Let R be a commutative ring with identity. Let N and K be two submodules of a multiplication R-module M. Then N=IM and K=JM for some ideals I and J of R. The product of N and K denoted by NK is defined by NK=IJM. In this paper we characterize some particular cases of multiplication modules by using the product of submodules.
Azizi, A. and Jayaram, C. (2011). Some applications of the product of submodules in multiplication modules. Iranian Journal of Science, 35(4), 273-277. doi: 10.22099/ijsts.2011.2151
MLA
Azizi, A. , and Jayaram, C. . "Some applications of the product of submodules in multiplication modules", Iranian Journal of Science, 35, 4, 2011, 273-277. doi: 10.22099/ijsts.2011.2151
HARVARD
Azizi, A., Jayaram, C. (2011). 'Some applications of the product of submodules in multiplication modules', Iranian Journal of Science, 35(4), pp. 273-277. doi: 10.22099/ijsts.2011.2151
CHICAGO
A. Azizi and C. Jayaram, "Some applications of the product of submodules in multiplication modules," Iranian Journal of Science, 35 4 (2011): 273-277, doi: 10.22099/ijsts.2011.2151
VANCOUVER
Azizi, A., Jayaram, C. Some applications of the product of submodules in multiplication modules. Iranian Journal of Science, 2011; 35(4): 273-277. doi: 10.22099/ijsts.2011.2151