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Abstract

The compact operators on the Riesz sequence space qu (B™) (1 < p < ) have been studied by Basarir and Kara,
“IJST (2011) A4, 279-285”. In the present paper, we will characterize some classes of compact operators on the
normed Riesz sequence spaces roq (B™) and 7} (B™) by using the Hausdorff measure of noncompactness.
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1. Introduction

The Hausdorff measure of noncompactness has
various applications in the theory of sequence
spaces, one of them is to obtain necessary and
sufficient conditions for matrix operators between
BK spaces to be compact. Recently, several authors
characterized classes of compact operators given by
infinite matrices on the some sequence spaces by
using this method [1-17].

In this paper, we will continue to study the
characterization of compact operators on some
Riesz B™-difference sequence spaces. For this
purpose, we will use the Hausdorff measure of
noncompactness and some results in [3, 14].

2. Preliminaries and notations

Let w be the space of all real valued sequences.
Any vector subspace of w is called a sequence
space. We write £, ¢, ¢, and ¢ the sets of all
bounded, convergent, null and finite sequences,
respectively. Also, by ¢s, #; and £, (1 <p < ),
we denote the sequence spaces of all convergent,
absolutely and p —absolutely convergent series,
respectively. Further, we use the conventions that
e =(1,1,...) and e® is the sequence whose only
non-zero term is 1 in the kth place for each k € N,
where N = {0,1,2,...}.
The [-dual of a subset X of w is defined by

XB ={a = (az) € w: ax = (ayx;) € csforall x € X}.
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A sequence space X is called a BK space if it is a
Banach space with continuous coordinates p,: X —
C (n € N), where C denotes the complex field and
pn(x) = x,, for all x = (x;) € X and every n € N.
The sequence spaces ¢y, ¢ and £, are BK-spaces
with the usual sup-norm given by |lx|, =
supken|xi| and the space £, is a BK- space with
the usual #,-norm defined by x| b =
Cr_olxk|P)YP, where 1 < p < oo.

If (X, || 1)) is a normed sequence space, then we

write
D, awx
k

for a € w provided the expression on the right hand
side exists and is finite, which is the case whenever
X is a BK space and a € X?, where Sy is the unit
sphere in X, i.e., Sy = {x € X: |[x]| = 1}.

Let A= (a,,) be an infinite matrix of real
numbers and x = (x;,) a real sequence such that

ey

llallx = sup
XESyx

Ax = (4,(x)) = (Z ankxk> exists for each n. (2)

k

Then the sequence Ax = (A,(x)) is called A-
transform of x. For two sequence spaces X and Y
we say that the matrix A maps X into Y if Ax exists
and belongs to Y for all x € X. By (X,Y), we
denote the set of all matrices which map X into Y.
Also, we write A,, for the sequence in the nth row
of A, that is, A, = (@nx)keo- Thus A € (X,Y) if
and only if A, € X# for all n € N and Ax € Y for
all x € X.
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For basic definitions and notation we refer to [18-
20]. The following results are fundamental for our
investigation.

Lemma 1.1. [3] Let X and Y be BK-spaces. Then
we have (X,Y) € B(X,Y), that is, every A € (X,Y)
defines a linear operator L, € B(X,Y), where
Ly(x) = Ax for all x € X.

Lemma 1.2. [6] Let X denote any of the spaces c,
or . If A = (ay) € (X, c), then we have
a;, = lima,, existsforevery k € N,
n

a = (ay) €4y,
sup (Zmnk - ak|> <o,
n [ij:O

limA,,(x) = Z apx; forallx = (x;) € X.
n

k=0

Lemma 1.3. [3] Let X © ¢ be BK-space and Y be
any of the spaces ¢y, c or £... If A € (X,Y), then

lLall = lAll x,00y = sup llAnllx < co.
n

Lemma 1.4. [3] Let X denote any of the spaces ¢,
c or £,. Then, we have Xf = ¢, and |la|l} =
llalle, forall a = (ai) € ¢;.

If X and Y are Banach spaces then B(X,Y) is the
set of all continuous linear operators L:X —Y;
B(X,Y) is a Banach space with the operator norm
defined by |[L|| = sup{||L(x)||: ||x]| < 1} for all
L € B(X,Y). A linear operator L: X = Y is said to
be compact if the domain of L is all of X and for
every bounded sequence (x,) in X, the sequence
(L(x,)) has a convergent subsequence in Y. We
denote the class of such operators by C(X,Y).

