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Abstract 

In this paper, the Matsumoto metric with special Ricci tensor has been investigated. It is proved that, if   is of 

positive (negative) sectional curvature and F is of  -parallel Ricci curvature with constant killing 1-form , 

then ),( FM  is a Riemannian Einstein space. In fact, we generalize the Riemannian result established by Akbar-

Zadeh. 
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1. Introduction 

One of the most important problems in Finsler 
geometry is to understand the geometric meanings of 
various quantities and their impacts on the global 
geometric structures. The flag curvature K, which is 
obtained by the Riemannian curvature, tells us how 
curved the Finsler manifold is at a specific point. 
Moreover, there are several important non-
Riemannian quantities in Finsler geometry: the Cartan 
torsion C, the Berwald curvature B, the Landsberg 
curvature L, and the well-known S curvature, etc. 
They all vanish for Riemannian metrics, hence they 
are said to be non-Riemannian. These quantities 
interact with the flag curvature in a fragile way. 

( , )  -Metrics were introduced in 1972 by 

M.Matsumoto [1]. The study of Finsler spaces with 
( , )  -metrics is quite old, but it is a very important 

aspect of Finsler geometry and its applications (see [2-

5]). An ),(  -metric is a scalar function on TM 

defined by ,)( 



F   /s  where 

)(s  is a C on ),( 00 bb with certain 

regularity, ii
ij yyxa )(:  is a Riemannian metric 

and i

i yxb )(:  is a 1-form in the manifold M. 

Therefore, ),( M  is called the associated 

Riemannian manifold. A Finsler space is a manifold 
M equipped with a family of smoothly varying 
Minkowsky norms; one on each tangent space, 
Riemannian metrics are examples of Finsler norms 
that are induced from an inner-product.  
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Some especially interesting examples of ),(  -

metrics are the Randers metric, Matsumoto metric 

and Berwald metric, 

 2)( 

F . Randers metric 

and its Ricci tensor are related via their history in 
physics. The well-known Ricci tensor was 
introduced in 1904 by G. Ricci. Nine years later 
Ricci’s work was used to formulate Einstein’s 
theory of gravitation. Einstein metrics are defined 
in the next section but, loosely, we will say a 
Finsler metric F is Einstein if the average of its flag 
curvatures at a flag pole y is a function of position 

x alone, rather than the a priori position x  and flag 
pole y . C. Robles investigated Randers Einstein 

metrics in her thesis in 2003. She obtained the 
necessary and sufficient conditions for Randers 
metric to be Einstein and by using Einstein Zermelo 
navigation description, she proved the pair ),( Wh  

of a Riemannian metric and an appropriate vector 
field W has been founded in [6]. 

Put 
k

ij ikjH H ; denote the canonical section of the 

vector bundle TM*  and the vertical derivation 

with respect to 
iy by v and ,i



  respectively. For 

an ),(  -metric  )/(F , by using the 

geodesic coefficient of , we can introduce a new 
geometric quantity. Let us denote the Levi-Civita 

connection of   by 
~

. We define the Ricci tensor 

H  and H
~

 on TM*  as follows: 
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where, v̂  is the geodesic spray associated with  . 

The curvature H
~

 is closely related to the Ricci 
curvature and its related to ),(  -metrics, 

especially to the associated Riemannian manifold 
),( M . In this paper we investigate an ),(  -

metric of  -parallel Ricci curvature, and we prove 
the following theorem: 
 

Theorem 1.1. Let 
2

F


 



 be a Matsumoto 

metric on a connected manifold M of dimension n . 
Suppose that   is of positive (negative) sectional 

curvature and ,0
~ H  )0),(( vvH  and   is a 

constant killing 1-form. Then, ),( FM  is a 

Riemannian Einstein space.  
In fact, we generalize the Riemannian result 

established by Akbar-Zadeh in [7]. 

2. Preliminaries 

Let M  be an n  -dimensional C  manifold. 

