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Abstract 

There are many different ways to subdivide the spectrum of a bounded linear operator; some of them are 
motivated by applications to physics (in particular, quantum mechanics). In this study, the relationship between 
the subdivisions of spectrum which are not required to be disjoint and Goldberg's classification are given. 
Moreover, these subdivisions for some summability methods are studied. 
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1. Introduction 

Let X  be a Banach space and  B X  denote the 

linear space of all bounded linear operators on X . 

Given an operator  L B X , the set 
 

   : :   bijectionL K I L           (1.1) 
 
is called the resolvent set of L  (where 
K R   or  K C  ), its complement  
 

   : \L L                                            (1.2) 
 
the spectrum of L . We denote the operator 

 LR ;  as follows: 
 

    .:; 1 LILR                                     (1.3) 
 

By the closed graph theorem, the inverse operator 
 

      1
; :    LR L I L       

 
is always bounded; this operator is usually called 
resolvent operator of L  at  . 
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1.1. Subdivision of the spectrum: The point 
spectrum, continuous spectrum and residual 
spectrum 

Let X  be a Banach space over   and 

 L B X . Recall that a number   is 

called an eigenvalue of L  if the equation 
Lx x  has a nontrivial solution x X . Any 
such x  is then called eigenvector, and the set of all 
eigenvectors is a subspace of X  called eigenspace. 

Throughout the following, we will call the set of 
eigenvalues 

 
   : :   for some  0p L Lx x x      .    (1.4) 

 
We say that    belongs to the continuous 

spectrum  c L  of L  if the resolvent operator 

(1.3) is defined on a dense subspace of X  and is 
unbounded. Furthermore, we say that    

belongs to the residual spectrum  r L  of L  if 

the resolvent operator (1.3) exists, but its domain of 

definition (i.e. the range  R I L   of 

 I L   is not dense in X ; in this case 

 ;R L  may be bounded or unbounded. 

Together with the point spectrum (1.4), these two 
subspectra form a disjoint subdivision 
 

       p r cL L L L               (1.5) 
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of the spectrum of L . Loosely speaking, the 

elements   in the subspectrum  Lp  

characterize some lack of injectivity, those in 

 Lr  lack of surjectivity, and those in  Lc  

lack of stability of the operator .LI   We 
illustrate the subdivision (1.5) in Table 1.  

Observe that the case in the first row and second 
column cannot occur in a Banach space X  by the 
closed graph theorem. If we are not in the third 
column, i.e., if   is not an eigenvalue of L , we 
may always consider the resolvent operator (1.3) 
(on a possibly "thin" domain of definition) as 
"algebraic" inverse of LI  . 
 

Table 1. Disjoint subdivision of spectrum 
 

 
 ;   exists

and is bounded

R L
 

 ;   exists

and is unbounded

R L
 

     ;

does not exists

R L
 

 R I L X     L   _  p L   

 R I L X     L    c L    p L   

 R I L X     r L    r L    p L   

 
 

1.2. The approximate point spectrum, defect 
spectrum and compression spectrum 

Given a bounded linear operator L  in a Banach 

space X , we call a sequence  k k
x  in X  a 

Weyl sequence for L  if 1kx   and 

0kLx   as k   . 

In what follows, we call the set 
 

 
: there is a Weyl 

:
sequence for ap L

I L





 

   
 (1.6) 

 
the approximate point spectrum of L . Moreover, 
the subspectrum 
 

 
:   

:
is not surjective

I L
L

 


  
  
 

                 (1.7) 

 
is called defect spectrum of L . 

By definition, we then have xcLxx   

for all Xx  if  Lap  ; equivalently, this 

may be stated as 
 

     apinf e Le : e S X 0  L                (1.8) 
 
where    .:: rxXxXS   The two 

subspectra (1.6) and (1.7) form a (not necessarily 
disjoint) subdivision 
 

     apL L L                              (1.9) 

 
of the spectrum. There is another subspectrum, 
 

    : :  Xco L R I L       (1.10) 

 
which is often called compression spectrum in the 
literature and which gives rise to another (not 
necessarily disjoint) decomposition 
 

     ap coL L L                            (1.11) 
 

of the spectrum. Clearly,    p apL L   and 

   co L L  . Moreover, comparing these 

subspectra with those in (1.5) we note that 
 

     \r co pL L L                            (1.12) 
 
and 
 

       \c p coL L L L             (1.13) 

 
Sometimes it is useful to relate the spectrum of a 

bounded linear operator to that of its adjoint, 
building on classical existence and uniqueness 
results for linear operator equations in Banach 
spaces and their adjoints. 
 