Let M be a subset of a metric space (X,d) and
€>0 Then, a subset A of X is called an € -net of M
in X if for every x € M there exists a € A4 such that
d(x,a) < €. Further, if the set A is finite, then the
e-net A of M is called a finite e-net of M, and we
say that M has a finite e-net in X. A subset of a
metric space is said to be totally bounded if it has a
finite e-net for every € > 0.

If (X,d) is a metric space, we write My for the
class of all bounded subsets of X. If Q € My then
the Hausdorff measure of noncompactness of the
set Q, denoted by x(Q), is given by

x(Q) = inf{e > 0: Q has a finite € — netin X}.

The function y: My — [0,00) 1is called the
Hausdorff measure of noncompactness.

The basic properties of the Hausdorff measure of
noncompactness can be found in [20], for example,

if Q, Q1 and @, are bounded subsets of a metric
space (X, d), then

x(Q) = 0if and only if Q is totally bounded
Q1 © Qz implies ¥(Q1) < x(Q2).

Further, if X is a normed space, then the function
x has some additional properties connected with the
linear structure, e.g.

x(Q1+ Q2) < x(Q1) + x(Q2),
x(@Q) = |a|x(Q) forall a € C.

The following lemma is related to the Hausdorff
measure of noncompactness of a bounded linear
operator.

Lemma 1.5. [20]. Let X and Y be Banach spaces
and L € B(X,Y). Then we have

LI, = x(L(Sx)) 3)
and
L € C(X,Y) ifand only if ||L||, = 0. 4)

Now we give the following two lemmas which
show how to compute the Hausdorff measure of
noncompactness in the sequence spaces ¢, and c.

Lemma 1.6. [6] Let Q € M, and B.icy = ¢y (T €
N) be the operator defined by P.(x)=x["=
(%9, X1, %2, -, %, 0,0,...) for all x = (x) € cp.
Then, we have

x(Q) = lim <sup||(1 - Pr)(x)llem),
r—00 x€Q
where [ is the identity operator on c.

Lemma 1.7. [20]. Let Q € M, and P.:c = c (r €
N) be the projector onto the linear span of
{e,e®,e®, .., eM} Then, we have

1
7+ lim (Supll(l - Pr)(x)"{’w> <x(@
o0 \ xeQ
< lim <SU1O||(1 - Pr)(x)”{’oo);
r—00 x€Q
where [ is the identity operator on c.

2. The Riesz B™-difference sequence spaces
ro(B™), r{(B™) and rf,(B™)

In this section, by taking some special cases of the
paranormed Riesz B™-difference sequence spaces
o (p, B™), rl(p,B™) and rl(p,B™), we obtain
BK-spaces and give some results related to these
spaces.
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For a sequence x = (x;), we denote the
difference sequence by Ax = x;, — x,_,. Let (qi)
be a sequence of positive numbers, Q, =
Yr=0qr; (m€N) and r,s # 0. Then the matrices
B™ = (by;,) and RY.B™ =T™ = (tJ;) (m€N)
are defined by

M = {(nrf k) ol (max {0,n —m} < k <n)
nk —

0 (0 < k < max{0,n —m}) or (k >n)
and
1 n
= m m—i+k oi—-k .
an(i—k)r st7™*q; (k<n)
m i=k
tnk = .r.m
— k=n
L 0. ( )
0 (k >n)

for all k,n € N, where the matrix RY = (1) is the
Riesz mean, that is,

=10n

. _{q—" (0<k<n)
0 (k>n)

for all k,n € N. It is obvious that the matrix B™
reduced the difference matrix A™ in case r = 1 and
s = —1, where A™= A(A™1).

Recently, the generalized B™- Riesz difference
sequence spaces T, (p,B™), 71i(p,B™) and
72 (p, B™) have been introduced by Basarir and
Oztiirk [21] as follows:

1o (p, B™) = {x = (x) € w: T™x € ¢,(p)},
' (p, B™) = {x = (x) € w: T™x € c(p)}

and
T2, B™) = {x = (x;) € w: T™x € £0,(p)},

where p = (p,) is a bounded sequence of strictly
positive real numbers and cy,(p), c(p), €« (p) are
the paranormed sequence spaces defined by
Maddox.

If we take p,, = 1 for all n € N, then we have that

1o (B™) = {x = (x;) € w: T™x € ¢},
r1(B™) = {x = (xy) € w: T™x € c}

and
rI(B™) = {x = (x4) € w: T™x € £,}.