Denote by MT the tangent space at Mx , and 

by MTTM Mx  the tangent bundle of M. 

Each element of TM  has the form ),( yx , where 

Mx and MTy  . Let  0\0 TMTM  . 

The natural  projection MTM :  is given by 

.),( xyx   The pull-back tangent bundle 

TM*  is a vector bundle over 0TM  whose 

fiber TMv
*  at 0TMv  is just MT  

where xv )( . Then 
 

}.,\),,{(* 0 MTvMTyvyxTM xx 
 

A Finsler metric on a manifold M is a function 

),0[: TMF which has the following 

properties: 

(i)  F  is 
C on 0TM ; 

(ii) ( , ) ( , ) 0;F x y F x y     

(iii) For any tangent vector ,MTy x  the vertical 

Hessian of 
2

2F
 given by  

 

ji yyij Fyxg ]
2

1
[),( 2  

 
is positive definite.  
Every Finsler metric F  induding a spray 

i
i

i
i

y
yxG

x
yG








 ),(2  is defined by 

 

jli il
k

jk j k
l

g1
G (x, y) : g (x, y){2 (x, y)

4 x
g

(x, y)}y y ,
x








  

 where the matrix )( ijg  means the inverse of 

matrix )( ijg , and the coefficients i
jG , i

jkG and 

hv-curvature 
i
jklG  of the Berwald connection can 

be derived from the spray 
iG  as follows: 

 

, , .
i ii
j jki i i

j jk jklj k l

G GG
G G G

y y y

 
  
    

 

When ji
ij yyxaF )(  is a Riemannian 

metric,
lji

jkl
i
k yyxRK )(  where )(xRi

jkl  

denote the coefficients of the usual Riemannian 
curvature tensor. Thus, the Ricci scalar function of 
F is given by 
 

.),(
1

: ,2
i
i

i
i KvvHK

F
  

 
Therefore, the Ricci scalar function is positive 

homogeneous of degree 0 in y . This means 

),( yx  depends on the direction of the flag pole 

y , but not its length.  
 

1
: ( , )

2ij i jH H v v    . 

 
A Finsler manifold ),( FM  is called an Einstein 

space if there exists a differentiable function c 

defined on M such that 2),( cFvvH  . The Ricci 

identity for a tensor jmW  of TM*  is given by 

the following formula: 
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k l jm l k jm rm jkl

jmr r
jr mkl oklr

D D W D D W W H

W
W H H

y

 

 
where, kD  denotes the horizontal covariant 

derivative whit respect to }{
kx


 in the Berwald 

connection. Let ),( FM  be an n -dimensional 

Finsler space. For every Mx , assume 

}.1),(\{  yxFMTyMS xx
 MSx  is called 

the indicatrix of F  at Mx  and is a compact 

hyper surface of ,MTx  for every Mx . Let 

MTMSv xx :  be its canonical embedding; 

where 1v  and ),( Ut  be a coordinate system on 

MS x
. Then, MS x

 is represented locally by 

i iv v (t ), 1, 2,..., (n 1).     One can easliy 
show that:  
 

ii y
F

v 






 

 

The )1( n  vectors )}{( iv  from a basis for the 

tangent space of MS x
in each point, where 

).1(,...,2,1, 



 n
t

v
v

i
i 

 For the sake of 

simplicity, put . t


  It can be easily shown 

that 
 

i

i

y
Fv




   

 
ji

ig dydyyxgg ),(  is a Riemannian metric 

on MTx . Inducing g in MSx , one gets the 

Riemannian metric 


 dtdtgg  , where 

.ij
ii gvvg   The canonical unit vertical 

vector field 
i

i

y
yyxV



),(  together the 

)1( n  vectors ,  from the local basis for 

MTx , },...,,{ 21 nuuuB   where, )( ivu 
   

and Vu n  . We conclude that 0),( Vg  

that is 0i
ivy  . 

