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Abstract 

The compact operators on the Riesz sequence space ݎ
ሺܤሻ ሺ1   ൏ ∞ሻ have been studied by Başarır and Kara, 

“IJST (2011) A4, 279-285”. In the present paper, we will characterize some classes of compact operators on the 
normed Riesz sequence spaces ݎ

ሺܤሻ and ݎஶ
ሺܤሻ by using the Hausdorff measure of noncompactness. 
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1. Introduction 

The Hausdorff measure of noncompactness has 
various applications in the theory of sequence 
spaces, one of them is to obtain necessary and 
sufficient conditions for matrix operators between 
 spaces to be compact. Recently, several authors ܭܤ
characterized classes of compact operators given by 
infinite matrices on the some sequence spaces by 
using this method [1-17].  

In this paper, we will continue to study the 
characterization of compact operators on some 
Riesz ܤ-difference sequence spaces. For this 
purpose, we will use the Hausdorff measure of 
noncompactness and some results in [3, 14]. 

2. Preliminaries and notations 

Let ߱ be the space of all real valued sequences. 
Any vector subspace of ߱ is called a sequence 
space. We write ℓஶ, ܿ, ܿ and ߶ the sets of all 
bounded, convergent, null and finite sequences, 
respectively. Also, by ܿݏ, ℓଵ and ℓ ሺ1 ൏  ൏ ∞ሻ, 
we denote the sequence spaces of all convergent, 
absolutely and  െabsolutely convergent series, 
respectively. Further, we use the conventions that 
݁ ൌ ሺ1,1, . . . ሻ and ݁ሺሻ is the sequence whose only 
non-zero term is 1 in the ݇th place for each ݇ א Գ, 
where Գ ൌ ሼ0,1,2, . . . ሽ. 

The ߚ-dual of a subset ܺ of ߱ is defined by 
 
ܺఉ ൌ ሼܽ ൌ ሺܽሻ א ݔܽ	:߱ ൌ ሺܽݔሻ א ݔ	all	for	ݏܿ א ܺሽ. 
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A sequence space ܺ is called a ܭܤ space if it is a 
Banach space with continuous coordinates : ܺ ՜
ԧ	ሺ݊ א Գሻ, where ԧ denotes the complex field and 
ሻݔሺ ൌ ݔ  for allݔ ൌ ሺݔሻ א ܺ and every ݊ א Գ. 
The sequence spaces ܿ, ܿ and ℓஶ are ܭܤ-spaces 
with the usual sup-norm given by ‖ݔ‖ℓಮ ൌ
supאԳ|ݔ| and the space ℓ is a ܭܤ- space with 
the usual ℓ-norm defined by ‖ݔ‖ℓ ൌ
ሺ∑ |ݔ|

ஶ
ୀ ሻଵ/, where 1   ൏ ∞. 

If ሺܺ, ‖. ‖ሻ	is a normed sequence space, then we 
write 
 

‖ܽ‖
כ ൌ sup

௫אௌ
อܽݔ


อ																																												ሺ1ሻ 

 
for ܽ א ߱ provided the expression on the right hand 
side exists and is finite, which is the case whenever 
ܺ is a ܭܤ space and ܽ א ܺఉ, where ܵ is the unit 
sphere in ܺ, i.e., ܵ ൌ ሼݔ א ‖ݔ‖	:ܺ ൌ 1ሽ. 