It is obvious that if we put q;, = A, — A;_4 for all
k, then the spaces roq(Bm) rq(Bm) and r2(B™)
are reduced to the spaces c{ (Bm) cA(B™) and
2L (B™), respectively; where ¢, c* and €2 are the

spaces defined by Mursaleen and Noman in [22-
24].

Let X be any of the spaces 7, 1(B™), r1(B™) or
r(B™). It is obvious that X is BK-spaces with the
norm given by

lIxllx = IT™xllo0 = sup|Ty"(x)I. )
n

Throughout, for any sequence x = (x;), we
define the associated sequence y = (y;), which
will be frequently used as the T™-transform of x,
that is, y = T™x and so

k

k—
kziz Z rm- l+]Sl ]q x;
Q =0

i=j
m

+ Q—quk; (k e N). (6)
k
Obviously, if the sequences x and y are
connected by the relation (6), then x € r,'(B™),
r1(B™) or r(B™) if and only if y € ¢y, ¢ or £,
respectively. Further, if x € X, then ||x||lx = [|V]lc»
where X = 15/ (B™), 7./(B™) or 1.4 (B™).
We shall write throughout for brevity that

gt

V(@i j, k) = (—1)J* i l(m‘l']'—l'—l)i

. ; (j,kkmeN
J—t q; G lm € N)

forallr,s # 0and q; > 0 (i € N).
The following results will be needed in establishing
our results.

Lemma 2.1. Let X denote any of the spaces

1 (B™) or 1l(B™). If a=(a) €XF, then

a = (ay) € ¢, and the equality

Z ApXy = Z kY (7)
k=0

k=0

holds for every x = (x;) € X, where y = T™x is
given by (6) and

© k+1
S Ak . )
G = Qk (quk + j=k2+1 Lgk v(@i,j, k)] aJ-), (k € N).

Proof: This follows immediately by [25, Theorem
5.6].

Lemma 2.2. Let X denote any of the spaces
roq (B™) or rl(B™). Then, we have

(o]
lally = ) lal <o
k=0

for all a = (a) € X#, where @ = (@) is as in
Lemma 2.1.
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Proof: Let Y = ¢y, #, and take any a = (a;) € X¥.
Then, we have by Lemma 2.1 that a = (a;) € ¢,
and the equality (7) holds for all sequences
x=(x)€X and y=(yx) €Y which are
connected by the relation (6). Moreover, it follows
by (5) that x € Sy if and only if y € Sy. Therefore,
it follows by (1) and (7) that

Z = sup Zakyk
k= Y k=0

and since a € ¥, we obtain from Lemma 1.4

lallx = sup = llally

lallx = llally = llall,, <o

which concludes the proof.
Now, for an infinite matrix 4 = (a,;), we shall

write
k+1
[Z VG, k)l ay | ®
j=k+1

for all n,k € N provided the convergence of the
series.

A = Qk g

Lemma 2.3. Let X be any of the spaces 7 (B™) or
rJ(B™), Y the respective one of the spaces c, or
{5, Z a sequence space and A = (a,;) an infinite
matrix. If A € (X,Z), then A € (Y,Z) such that
Ax=Ay for all x€X and y €Y which are
connected by the relation (6), where the matrix
A = (@,;) is defined as in (8).

Proof: This result can be proved using a similar
method in [6, Lemma 2.3].

Lemma 2.4. Let X be any of the spaces ;' (B™)or
1 (B™), A = (ay) an infinite matrix and A =

(@nx) the matrix in (8). If A is in any of the classes
(X; CO)’ (X' C) or (X' 'goo)’ then

ILall = N1All x,600) = Sup( E |ﬁnk|> < oo,
n
K

Proof: This is immediate by combining Lemmas
1.3 and 2.2.

3. Compact operators on the spaces rg(B"') and
re,(B™)

In this final section, we establish some identities or
estimates for the Hausdorff measures of
noncompactness of certain matrix operators on the
spaces 7,'(B™) and 7,/ (B™). Further, we deduce

the necessary and sufficient (or only sufficient)

conditions for such operators to be compact. For the
most recent work on this topic, we refer to [3, 6].

Now, let A = (a,,) be an infinite matrix and
A = (@) the associated matrix defined by (8).
Then we have following results.

