There are many different ways to subdivide the spectrum of a bounded linear operator; some of them are motivated by applications to physics (in particular, quantum mechanics). In this study, the relationship between the subdivisions of spectrum which are not required to be disjoint and Goldberg's classification are given. Moreover, these subdivisions for some summability methods are studied.
Amirov, R. K., Durna, N., & Yildirim, M. (2011). Subdıvısıons of the spectra for cesaro, rhaly and weighted mean operators on c0 ,c and ℓp. Iranian Journal of Science, 35(3), 175-183. doi: 10.22099/ijsts.2011.2140
MLA
R. Kh. Amirov; N. Durna; M. Yildirim. "Subdıvısıons of the spectra for cesaro, rhaly and weighted mean operators on c0 ,c and ℓp", Iranian Journal of Science, 35, 3, 2011, 175-183. doi: 10.22099/ijsts.2011.2140
HARVARD
Amirov, R. K., Durna, N., Yildirim, M. (2011). 'Subdıvısıons of the spectra for cesaro, rhaly and weighted mean operators on c0 ,c and ℓp', Iranian Journal of Science, 35(3), pp. 175-183. doi: 10.22099/ijsts.2011.2140
VANCOUVER
Amirov, R. K., Durna, N., Yildirim, M. Subdıvısıons of the spectra for cesaro, rhaly and weighted mean operators on c0 ,c and ℓp. Iranian Journal of Science, 2011; 35(3): 175-183. doi: 10.22099/ijsts.2011.2140