Let ܣ ൌ ሺܽሻ be an infinite matrix of real 
numbers and ݔ ൌ ሺݔሻ a real sequence such that 
 

ݔܣ ൌ ሺܣሺݔሻሻ ൌ ൭ܽݔ


൱ 		exists	for	each	݊.		ሺ2ሻ 

 
Then the sequence ݔܣ ൌ ሺܣሺݔሻሻ is called ܣ-

transform of ݔ. For two sequence spaces ܺ and ܻ 
we say that the matrix ܣ maps ܺ into ܻ if ݔܣ exists 
and belongs to ܻ for all ݔ א ܺ. By ሺܺ, ܻሻ, we 
denote the set of all matrices which map ܺ into ܻ. 
Also, we write ܣ for the sequence in the ݊th row 
of ܣ, that is, ܣ ൌ ሺܽሻୀ

ஶ . Thus ܣ א ሺܺ, ܻሻ if 
and only if ܣ א ܺఉ for all ݊ א Գ and ݔܣ א ܻ for 
all ݔ א ܺ. 
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For basic definitions and notation we refer to [18-
20]. The following results are fundamental for our 
investigation. 
 
Lemma 1.1. [3] Let ܺ and ܻ be ܭܤ-spaces. Then 
we have ሺܺ, ܻሻ ؿ ,ሺܺܤ ܻሻ, that is, every ܣ א ሺܺ, ܻሻ 
defines a linear operator ܮ א ,ሺܺܤ ܻሻ, where 
ሻݔሺܮ ൌ ݔ for all ݔܣ א ܺ. 
 
Lemma 1.2. [6] Let ܺ denote any of the spaces ܿ 
or ℓஶ. If ܣ ൌ ሺܽሻ א ሺܺ, ܿሻ, then we have  

ߙ ൌ lim

ܽ 	exists	for	every	݇ א Գ, 

 
ߙ ൌ ሺߙሻ א ℓଵ, 

sup

൭|ܽ െ |ߙ

ஶ

ୀ

൱ ൏ ∞, 

lim

ሻݔሺܣ ൌߙݔ

ஶ

ୀ

	for	all	ݔ ൌ ሺݔሻ א ܺ. 

 
Lemma 1.3. [3] Let ܺ ـ ߶ be ܭܤ-space and ܻ be 
any of the spaces ܿ, ܿ or ℓஶ. If ܣ א ሺܺ, ܻሻ, then 
 

‖ܮ‖ ൌ ሺ,ஶሻ‖ܣ‖ ൌ sup

‖ܣ‖	

כ ൏ ∞. 

 
Lemma 1.4. [3] Let ܺ denote any of the spaces ܿ, 
ܿ or ℓஶ. Then, we have ܺఉ ൌ ℓଵ and ‖ܽ‖

כ ൌ
‖ܽ‖ℓభ for all ܽ ൌ ሺܽሻ א ℓଵ. 

If ܺ and ܻ are Banach spaces then ܤሺܺ, ܻሻ is the 
set of all continuous linear operators ܮ: ܺ ՜ ܻ; 
,ሺܺܤ ܻሻ is a Banach space with the operator norm 
defined by ‖ܮ‖ ൌ supሼ‖ܮሺݔሻ‖:	‖ݔ‖  1ሽ for all 
ܮ א ,ሺܺܤ ܻሻ. A linear operator ܮ: ܺ ՜ ܻ is said to 
be compact if the domain of ܮ is all of ܺ and for 
every bounded sequence ሺݔሻ in ܺ, the sequence 
ሺܮሺݔሻሻ has a convergent subsequence in ܻ. We 
denote the class of such operators by ሺܺ, ܻሻ. 

Let ܯ be a subset of a metric space ሺܺ, ݀ሻ and 
 Then, a subset ܣ of ܺ is called an ߝ -net of ܯ 
in ܺ if for every ݔ א ܽ there exists ܯ א  such that ܣ
݀ሺݔ, ܽሻ ൏  is finite, then the ܣ Further, if the set .	ߝ
 and we ,ܯ net of-ߝ is called a finite ܯ of ܣ net-ߝ
say that ܯ has a finite ߝ-net in ܺ. A subset of a 
metric space is said to be totally bounded if it has a 
finite ߝ-net for every ߝ  0. 