Theorem 3.1. Let X denote any of the spaces
7y /(B™) or ;] (B™). Then, we have
(1) If A € (X, cp), then

ILall, = 1imSUP< E Idnk|>- )
n—oo
k

(i) If 4 € (X, ¢), then
1 I _ _ <
7 1111rLSYEp Zlank — &l | < lILally
< limsup( |@pp — D_tkl), (10)
(3

where @) = lim,,_,,, Gy forall k € N.
(i) If A € (X, %), then

0 < IILyl, < limsup (2|ank|> (1n
n—-oo

Proof: The limits in (9)-(11) obviously exist.
We write S = Sy. Then, we obtain by (3) and
Lemma 1.1 that

ILally, = x(AS). (12)

(i) Let A € (X,¢o). Then, we have AS € M and
so it follows by using Lemma 1.6 that

x(45) = lim (supl( = R)(ADN, ). (13)

where P.:cy = ¢y (r € N) is the operator defined
by P.(x) = (x¢,x1,...,%-,0,0,...) for all x=
(xx) € co. This yields that ||(I —P.)(Ax)ll,,, =
SUPp>r | 2k QX | for all x € X and every r € N.
Thus, by combining (1), (2) and Lemma 2.2, we
have

Supll(f = BY(A0)le,, = suplldlly = sup (Zmnu) (14)
XES n>r n>r X

for every r € N.
(13) and (14) imply that

x(AS) = lim | sup Zldnkl = limsup Zldnkl .
=20\ n>r T n-o =

Now, (9) follows from (12).
(i1) Let A € (X, c). Then, we have AS € M. Also,
we know that every z = (z,) € c has a unique
representation z = le + Yo o(z, — De™, where
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l =1lim, 4 z,. Thus, we define the projectors

B..c > c(reN) by Py(z) =le and B.(z) = le +
Tb(zn — De™ for r = 1. Then, we have that

(I-P)(2) =X% (2, — De™ for every r €N

and whence

I = B)(@)ll,, = suplz, - (15)

nzr
for all z € c and every r € N. So, one can easily see

that ||[I — B.|| = 2 for all » € N. Hence, we obtain
from (12) and Lemma 1.7 that

1
5+ lim (supll(r = PYAOIe, ) < Ll
=0 \ ye§

< lim (supll( = RY@Dl,, ). (16)

On the other hand, it is given that X = ;' (B™) or
rJ(B™), and let Y be respective of the spaces ¢, or
{w. Also, for every given x € X, let y €Y be the
associated sequence defined by (6). Since A €
(X, ¢), we have by Lemma 2.3 that 4 € (Y,¢) and
Ax = Ay. Further, it follows from Lemma 1.2 that
the limits @, = lim,_,,, @, for all k, @ = (&) €
YE=4, and  limyoe Xk @Gk = Lk TV
Consequently, we derive from (15) that

1T = B)ADle,, = 1T = BIAWl,,,

Any — Z AV

%
Z(dnk — )Yk
[

for all r € N. Moreover, since x € S = Sy if and
only if y € Sy, we obtain by (1) and Lemma 1.4

that

= sup
nar

= sup

n2r

sup||(I = B)(Ax)ll,,,
XES

Z(dnk — &)Yk
[

= sup|l4, — ally
nzr _ B

= supl||4, — all,,
nar

= sup (sup

n2r \ X€Sy

for all r € N. Hence, we get (10) from (16).

Finally, to prove (iii) we define the operators
P.:fy — €5 (r € N) as in the proof of part (i) for
all x = (x3) € Y. Then, we have

AS c P.(AS) + (I — B)(AS); (r € N).

Thus, it follows by the elementary properties of
the function y that

0 < x(AS) < x(P.(4S)) + x(U — P)(AS))
= X((I - Pr)(AS))
< S;légll(l = P)(AX)ll,,,

= sup|l4plle,

n>r

for all r € N and hence,

0 < x(4$) < lim (suplld, s, )
T2 An>r
= limsup||4,|l¢,.
n—-oo
This and (12) together imply (11) and completes
the proof.

Corollary 3.2. Let X denote any of the spaces
1o (B™) or ;] (B™). Then, we have
(1) If A € (X, cp), then

L, is compact if and only if lim (Zldnk|> =0.
n—-oo
K

(i) If 4 € (X, ¢), then
L, is compact if and only if lim (Zldnk - &kl) =0,
n—-oo
k

where @ = lim,,_,,, Gy forall k € N.
(i) If A € (X, %), then

L, is compact if lim (Zlﬁnk|> = 0.
n—-oo
K

Proof: This result follows from Theorem 3.1 by
using (4).

Since the matrix T™ is a triangle we have the
following observation from [14, Corollaries 6.9 and
6.11].

Corollary 3.3. For every matrix A € (1.1(B™), co)
orA € (r1(B™), %), the operator L, is compact.
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