Proposition 1.1. ([1], Proposition 1.3). The spectra 

and subspectra of an operator  L B X  and its 

adjoint  * *L B X  are related by the following 

relations: 
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(a)    * ,L L   (b)    * ,c apL L   

(c)    * ,ap L L   

(d)    * ,apL L   (e)    * ,p coL L   

(f)    * ,co pL L   

(g)          * * .ap p p apL L L L L         

The relations (c)-(f) show that the approximate 
point spectrum is in a certain sense dual to defect 
spectrum, and the point spectrum dual to the 
compression spectrum. 

The last equation (g) implies, in particular, that 

   LL ap   if X  is a Hilbert space and L  is 

normal. Roughly speaking, this shows that normal 
(in particular, self-adjoint) operators on Hilbert 
spaces are most similar to matrices in finite 
dimensional spaces (see [1]). 

1.3. Goldberg’s classification of spectrum 

If X  is a Banach space,  B X  denotes the 

collection of all bounded linear operators on X  

and  T B X , so there are three possibilities 

for  R T , the range of T : 

 

(I)   ,R T X  (II)    ,   but  ,R T X R T X   

(III)   .R T X  

 

and three possibilities for 1 :T   

(1) 1T  exists and is continuous, (2) 1T   exists but 

is discontinuous, (3) 1T   does not exist. 
If these possibilities are combined in all possible 

ways, nine different states are created. These are 

labelled by: 1 2 3 1 2I ,  I ,  I ,  II ,  II ,  3 1 2 3II ,  III ,  III ,  III  

If an operator is in state 2III  for example, then 

  XTR   and 1T   exist but are discontinuous 

(see [2]). 

The relationship between the fine spectrum of 
bounded linear operator and fine spectrum of its 
adjoint is given by Fig. 1.  

 

 
Fig. 1. State diagram for  XB  and  *XB  

for a non-reflective Banach space X  
 

If   is a complex number such that 

11 or    IILITILIT   , then  XL,  . 

All scalar values of   not in  XL,  comprise 

the spectrum of L . The further classification of 

 XL,  gives rise to the fine spectrum of L .That 

is,  XL,  can be divided into the subsets 

       2 3 2 3, Ø, , ,  , , , ,I L X I L X II L X II L X   

     1 2 3, ,  , , , .III L X III L X III L X    For 

example, if LIT    is in a given state, 

2III (say), then we write  .,2 XLIII   

By the definitions given above, Table 2 can be 
generalized as shown below.  

 

 
 
 
 
 
 
 
 
 
 
 
 

 
3III          

 
2III          

 
1III          

 
3II          

 
2II          

 
1II          

*T 3I           

 
2I           

 
1I           

 
 

1I

 
2I

 
3I

 
1II

 
2II

 
3II

 
1III

 
2III

 
3III

 
 

 
 T

 
       



 
 

IJST (2011) A3: 175-183   178 

Table 2. The relationship between subdivisions of the spectrum and Golberg’s classification 
 

 

1 2 3 

 ;   exists

and is bounded

R L
 

 ;   exists

and is unbounded

R L
 

     ;

does not exists

R L
 

I   R I L X     L   _  p L   ap L 

II   R I L X     L   

 c L   

 ap L   

 L   

 p L   ap L 

 L   

III   R I L X     r L   
 r L   

 ap L   

 L  co L 

 p L   ap L 

 L   co L 

 

Let pccw  ; ;; 0  denote the set of all sequences; 

the space of all null sequences; convergent 

sequences; sequences such that 
p

kk
x ,   

respectively.  
An infinite matrix A  is said to be conservative if 

it is a selfmap of c , the space of convergent 
sequences. Necessary and sufficient conditions for 
A  to be conservative are the well-known Kojima-

Schur conditions; i.e., 

(i). ;sup:
0

 

k nkn aA  

(ii). ,:lim knkn a   exists for each k , and 

(iii).   nkn at lim:  exists. 