If ሺܺ, ݀ሻ is a metric space, we write ࣧ for the 
class of all bounded subsets of ܺ. If ܳ א ࣧ then 
the Hausdorff measure of noncompactness of the 
set ܳ, denoted by ߯ሺܳሻ, is given by 
 
߯ሺܳሻ ൌ infሼߝ  0:		ܳ	has	a	finite	ߝ െ net	in	ܺሽ. 

 
The function ߯: ࣧ ՜ ሾ0,∞ሻ is called the 

Hausdorff measure of noncompactness. 
The basic properties of the Hausdorff measure of 

noncompactness can be found in [20], for example, 

if ܳ, ܳ₁ and ܳ₂	are bounded subsets of a metric 
space ሺܺ, ݀ሻ, then 
 
߯ሺܳሻ ൌ 0	if	and	only	if	ܳ	is	totally	bounded	 

ܳ₁ ؿ ܳ₂	implies	߯ሺܳ₁ሻ  ߯ሺܳ₂ሻ. 
 

Further, if ܺ is a normed space, then the function 
߯ has some additional properties connected with the 
linear structure, e.g. 
 

߯ሺܳ₁  ܳ₂ሻ  ߯ሺܳଵሻ  ߯ሺܳ₂ሻ, 
߯ሺܳߙሻ ൌ ߙ	all	for	ሺܳሻ߯|ߙ| א ԧ. 

 
The following lemma is related to the Hausdorff 

measure of noncompactness of a bounded linear 
operator. 
 
Lemma 1.5. [20]. Let ܺ and ܻ be Banach spaces 
and ܮ א ,ሺܺܤ ܻሻ. Then we have 
 
ఞ‖ܮ‖	 ൌ ߯൫ܮሺܵሻ൯																																																						ሺ3ሻ 
 
and 
 
ܮ א ,ሺܺ ܻሻ	if	and	only	if		‖ܮ‖ఞ ൌ 0.																					ሺ4ሻ 
 

Now we give the following two lemmas which 
show how to compute the Hausdorff measure of 
noncompactness in the sequence spaces ܿ and ܿ. 
 
Lemma 1.6. [6] Let ܳ א ࣧబ and ܲ: ܿ ՜ ܿ	ሺݎ א
Գሻ be the operator defined by ܲሺݔሻ ൌ ሾሿݔ ൌ
ሺݔ, ,ଵݔ ,ଶݔ … , ,ݔ 0,0, … ሻ for all ݔ ൌ ሺݔሻ א ܿ. 
Then, we have  
 

߯ሺܳሻ ൌ lim
՜ஶ

ቆsup
௫אொ

‖ሺܫ െ ܲሻሺݔሻ‖ℓಮቇ, 

 
where ܫ is the identity operator on ܿ. 
 
Lemma 1.7. [20]. Let ܳ א ࣧ and ܲ: ܿ ՜ ܿ	ሺݎ א
Գሻ be the projector onto the linear span of 
൛݁, ݁ሺሻ, ݁ሺଵሻ, … , ݁ሺሻൟ. Then, we have 
 
1
2
. lim
՜ஶ

ቆsup
௫אொ

‖ሺܫ െ ܲሻሺݔሻ‖ℓಮቇ  ߯ሺܳሻ

 lim
՜ஶ

ቆsup
௫אொ

‖ሺܫ െ ܲሻሺݔሻ‖ℓಮቇ, 

 
where ܫ is the identity operator on ܿ. 

2. The Riesz -difference sequence spaces 
࢘
ࢉ࢘ ,ሻሺ

ஶ࢘ ሻ andሺ
 ሺሻ 

In this section, by taking some special cases of the 
paranormed Riesz ܤ-difference sequence spaces 
ݎ
ሺ, ݎ ,ሻܤ

ሺ, ஶݎ ሻ andܤ
ሺ,  ሻ, we obtainܤ

 spaces and give some results related to these-ܭܤ
spaces. 
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For a sequence ݔ ൌ ሺݔሻ, we denote the 
difference sequence by ∆ݔ ൌ ݔ െ  ሻݍିଵ. Let ሺݔ
be a sequence of positive numbers, ܳ ൌ
∑ ݍ

