: 
1. If  then .  
2. If  then .  
3. If  then ∑  .  

4. If  then 1 1 .  

5. If  then 1 2 … .  

6. If   then , 1 , 0 0.  
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7. If  then 
1, ;
0, . .   

8. If  then 
!

 .  

9. If  then 
!

.  
 
b) Two- Dimensional Differential Transform 
 
Definition 2.3. Consider the analytical function of two variable , , which is defined on 0,
0,  and , . The two- dimensional differential transform of ,  is denoted by 

,  and is defined on 0,0  as the following: 
 

                                                           ,
! !

,
| , ,                                                     (7) 

 
where ,  is the original function, and ,  is called the transformed function. Inverse differential 
transform of ,  in Eq. (7) is defined as follows: 

 
                                            , ∑  ∞ ∑  ∞ , .                                      (8) 

 
Since ,  is an analytical function, it is clear that , , . By combining Eqs. (7) and (8), 
with , 0,0 , the function ,  can be written as: 
 

                                               , ∑  ∞ ∑  ∞
! !

,
, .                                          (9) 

 
The fundamental mathematical properties of two-dimensional differential transform can readily be 
obtained and are expressed in the following theorem.  
 
Theorem 2.4. If , , ,  and ,  are two-dimensional differential transforms of the functions 

, , ,  and ,  respectively, then:  
1. If , , ,  then , , , . 
2. If , ,  then , , . 
3. If , , ,  then , ∑  ∑  , , . 

4. If ,
,

 then , 1 1, . 

5. If ,
,

 then , 1 , 1 . 

6. If ,  then , , . 

7. If ,
,

 then , 1 2 … 1 2 … ,

.  
In the following, we prove some fundamental theorems, which will be used in section three. It should 

be pointed out that these theorems may be found in [11, 12, 17], but we claim that our approaches are 
simpler and more preferable.  
 
Theorem 2.5. If ,   , , ,  and ,  are differential transforms of the 
functions ,  and , , respectively, then: 

 

                                           ,
0,    0      0; 
,

   , 1,2,3, … .
                                                (10) 

 
: By using the Leibniz's formula and mathematical induction on  and  we have:  

 

                                                               
,

 
,

,                                                          (11) 
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and  

 

                                                                
,

 
,

,                                                         (12) 
 

respectively. Hence, by applying Eqs. (11) and (12) in definition 2.3 , with , 0,0 , we have:  
 

 , 0, if 0 or 0.  
 

Since for 1, 1, we get:  
 

∂ ,
∂ ∂

∂
∂

∂
∂

,  

                           
,

 

                          ,  

             
,
, 

 
therefore by definition 2.3 , with , 0,0 , we will have:  

 
! ! , 1 ! 1 ! 1, 1 . 

 
Hence: 
 

,
,

.  
 

Theorem 2.6. If ,   , , , , , ,  and ,  are differential 
transforms of the functions , , ,  and , , respectively, then:  
 

              ,
0    0      0; 

∑  ∑  , 1 1, ,    , 1,2,3, … .
                (13) 

 
: Define , , , . By using theorem (2.5), where the corresponding function  is 

replaced by , and applying theorem 2.4(3), the assertion is immediately obtained. 
 
Theorem 2.7. Suppose that , ∏  , . If ,  and ,  for 1,2, …  are 
differential transforms of the functions ,  and ,  for 1,2, … , respectively, then:  
 

             

, ∑  ∑  ∑  ∑  …∑  ∑  ∑  ∑  

, , …

, , , 0, 0.

                 (14) 

 
: The assertion is obviously obtained by induction on  and using theorem 2.4(3). 

The next corollary is the direct result of the theorems 2.5 and 2.7. 
 
Corollary 2.8. If the assumptions of theorem(2.7) are satisfied and  
 

,    , , 

 
then , 0, if 0 or 0 and  
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, ∑  ∑  ∑  ∑  …∑  ∑  ∑  ∑  

F r , s F r r , s s … F r r , s s F k r 1, h s 1
1, 1.

  (15) 

 
Now we prove the following complementary theorems as the basis of our method.  
 
Theorem 2.9. Let , , where  is a one variable function and ,  are two constants. 
If ,  and  are differential transforms of the functions ,  and  , respectively, then:  

 

                                                           , k h
h

.                                                (16) 
 

: We know that ∑  ∞ . Therefore: 
 

 

∞

 

 

∞

 k
h

 

                                                         ∑  ∞ ∑  k
h

.                                             (17) 
 

The result is obtained by comparing the coefficients of , for , 0,1,2, … in (9) and (17). 
 
Corollary 2.10. If ,  and ,  then:  

 

                                                  ,
! !

sin , ,
! !