Associated with each conservative matrix A  is a 
function   defined by 

     0, If .   AtA k   A  is called 

coregular, and, if   0A  then A  is called 

conull. A  matrix  nkaA   is said to be regular if 

xxA limlim   for each cx . If 0k  for 

each k  and 1t  in (iii), then the operator A  is 
called regular (see [3]). 

2. The approximate point spectrum, defect 

spectrum and compression spectrum of 1C  

In this section we devoloped the approximate point 
spectrum, defect spectrum and compression 

spectrum of the matrix operator  1 ,nkC c  

where otherwise  1/ 1 ,  nkc n k n    and 

0,  ,nkc n k . Reade [4] and in 1975, Wenger [5] 

determined spectra and the fine spectra of Cesaro 

operator 1C  on c , the space of convergent 

sequences, respectively. 

2.1. Subdivision of the spectrum of 1C  on c . 

Theorem 2.1.  
(a)    ap 1C ,c C : 1/ 2 1/ 2 ,       

(b)    1C ,c C : 1/ 2 1/ 2 ,       

(c)      1C ,c C : 1/ 2 1/ 2 1 .        

 
Proof:  

(a)      1 1 1 1, , \ ,ap C c C c III C c    is 

obtained from Table 2. By [[5], Theorem 1-3], we 
have 
 

 

 

ap 1

1 1
C ,c C : Re 1 \ C : Re 1

1
C : Re 1

C : 1/ 2 1/ 2 .

               
     

    
 

(b)      1 1 3 1, , \ ,C c C c I C c    is obtained 

from Table 2. Moreover, since the equality 

       1 1 1 2 1 3 1, , , ,C c III C c II C c III C c     
holds by [[5], Theorem 1-5] and the subdivisions in 
Goldberg's classification are disjoint, then the 
equalitises  3 1, ,I C c      3 1 2 1, ,  ,II C c III C c    

are valid. Hence    1 1, , .C c C c   

(c) From Table 2,  
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   
 

   
2 1 3

1 1

1 3 1

,
, , \

, ,
co

II C c II
C c C c

C c I C c

 
 



    
  

  

 
and by 

   3 1 3 1, ,  , ,I C c II C c    we have 
 

 

 

   

co 1

1 1
C ,c C : Re 1 \ C : Re 1, 1

1
C : Re 1 1

C : 1/ 2 1/ 2 1 .

                 
      

     

 

The following corollary can be obtained by 
Proposition 1.1. 
 
Corollary 2.1.  

(a)    * 1
ap 1C , C : 1/ 2 1/ 2 ,       

(b)    * 1
1C , C : 1/ 2 1/ 2 .       

2.2. Subdivision of the spectrum of 1C  on .p  

In 1985, M. Gonzales [6] determined the fine 

spectra of Cesaro operator 1C on .p  

 

Theorem 2.2. [6] Let 1 11 ,  1,p p q       

and 1C acting on .p  

(a) For each    1int , : / 2 / 2 ,pz C q q       

1 1.zI C III   

(b) For each 

   1, : / 2 / 2 ,pz C q q       1zI C  is 

injective with dense range, that is, 1 2.zI C II   

 

Theorem 2.3. Let 1 11 and 1,p p q     then 

(a)    p
ap 1C , C : q / 2 q / 2 ,       

(b)    p
1C , C : q / 2 q / 2 ,       

(c)    p
co 1C , C : q / 2 q / 2 .       

 

Proof: The equality  3 1,
pI C   is clear 

with Theorem 2.2. Therefore, the proof is taken by 
Theorem 2.2. 

The following corollary can be obtained by 
Proposition 1.1. 

 

Corollary 2.2. Let 1 11 and 1,p p q     then 

(a)    * q
ap 1C , C : q / 2 q / 2 ,       

(b)    * q
1C , C : q / 2 q / 2 .       

3. The approximate point spectrum, defect 
spectrum and compression spectrum of rhaly 
operator 

We assume that, given a scalar sequence of 

  ,na a  a Rhaly matrix  a nkR a  is the lower 

triangular matrix where ,   and 0nk n nka a k n a    

otherwise.  