ୀ ;		ሺ݊ א Գሻ	 and ݎ, ݏ ് 0. Then the matrices 

ܤ ൌ ሺܾ
 ሻ and ܴ. ܤ ൌ ܶ ൌ ሺݐ

 ሻ ሺ݉ א Գሻ 
are defined by 
 

ܾ
 ൌ ቊ

ቀ
݉

݊ െ ݇ቁ ݎ
ିାݏି ሺmax	ሼ0, ݊ െ ݉ሽ  ݇  ݊ሻ

0 ሺ0  ݇ ൏ maxሼ0, ݊ െ ݉ሽሻ	or	ሺ݇  ݊ሻ	
 

 
and 
 

ݐ
 ൌ

ە
ۖ
۔

ۖ
ۓ 1
ܳ

ቀ
݉

݅ െ ݇ቁ ݎ
ିାݏିݍ



ୀ

ሺ݇ ൏ ݊ሻ

ݎ

ܳ
ሺ݇ ൌ ݊ሻ

0 ሺ݇  ݊ሻ

				 

 
for all	݇, ݊ א Գ, where  the matrix ܴ ൌ ሺݎሻ is the 
Riesz mean, that is, 
 

ݎ
 ൌ ൝

ݍ
ܳ

ሺ0  ݇  ݊ሻ

0 ሺ݇  ݊ሻ
 

 
for all	݇, ݊ א Գ. It is obvious that the matrix ܤ 
reduced the difference matrix ∆ in case	ݎ ൌ 1 and 
ݏ ൌ െ1, where ∆ൌ ∆ሺ∆ିଵሻ. 

Recently, the generalized ܤ- Riesz difference 
sequence spaces ݎ

ሺ, ݎ ,ሻܤ
ሺ,  ሻ andܤ

ஶݎ
ሺ,  ሻ have been introduced by Başarır andܤ

Öztürk [21] as follows: 
 

ݎ
ሺ, ሻܤ ൌ ሼݔ ൌ ሺݔሻ א ߱:	ܶݔ א ܿሺሻሽ, 
ݎ
ሺ, ሻܤ ൌ ሼݔ ൌ ሺݔሻ א ߱:	ܶݔ א ܿሺሻሽ 

 
and 
 

ஶݎ
ሺ, ሻܤ ൌ ሼݔ ൌ ሺݔሻ א ߱:	ܶݔ א ℓஶሺሻሽ, 

 
where  ൌ ሺሻ is a bounded sequence of strictly 
positive real numbers and ܿሺሻ, ܿሺሻ, ℓஶሺሻ are 
the paranormed sequence spaces defined by 
Maddox. 

If we take  ൌ 1 for all ݊ א Գ, then we have that 
 

ݎ
ሺܤሻ ൌ ሼݔ ൌ ሺݔሻ א ߱:	ܶݔ א ܿሽ, 
ݎ
ሺܤሻ ൌ ሼݔ ൌ ሺݔሻ א ߱:	ܶݔ א ܿሽ 

 
and 
 

ஶݎ
ሺܤሻ ൌ ሼݔ ൌ ሺݔሻ א ߱:	ܶݔ א ℓஶሽ. 

 
It is obvious that if we put ݍ ൌ ߣ െ  ିଵ for allߣ

݇, then the spaces ݎ
ሺܤሻ, ݎ

ሺܤሻ and ݎஶ
ሺܤሻ 

are reduced to the spaces ܿ
ఒሺܤሻ, ܿఒሺܤሻ and 

ℓஶఒ ሺܤሻ, respectively; where ܿ
ఒ, ܿఒ and ℓஶఒ  are the 

spaces defined by Mursaleen and Noman in [22-
24].  