.                                       (18) 

 
Theorem 2.11. Let , ,  where  is a one variable function of . If , , ,  and 

 are differential transforms of the functions , , ,  and , respectively, then:  
 
                                                           , ∑  , .                                                  (19) 

 
: By defining , : , we will have , , , . We know that ,

. By applying theorem 2.4(3), we have:  
 

,   , ,  

                                                                ∑  ∑  , .                                   (20) 
 

According to the definition of , equation (20) implies that:  
 

,  , . 

 
Theorem 2.12. Let , , , where  is a one variable function of . If , , ,  
and  are differential transforms of the functions , , ,  and , respectively, then:  

 
                                                           , ∑  , .                                                   (21) 

 
: The proof is similar to the previous theorem.  
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Theorem 2.13. Let , , where  and  are one variable functions of  and , 
respectively. If , ,  and  are differential transforms of the functions , ,  and 

, respectively, then:  
 
                                                                     , .                                                            (22) 

 
: By defining , :  and , : , we will have , , , , 

,  and , . By using theorem 2.4(3) and definition of , we have:  
 

,   , ,  

                        

                                                                        .  
 

The following theorem will imply the differential transform of the completion conditions (2), (3). In this 
theorem, we consider the applicable case , 0 or 1. 
 
Theorem 2.14. Assume that ,  and ,  are differential transforms of ,  and 

, , so we have:  

1. If 
,
|  then F(k)=U(k,1), k=0,1,2,... .  

2. If 
,
|  then ∑  , , 0,1,2, … .  

3. If 
,
|  then 1 1,0 , 0,1,2, ….  

4. If 
,
|  then 1 ∑  1, , 0,1,2, … .  

5. If 
,
|  then 1 0, 1 , 0,1,2, ….  

6. If 
,
|  then 1 ∑  , 1 , 0,1,2, … .  

7. If 
,
|  then 1, , 0,1,2, … .  

8. If 
,
|  then ∑  , , 0,1,2, … .  

 
: The assertions are obtained easily, by use of theorem 2.4(4) and 2.4(5) and comparing the results 

to the equation (5). 
 

3. APPLICATIONS AND NUMERICAL RESULTS 
 

In this section, the differential transform is applied to solve Volterra integro-partial differential equations 
of the form equation (1). To this end, we consider the solution of equation (1) in the form of Taylor series 
as equation (8). Since the truncated Taylor series or the corresponding polynomial expansion is an 
approximate solution of equation (1), by substituting the solutions , , for 0,1,2, …  and 

0,1,2, …  in Eq. (8) we have:  
 

,   , , ,  

                                                  , , , , ,                                                
 

where , ,  is the error function and , ,  is the approximate function. Now, for ,
, , we define the absolute error by:  
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                                                     , , | , , , |.                                             (23) 

 
Corresponding to Eq. (1), we define ,  and ,  as the follows:  
 

, :
∂ ,
∂

∂ ,
∂ ∂

∂ ,
∂

∂ ,
∂

∂ ,
∂

, , 

 

, :   , , , , , . 

 
Therefore, equation (1) can be written as:  
 
                                                               , , , .                                                      (24) 

 
In order to obtain the approximate solution, , it is sufficient to determine ,  for 0,1,2, … , 

0,1,2, … . By applying differential transform on the equation (24) and the completion conditions, (2) 
and (3), they will be transformed into a system of recursive algebraic equations. This process is called 
differential transform method (DTM). 
 
Remark 3.1. In most of the practical cases, the exact solution is not available, hence the computation of 
the absolute error is impossible. One way to show the convergence of the iterative solution ,  to the 
exact solution, , , is as follows: 
1. Compute , ,  and , , .  
2. Compute , ,  and , , , for , , .  
3. Define:  
 

, , | , , , , | 
 
and: 
 

, , | , , , , | 
 
for some  and .  
4. If , , , ,  it is concluded that , ,  converges to the exact solution when ,
∞.  
The above technique will be applied in example (3.4). 
In the following, we consider the case of:  
 
                                            , , , , , ∑  , , , ,                                    (25) 

 
which is solvable by using differential transform method.  
 
Example 3.2. Consider the following Volterra Integro-Partial Differential Equation:  
 

                                 
, ,

1   , ,                            (26) 
 

subject to the initial conditions:  
 

                                                                          
, 0 ,
0, .

                                                                  (27) 

 
Transformed versions of Eqs. (26) and (27) are:  
 

              1 1, 1 , 1
! ! ! !

,
,        (28) 
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and  
 

                                                
, 0

!
, 0,1,2, … ,

0,
!
, 0,1,2, … .

                                                     (29) 

 
respectively. By substituting (29) in (28), we obtain the closed form of the solution series as the follow:  
 

 , ∑  ∞ ∑  ∞ , 1
!

1
!

,  
 

which is the exact solution.  
 
Example 3.3. Consider the following Volterra integro-partial differential equation:  
 
                                                              , , , ,                                                       (30) 

 
where  

,
∂ ,
∂

∂ ,
∂

, ,   , , 

 

,
1
2

1
4

1
3

1
2

, 
 
is subject to the initial conditions:  
 

                                                                     

0, 1 ,
, 0 ,
,
| 1.