(a)  lim 1n nL n a   exists, finite, 

(b) 0na   for all n , and 

(c) for .i ja a i j   Let S  denote the set 

 : 0,1, 2, .na n    

(d)  na a  is monotone decreasing. 

In [7], the spectrum of the Rhaly operators on 0c  

and c , under the assumption that 

 lim 1 0n nn a L    has been determined. 

Also, in [8-12] the spectrum of the Rhaly operator 
over some kinds of spaces has been determined. 

3.1. Subdivision of the spectrum of aR  on 0c  for 

0.L   

Theorem 3.1. If  lim 1 0,n nL n a    then 

(a)    0, 0 ,ap aR c S    

(b)    0, 0 ,aR c S    (c) 

 0, .co aR c S   

 
Proof: The proof is taken by [[9], Theorem 5-7]. 

The following corollary can be obtained by 
Proposition 1.1. 

 

Corollary 3.1. (a)    * 1, 0 ,ap aR S    (b) 

   * 1, 0 .aR S    

3.2. Subdivision of the spectrum of aR  on c  for 

0.L   

Theorem 3.2. If  lim 1 0,n nL n a    then 

(a)    , 0 ,ap aR c S     
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(b)    , 0 ,aR c S    

(c)    , 0 .co aR c S    

 
Proof: The proof is taken by [[9], Theorem 12, 14, 
15]. 

The following corollary can be obtained by 
Proposition 1.1. 

 

Corollary 3.2. (a)    * 1, 0 ,ap aR S    (b) 

   * 1, 0 .aR S    

3.3. Subdivision of the spectrum of aR  on p  for 

0.L   

Leibowitz [[13], Proposition 3.1] shows that 

(a) If   1 nn a  is bounded, then aR  acts 

boundedly on p  for 1,p   and 

    / 1 sup 1 .a n nR p p n a    

(b) If  lim 1 0,n nn a   then aR  is compact 

operator on p  for every 1.p   

(c) If  lim 1 ,n nn a    then aR  is not 

bounded on p  for every 1.p   

 
Theorem 3.3. If  lim 1 0,n nL n a    then (a) 

   , 0p
ap aR S    for 2,p   

(b)    , 0p
aR S    for 2,p   (c) 

 , p
co aR S   for 2.p   

 
Proof: The proof is taken by [[10], Theorem 2.3-
2.5]. 

The following corollary can be obtained by 
Proposition 1.1. 

 
Corollary 3.3. If  lim 1 0,n nL n a    then  

(a)    *, 0q
ap aR S    for 1 12,  1,p p q     

(b)    *, 0q
aR S    for 1 12,  1.p p q     

3.4. Subdivision of the spectrum of aR  on c  for 

0 .L    

Theorem 3.4. Let 0 ,L    then  

(a)    
: / 2

, : ,
/ 2

ap a i i

L
R c a S a L

L

 


       
  

 

(b)    , : / 2 / 2 ,aR c L L S       

(c)      , : / 2 / 2 .co aR c L L S L        

 
Proof:  

(a) Since      1, , \ , ,ap a a aR c R c III R c    

   
   

 

, : / 2 / 2

: Re 1/ 1 \
\

:

ap a

i i

R c L L S

L S

a S a L

  

 

     
 
 
    

   
 

   

: / 2 / 2 \ : / 2 / 2

:

: / 2 / 2 :
i i

i i

L L L L

a S a L

L L a S a L

   

 

      
  

     
is obtained by [[7], Theorem 3.3 and [14] Theorem 
2.1]. 
(b) Since      3, , \ ,a a aR c R c I R c    from 

Table 2 and  3 ,  aI R c   is obtained by [[7], 

Theorem 3.3 and [14] Theorem 2.1-2.4], then 

   , , .a aR c R c   

(c) Since the equality 

       1 2 3, , , ,co a a a aR c III R c III R c III R c     
from Table 2, it can be easily seen by [[14], 
Theorem 2.1-2.4]. 

The following corollary can be obtained by 
Proposition 1.1. 
 
Corollary 3.4.  