Let ܺ be any of the spaces ݎ
ሺܤሻ, ݎ

ሺܤሻ or 
ஶݎ
ሺܤሻ. It is obvious that ܺ is ܭܤ-spaces with the 

norm given by 
 
‖ݔ‖ ൌ ‖ܶݔ‖ஶ ൌ sup


| ܶ

ሺݔሻ|.																										ሺ5ሻ 

 
Throughout, for any sequence ݔ ൌ ሺݔሻ, we 

define the associated sequence ݕ ൌ ሺݕሻ, which 
will be frequently used as the ܶ-transform of ݔ, 
that is, ݕ ൌ ܶݔ and so 
 

ݕ	 ൌ
1
ܳ

ቀ
݉
݅ െ ݆ቁ ݎ

ିାݏିݍ



ୀ

 ݔ

ିଵ

ୀ


ݎ

ܳ
ሺ݇		;ݔݍ א Գሻ.																ሺ6ሻ 

 
Obviously, if the sequences ݔ and ݕ are 

connected by the relation ሺ6ሻ, then ݔ א ݎ
ሺܤሻ, 

ݎ
ሺܤሻ or ݎஶ

ሺܤሻ if and only if ݕ א ܿ, ܿ or ℓஶ, 
respectively. Further, if ݔ א ܺ, then ‖ݔ‖ ൌ  ,ஶ‖ݕ‖
where ܺ ൌ ݎ

ሺܤሻ, ݎ
ሺܤሻ or ݎஶ

ሺܤሻ. 
We shall write throughout for brevity that 
 

,ሺ݅ ݆, ݇ሻ ൌ ሺെ1ሻି
ିݏ

ାିݎ ൬
݉  ݆ െ ݅ െ 1

݆ െ ݅ ൰
1
ݍ
; 			ሺ݆, ݇,݉ א Գሻ 

 
for all ݎ, ݏ ് 0 and ݍ  0	ሺ݅ א Գሻ.  
The following results will be needed in establishing 
our results.  
 
Lemma 2.1. Let ܺ denote any of the spaces 
ݎ
ሺܤሻ		or ݎஶ

ሺܤሻ. If ܽ ൌ ሺܽሻ א ܺఉ, then 
തܽ ൌ ሺ തܽሻ א ℓଵ and the equality 
 

ܽݔ

ஶ

ୀ

ൌ തܽݕ

ஶ

ୀ

																																																	ሺ7ሻ 

 
holds for every ݔ ൌ ሺݔሻ א ܺ, where ݕ ൌ ܶݔ is 
given by (6) and 
 

ܽ ൌ ܳ ቌ
ܽ
ݍݎ

  ሺ݅, ݆, ݇ሻ
ାଵ

ୀ

൩

ஶ

ୀାଵ

ܽቍ ;		ሺ݇ א Գሻ. 

 
Proof: This follows immediately by [25, Theorem 
5.6]. 
 
Lemma 2.2. Let ܺ denote any of the spaces 
ݎ
ሺܤሻ		or ݎஶ

ሺܤሻ. Then, we have 
 

‖ܽ‖
כ ൌ |തܽ|

ஶ

ୀ

൏ ∞ 

 
for all ܽ ൌ ሺܽሻ א ܺఉ, where തܽ ൌ ሺ തܽሻ is as in 
Lemma 2.1. 
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Proof: Let ܻ ൌ ܿ, ℓஶ and take any ܽ ൌ ሺܽሻ א ܺఉ. 
Then, we have by Lemma 2.1 that തܽ ൌ ሺ തܽሻ א ℓଵ 
and the equality (7) holds for all sequences 
ݔ ൌ ሺݔሻ א ܺ and ݕ ൌ ሺݕሻ א ܻ which are 
connected by the relation (6). Moreover, it follows 
by (5) that ݔ א ܵ if and only if ݕ א ܵ. Therefore, 
it follows by (1) and (7) that 
 

‖ܽ‖
כ ൌ sup

௫אௌ	
อܽݔ

ஶ

ୀ

อ ൌ sup
௬אௌೊ	

อ തܽݕ

ஶ

ୀ

อ ൌ ‖തܽ‖
כ  

 
and since തܽ א ℓଵ, we obtain from Lemma 1.4 
 

‖ܽ‖
כ ൌ ‖തܽ‖

כ ൌ ‖ തܽ‖ℓభ ൏ ∞ 
 
which concludes the proof. 

