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Abstract 

Sueyoshi and Sekitani in 2007 presented a paper that explores the measurement of Returns to Scale under a 
possible occurrence of multiple solution in a reference set and a supporting hyperplane. The occurrence of 
multiple solutions is classified into Type I and Type II. Type I is an occurrence of multiple solutions in a reference 
set. Type II is an occurrence of multiple solutions on a supporting hyperplane passing on the reference set. In this 
paper we want to apply their method for estimating RTS under weight restrictions. For this goal we use tone’s 
method for estimating RTS under weight restrictions. 
 
Keywords: Data envelopment analysis; returns to scale; weight restrictions 

 
1. Introduction 

Data envelopment analysis is a nonparametric 
technique for measuring and evaluating the relative 
efficiencies of decision making units with multiple 
inputs and multiple outputs. Specifically, it 
determines a set of weights such that the efficiency 
of a target DMU relative to the other DMUs is 
maximized [1]. As we know, the imposition of 
weight restrictions has been recognized as one of 
the important factors when applying DEA to actual 
situations, and several models have been developed 
for this purpose, [2, 3]. Therefore, determining the 
returns to scale status (constant, increasing, or 
decreasing returns to scale) under weight 
restrictions is important. The occurrence of multiple 
solutions is classified into Type I and Type II. Type 
I is an occurrence of multiple solutions in a 
reference set. Type II is an occurrence of multiple 
solutions on a supporting hyperplane passing on the 
reference set. The two types of multiple solutions 
influence a degree of RTS in the DEA 
measurement, [4]. We want to explore this issue 
under weight restrictions. 
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2. Preliminaries 

In this paper, we focus on the input-oriented 
weighted DEA models. Suppose that we have n 
DMUs, every 1jDMU , j ,.., n  producing the 

same s outputs in (possibly) different amounts, 
sryrj ,..,1,   using the same m inputs, 

mixij ,..,1,   also in (possibly) different amounts. 

All inputs and outputs are assumed to be 
nonnegative, but at least one input and one output 
are positive. We define ],..,[ 1 mxxX   as the m × n 

matrix of inputs and ],..,[ 1 nyyY   as the s × n 

matrix of outputs. There are many alternative ways 
to characterize production technology. The most 
general representation is production possibility set 
T which is defined as a set of semipositive (x,y) as 
T={(x, y) | x can produce y}. 

3. Tone’s method 

Consider the following linear program weighted 
BCC model as presented in Tone’s paper: 
 



 
 

IJST (2011) A2: 113-116    114 

 

O0

0 0

0

0

0

DWR :

max uy u

vx 1

uy vx u 0

vp 0 (a)

uQ 0 (b)

u, v 0 , u free





  





                                (1) 

 

0DWR where p and Q are associated with weight 

restrictions. The dual of the model represented in 
(1) is obtained from the same data which are then 
used in the following form: 
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where π and τ are dual variables corresponding to 
constraints (a) and (b), respectively. 

We define WR-efficiency as Definition 1 (WR-
efficiency). A DMUo is WR-efficient if and only if 

1** w  satisfies: 

All optimal slack values in model (2) are zero. 
Otherwise it is called WR-inefficient. Suppose 
DMUo is WR-efficient. Let the inf and sup uo, 
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We apply Tone’s method for testing returns to scale 
as 
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Proposition 1 (scsc conditions): There exists a pair 
of optimal solutions (1) and (2) that satisfies the 
following conditions: 
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Proof: See the proof of SCSC in [5, 6] by 
expanding it, the desired result is yielded. 
 
Definition 1. (Supporting hyperplane): supporting 
hyperplane can be generally defined as follows: A 
hyperplane  
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Definition 2. (Face): For a convex set (S), Face is 
called a face of S if there exists a supporting 
hyperplane (H) such that Face = S ∩ H. 
 

Proposition 2. let 








0

0
*

y

xw  be the minimum face 

containing *
aceF .  

Then the minimum face is expressed by  
 


























































































  



 










v uIi Ir
ri

Aj

j

r

i

j
Cj j

j
Bj

j
j

Aj j

j

ace

ss
s

s

Q

P

y

x

y

x

y

x

F

0,0,1:
0

0

0

0
:

*

*





 

0
* * * * * * *

w( v ,u ,u ) and ( , , , )     that 

optimal solutions (1) and (2): 
Satisfied in SCSC conditions and  
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Proof: see [1]. 
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4. Sueyoshi and Sekitani's method 

let 1*
k acem s ( dimension of ( F )) then      

 
Proposition 3.  
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5. An occurrence of multiple solutions (type II) 
in RTS measurement under type I with weight 
restrictions 
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