(a)    * 1, : / 2 / 2 ,ap aR L L S       

(b)    * 1
aR , R : L / 2 L / 2 S.        

3.5. Subdivision of the spectrum of aR  on p  for 

0 .L    

Theorem 3.5.  

Let 0 ,L    1 11 and 1,p p q     then 

(a)    , : / 2 / 2 ,p
ap aR qL qL S       

(b)    , : / 2 / 2 ,p
aR qL qL S       

(c)    , : / 2 / 2 .p
co aR qL qL S       

 
Proof: The proof is taken by [[10], Theorem 3.3] 
and [[15], Theorem 6-8]. 
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The following corollary can be obtained by 
Proposition 1.1. 
 
Corollary 3.5.  

Let 0 ,L    1 11 and 1,p p q     then 

(a)    *, : / 2 / 2 ,q
ap aR qL qL S       

(b)    * q
aR , R : qL / 2 qL / 2 S.        

4. The approximate point spectrum, defect 
spectrum and compression spectrum of weıght 
mean operator 

A weight mean matrix A  is a lower triangular 
matrix with entries / ,nk k na p P  where 

0 0
0,  0 for 0,  and .

n

n n kk
p p n P p


     

The necessary and sufficient condition for the 

regularity of A  is that lim .nP    

In [16-20] the spectrum and fine spectrum of 
weight mean matrix over some kinds of spaces has 
been determined. 

Let 
 

 
lim / ,  lim / ,

/ : 0  

n nn n n n

n n

p P p P

S p P n

  

 
 

 

and   / : / / 2n n n nE p P p P      in the 

followings. 

4.1. Subdivision of the spectrum of A  on c . 

We shall consider those regular weighted mean 
methods for which   , i.e., for which the main 

diagonal entries converge. 
 
Theorem 4.1. Let A  be a regular weighted mean 
method such that lim / = 0, /n n n n np P p P    

for all n  sufficently large and suppose no diagonal 
entry of A  occurs an infinite number of times, then 

(a)  
 

   
: 1/ 2

, ,
1 / 2

ap A c E
  


 

     
    

 

(b)         , : 1/ 2 1 / 2 ,A c S             

(c)         , : 1/ 2 1 / 2 .co A c S             

 
Proof: (a) Since the relation 

        
  

1 , : 1/ 2 1 / 2 \

: / 2 1nn nn

III A c S

a a

     

  

       
    

 

holds by [[18] Theorem 1-2], use [[17] Corollary 2] 
to get 
 

     
      

1, , \ ,

: 1/ 2 1 / 2 .

ap A c A c III A c

E

  

    



      

 
(b)        1 2 3, , , ,A c III A c II A c III A c       

is easily seen by [[17] Corollary 2] and [[18] 
Theorem 1-4]. Therefore, 

     2 3 3, , ,  III A c I A c II A c      

and hence, 
 

       3, , \ , , .A c A c I A c A c      
 
(c) Since,        1 2 3, , , ,co A c III A c III A c III A c       

the result is taken by [[17] Corollary 2] and [[18] 
Theorem 1-4]. 

The following corollary can be obtained by 
Proposition 1.1. 
 
Corollary 4.1. Let A  be a regular weighted mean 
method such that 
lim / = 0, /n n n n np P p P    for all n  

sufficently large and suppose no diogonal entry of 
A  occurs an infinite number of times, then 

(a)         * 1, : 1/ 2 1 / 2 ,ap A S             

(b)         * 1, : 1/ 2 1 / 2 ,A E             

(c)         * 1, : 1/ 2 1 / 2 .p A S             

4.2. Subdivision of the spectrum of A  on p . 

In [16] it was shown that, if 
 
lim / 0,n n np P   (4.1) 
 

then  pA B   and 

 

        , : 1/ 2 1 / 2 .pA S             (4.2) 

 
In Theorem 4.2 and Corollary 4.2 A  is a weighted 
mean matrix satisfying 1   , since 1   implies 

 , .pA S   

 
Theorem 4.2. Let A  be a regular weighted mean 
method such that lim /n n np P   exists and 

/n np P  for all n  sufficently large. Suppose 

that no main diogonal entry of A  occurs an infinite 
number of times, then 
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(a)         , : 1/ 2 1 / 2 ,P
ap A S             

(b)         , : 1/ 2 1 / 2 ,PA S             

(c)         , : 1/ 2 1 / 2 .P
co A E             

 
Proof: (a) Since the relation 
 

        
  

1 , : 1/ 2 1 / 2 \

/ : / 2 / 1

P

n n n n

III A S

p P p P

     

  

       
    



 
holds by [[20] Theorem 1-3], then from (4.2) we 
have 
 

     
      

1, , \ ,

: 1/ 2 1 / 2 .