Let (M, F) be an n-dimensional Finsler space 

equipped with an ),(  -metric F, where  
 

,)(),(,)(),( i
i

ji
ij yxbyxyyxayxa  

 

M. Matsumoto [2] showed that iG  of ),(  -

metric space are given by 
 

,22 00
iii BG    

 
where 
 

i i i
0

i i

B (E / )y ( F / F )s

   ( F / F )C{(y / ) ( / )b ,

 

 

   

       

 

00

2 2
0

E ( F / F)C,  C (r F

 2 s F ) / 2( F F ),

 

  

   

      
 ,22222 ,,   bbbbbab r
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),
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(
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1
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j

ijijiiijij
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The matrix )( ija  means the inverse of 

matrix )( ija . The function 
i
jk  stands for the 

Christoffel symbols in the space ( ),M , and the 

suffix 0 means transacting length with respect to , 
equivalently 
 

0,0  iij sandr . 
 

In an n-dimensional coordinate neighborhood U, 
we consider a liner partial differential equation of 
second order,  
 

i

i

ki

ik

x
h

xx
gL











2

)(  

 

where )(xg jk
 and )(xhi

 are continuous 

function of point x  in U, and quadratic form 

kj
jk ZZg  is supposed to be positive definite 

everywhere in U. Then we call L an elliptic 
differential operator. 
 
Strong Maximum principle: In coordinate 

neighborhood U, if a function )( p  of class C2 
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satisfies 
 

0)( L  
 

where ,: nRM   and if there exists a fixed point 

op  in U such that ,),()( 0 Upp P   

then we have )()( 0pp   , .Up  If   

have absolute maximum in U, then   is constant 

on U.  

3. Proof of Theorem 1.1 

In this section, we consider the ),(  -metrics 

where   is of positive (negative) sectional 

curvature. Let }{
ix

  and 
ˆ

{ }
ˆ ix




 be the natural 

locally horizontal basis of TTM0 with respect to F 
and , respectively. To prove the theorem 1.1, we 
need the following: 
 

Proposition 3.1. Let F = 



)(  be an ),(  -

metric on a connected manifold M. Suppose that   
is of positive (negative) sectional curvature. Then, 

we have ,,),( RccvvH    if and only if 

0H . 
 
Proof: Denote the Riemann curvature of  by 

i

i
jkl y

andR

~

 denote i  for the sake of 

simplicity. By using the Ricci identity for 

),,(
2

1
vvHH jiij    with respect to ~ , one 

obtains:  
 

r
k l ij l k ij rj ikl

r
ir jkl r ij okl

H H H R

H R H R

     

  

    

                          (1) 

 

Multiply the above relation by 
iv ,  we get: 

 
r

k l oj l k oj rj ikl

r
ir okl or jkl

H H H R

H R H R .

    

 

    

                          (2) 

 
One can observe that: 
 

,
~~~~

0 0 iojojiijij HHHH            (3) 
 

Multiplying (2) by :iv  

 

0000000

~~~~~~
0 jkr

r
krjojkjk RHRHHH   (4) 

By (4) we have:  
 

 
).,(

~
),(

~
0 000 vvHRvvHR rjk

r
jrk

r    (5) 
 

Multiplying (5) by :jka   
 

0),(
~

),(
~

00  vvHRavvHR r
r
jko

jk
kr

kr      (6) 
 
Define the operator   as follows: 

 

00: .r k jk r
r k jko rR a R                                        (7) 

 
The Riemannian manifold ),( M  has a positive 

(negative) sectional curvature, it results in the 
second order partial differential operator   being 

elliptic. From expression 
2H(v, v) / ,   we 

have:  
 

,2   i
iv                                                (8) 

 
and then  
 

i 2 i j
p i jp

j i
j i

v v v

v ( v ) .