                                                              (31) 

 
If  indicates the location and  indicates the time, then the above equation will be the wave equation 
which is affected by the power dependent on the location and the time. The exact solution is ,

. 
Applying differential transform on Eqs. (30) and (31) and using the Theorems of section 2, and theorem 
2.14 for the initial conditions, we obtain:  
 
                                                              Φ , Ψ , , ,                                                      (32) 

 
where:  
 

Φ , 1 2 2, 1 2 , 2 , 
 

Ψ ,

0,      0      0; 

1
 

, 1
1
,      0        1; 

1
1, 2  

, 1
1

,   . .

 

 

,
!

2 1
2 !

1
1 !

,        1      1; 

0,   . .

1
!

 

2, 2
4

1, 3
3

, 1
2

, 
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and:  
 

0, 1 ,     0; 

, 0 1
1
!
,     0; 

, 1 ,     0.
 

 
By solving the above recursive equations for cases n=m=4, n=m=8 and n=m=16 we obtain: 
 

, , 1 2
2! 3! 4!

, 
 

, , 1 2
2! 3! 4! 5! 6! 7! 8!

 
 
and:  
 

, , 1 2
2! 3! 4! 5! 6! 7! 8! 9!

. . .
16!

, 
 
which are the truncated Taylor series of the exact solution. Table 1 shows the absolute errors at some 
particular points.  
 

Table 1. Numerical results for example 3.3 
 

,  , , , , , ,
(0,0) 0 0 0
0.1,0.3  8.474 008 2.997 015 2.22 016
0.2,0.2  2.758 006 1.439 012 0
0.3,0.1  2.130 005 5.591 011 2.220 016
0.4,0.6  9.136 005 7.523 010 2.220 016
0.5,0.4  2.837 004 5.664 009 4.440 016
0.6,0.9  7.188 004 2.953 008 0
0.7,0.6  1.581 003 1.195 007 4.440 016
0.8,0.5  3.140 003 4.017 007 4.440 016
0.9,0.2  5.765 003 1.172 006 0
1,1  9.948 003 03.0586 006 2.664 015

 
Example 3.4. Consider the following Volterra integro-partial differential equation:  
 
                                                              , , , ,                                                       (33) 

 
where: 
 

,
∂ ,
∂

∂ ,
∂

, ,   cos , , 

, 2 1
8

2
8

2
4

2
8

, 
 
subject to the initial conditions:  
 

                                                          
,

,
| 1 ,

, | .
                                                    (34) 
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This equation indicates that the heat transform process depends on the location and time. 
Applying differential transform on Eqs. (33) and (34) and using the Theorems of section 2 and the 
theorem 2.14 we obtain:  
 

Φ , 2 1 2, 1 , 1 , . 
 

Ψ ,
0,      0,1      0; 

1
1

  
1 cos

1
2 2,

! 1 !
,   . . , 

 
and:  
 

, 2
cos 2

! !

0,      0; 

cos
1

2
! 1 !

,   . . , , 1  

1
8

3,

1
1 !

sin
1
2

,      0      1; 

0,   . .

1
1
!
sin

2

1
1 !

cos
1
2

,      1      1; 

0,   . .

1
8

2
1 !

sin
1
2

,      1      1; 

0,   . .

1
4

2
2 !

cos
2
2

,      1      2; 

0,   . .

2 3 cos 2
8 !

0,      0; 

1 sin
1

2
1 ! 1 !

,   . .

0,      0      0; 

1 cos
2

2
1 ! !

,   . .

 

 
and  

0, 1 0, 1 1 ,     0;   

, 0

0,         0;  
1
1 !

sin
1
2

,         1.
 

 
By solving the above recursive equations for the cases n=m=4, n=m=8 and n=m=16 we obtain 
 

, ,
6 2 2 12 6 12 24 144

, 
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, ,
6 120 5040 2 24 720 2 12 240 10080

6 12 144 12 4320 144
. .. 

, ,
6 120 5040 2 24 720 2 12 240 10080

6 12 144
. .. 

 
Table 2 shows , , which is introduced in remark (3.1), at some points. 
 

Table 2. Numerical results for example 3.4 
 

,  , , , , , ,
(0,0) 0 0 0
0.1,0.3  2.1380 006 5.4043 012 0
0.2,0.2  3.1716 006 2.7994 012 0
0.3,0.1  1.0132 005 4.8736 011 0
0.4,0.6  4.7938 004 1.3903 008 0
0.5,0.4  5.4439 004 1.9181 008 0
0.6,0.9  0.0050 7.2448 007 4.4409 016 
0.7,0.6  0.0043 5.7998 007 0
0.8,0.5  0.0067 1.5989 006 4.4409 016 
0.9,0.2  0.0049 1.9089 006 1.5543 015 
1,1  0.0392 2.2359 005 4.2188 014 
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