P P P
ap A A III A

E

  

    



      

  

 
(b) From [[20] Theorem 1.5] and (4.2), we have 

       1 2 3, , , , .P P P PA III A II A III A        
Therefore, 
 

     2 3 3, , ,  P P PIII A I A II A      
 
Hence we get 

       3, , \ , , .P P P PA A I A A         

 
(c) Since  

       1 2 3, , , ,P P P P
co A III A III A III A         , 

the result is taken by [[20] Theorem1-5]. 
The following corollary can be obtained by 

Proposition 1.1. 
 
Corollary 4.2. Let A  be a regular weighted mean 
method such that lim /n n np P   exists and 

/n np P  for all n  sufficently large. Suppose 

that no main diogonal entry of A  occurs an infinite 
number of times, then  
(a)         *, : 1/ 2 1 / 2 ,q

ap A S             

(b)         *, : 1/ 2 1 / 2 ,qA E             

(c)         *, : 1/ 2 1 / 2 ,q
p A S             

where 1 1 1.p q    

In [16] it was shown that, if 
 
lim / 1/ ,n n nnp P p                               (4.3) 
 

then  pA B   and 

   
 

: / 2 1
, .

/ 2 1
p

p p
A S

p p

   


 

     
   

 (4.4) 

 
Theorem 4.3. Let A  be a weighted mean method 
such that lim / 1/n n nnp P p  . Suppose no 

diogonal entry of A  occurs an infinite number of 
times, if 

    1lim / lim 1 0,n n n n n nn np P n nc n c     
then 
(a)       , : / 2 1 / 2 1 ,P

ap A p p p p            

(b)       , : / 2 1 / 2 1 ,PA p p p p S             

(c) If A  is a triangle, then 
 

   
 

 
: / 2 1

, \ 0 ,
/ 2 1

P
co

p p
A S

p p

   


 

           


 

If 0kp   for some 0k  , then 
 

   
 

 
: / 2 1

, 0 ,
/ 2 1

P
co

p p
A S

p p

   


 

      
   



 

where / .n n nc p P  

 
Proof: (a) The proof is taken by (4.4) and [[20] 
Theorem 6,8]. 
 
(b) From [[20] Theorem 6-9] and (4.4), 

     1 2, , , .P P PA III A II A       

Therefore, 
 

   
   

2 3

3 3

, ,

, ,  .

P P

P P

III A I A

II A III A

 

 



   

 

 
 

 
Hence we get  
 

       3, , \ , , .P P P PA A I A A       
 

(c) Since,  
 

       1 2 3, , , ,P P P P
co A III A III A III A        

 
from [[20] Theorem 6-9], the result is taken. 

The following corollary can be obtained by 

Proposition 1.1, such that 1 1 1.p q    

 
Corollary 4.3. Let A  be a weighted mean method 
such that lim / 1/n n nnp P p  . Suppose no 

diogonal entry of A  occurs an infinite number of 
times, if 



 
 
 
183                IJST (2011) A3: 175-183 

    1lim / lim 1 0,n n n n n nn np P n nc n c     
then 
(a)       *, : / 2 1 / 2 1 ,q

ap A p p p p S             

(b)       *, : / 2 1 / 2 1 ,qA p p p p            

(c) If A  is a triangle, then 
 

   
 

 *
: / 2 1

, \ 0 ,
/ 2 1

q
p

p p
A S

p p

   


 

            


 

If 0kp   for some 0k  , then 

 

   
 

 *
: / 2 1

, 0 ,
/ 2 1

q
p

p p
A S

p p

   


 

      
   



 

where / .n n nc p P  
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