     

 

         

   

  

                  (9) 

 
since 
 

,0



j

j

y
v


  

 
we get 
 

.2   ji
ji

i
i

B vvv      (10) 
 

Multiplying the two sides of (10) by ,
~

:
~ 

nn
a RR   

we obtain: 
 

00 .i j i
i j iR R R v 

                    (11) 
 

It follows that: 
 

( ) : 0,  

( , 1,..., 1)
aR B

n

      

 

 
   

 
            (12) 

 

where : .i
iB v R a R v    

       The 

equation (12) can be viewed as elliptic PDE on 

each indicatrix MSx  and using the maximum 
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principle of Hopf, we find   as a function of x  

only. Therefore, there is a function )(xc  such that 

.)(),( 2xcvvH   Since it must satisfy 

0 ( , ) 0H v v   it results in the converse being true, 

since 0),(
~

0  vvH .  

 
Now we consider the case of Matsumoto spaces. 

Matsumoto metric is of the form 






2

F . In 

[8], the authors have obtained the following relation 

between ),( vvH  and ),(
~

vvR  for Matsumoto 

metrics with constant killing 1-form  : 
 

3

0 03

2 4

0 2

2
( , ) ( , )

( 2 )

2
.

2 ( 2 )


 



  
 





i
i

i ij
i ij

H v v R v v s s

s s s


 

 
   

            (13) 

 

Let 
2H(v.v) c ,  where c R.   We obtain: 

 
3

i
0 i03

2 4
i ij 2

i 0 ij2

2
0 R(v, v) s s

( 2 )

2
s s s c .

2 ( 2 )


 

  

 
    
     




              (14) 

 

Multiplying (14) by (
3)2   removes y  from 

the denominators and we can derive the following 
identity:  
 

,0 IrratRat   
 
where Rat and Irrat are, respectively, degree 5 and 
degree 4 polynomials y given as follows:  
 

2 3 2 2 2 i
i 0

4 ij 2 2 3
ij

Rat (6 8 )R(v, v) 2 ( 4 ) s

2 s s c (6 8 ),

           

       

 

2 2 2 i
0 i0

2 i 4 ij 4 2 2
i 0 ij

Irrat ( 12 )R(v, v) 2 s s

8 s s s c( 12 ).

     

        



  

 
Lemma 3.1. Let F be a Matsumoto metric with 
constant killing from  , and 2),( cvvH   for 

some constants .Rc  Then, ),( FM  is a 

Riemannian Einstein space.  
 
Proof: We know that   can never be a polynomial 

in y . Otherwise the quadratic ji
ij yyxa )(2   

would have been factored into two linear terms. Its 

zero set would then consist of a hyper-plan, 

contradicting the positive definiteness of
 ija . Now 

suppose the polynomial Rat were not zero. The 
above equation would imply that it is the product of 
polynomial Irrat  with a non-polynomial 

factor . This is not possible. So Rat must vanish 
and, since   is positive at all 0y , we see that 

Irrat  must be zero as well. Notice that 0Rat  

shows that 
2  divides ),(

~3 vvR . Since 
2  is 

an irreducible degree two polynomial in y, and 
3  

factors into three linear terms, it must be the case 

that 
2  divides ),(

~
vvR .  

That is, ( ,M ) is an Einstein space. Therefore, 

,),(
~ 2kvvR   where the function k  must be a 

constant by the Riemannian Schur’s Lemma for the 
case 2n . But, we can easily reform 0Rat  as 
the following formula: 
 

3 2 i 3
i 0

2 i ij
i 0 ij

( 8k 8 s 8c )

(6k 2 s 2 s s 6c ),

      

        



  

 

which results in, 
2  divides 

2 . From the 

irreducibility of 
2 , it results that, 0  and F is 

a Riemannian Einstein metric. 
 
Proof of theorem 1.1. By theorem 3.1 it results in 

2),( cvvH  , where c is a non-zero constant 

and by lemma 3.1 it results in 2),(
~ kvvR  , 

where k  is differentiable function defined on M  
and M . That is to say that, ),( FM  is a 

Riemannian Einstein space.  
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