Now, for an infinite matrix ܣ ൌ ሺܽሻ, we shall 
write 
 

തܽ ൌ ܳ ቌ
ܽ
ݍݎ

  ሺ݅, ݆, ݇ሻ
ାଵ

ୀ

൩

ஶ

ୀାଵ

ܽቍ			ሺ8ሻ 

 
for all ݊, ݇ א Գ provided the convergence of the 
series. 
 
Lemma 2.3. Let ܺ be any of the spaces ݎ

ሺܤሻ		or 
ஶݎ
ሺܤሻ, ܻ the respective one of the spaces ܿ or 
ℓஶ, ܼ a sequence space and ܣ ൌ ሺܽሻ an infinite 
matrix. If ܣ א ሺܺ, ܼሻ, then ̅ܣ א ሺܻ, ܼሻ such that 
ݔܣ ൌ ݔ for all ݕܣ̅ א ܺ and ݕ א ܻ which are 
connected by the relation (6), where the matrix 
ܣ̅ ൌ ሺ തܽሻ is defined as in (8). 
 
Proof: This result can be proved using a similar 
method in [6, Lemma 2.3]. 
 
Lemma 2.4. Let ܺ be any of the spaces ݎ

ሺܤሻor 
ஶݎ
ሺܤሻ, ܣ ൌ ሺܽሻ an infinite matrix and ̅ܣ ൌ
ሺ തܽሻ the matrix in (8). If ܣ is in any of the classes 
ሺܺ, ܿሻ, ሺܺ, ܿሻ or ሺܺ, ℓஶሻ, then 
 

‖ܮ‖ ൌ ሺ,ℓಮሻ‖ܣ‖ ൌ sup

൭|തܽ|



൱ ൏ ∞. 

 
Proof: This is immediate by combining Lemmas 
1.3 and 2.2. 

3. Compact operators on the spaces ࢘
 ሻ andሺ

ஶ࢘
 ሺሻ 

In this final section, we establish some identities or 
estimates for the Hausdorff measures of 
noncompactness of certain matrix operators on the 
spaces ݎ

ሺܤሻ and ݎ∞
ሺܤሻ. Further, we deduce 

the necessary and sufficient (or only sufficient) 

conditions for such operators to be compact. For the 
most recent work on this topic, we refer to [3, 6]. 

Now, let ܣ ൌ ሺܽሻ be an infinite matrix and 
ܣ̅ ൌ ሺ തܽሻ the associated matrix defined by (8). 
Then we have following results. 
 
Theorem 3.1. Let ܺ denote any of the spaces 
ݎ
ሺܤሻ or ݎ∞

ሺܤሻ. Then, we have 
(i) If ܣ א ሺܺ, ܿሻ, then 
 

‖ఞܮ‖ ൌ limsup
՜ஶ

൭|തܽ|


൱.																																		ሺ9ሻ 

 
(ii) If ܣ א ሺܺ, ܿሻ, then 
 
1
2
. limsup

՜ஶ
൭|തܽ െ |തߙ



൱  ‖ఞܮ‖

 limsup
՜ஶ

൭|തܽ െ |തߙ


൱,																	ሺ10ሻ 

 
where ߙത ൌ lim՜ஶ തܽ for all ݇ א Գ. 
(iii) If ܣ א ሺܺ, ℓஶሻ, then 
 

0  ‖ఞܮ‖  limsup
՜ஶ

൭|തܽ|


൱.																							ሺ11ሻ 

 
Proof: The limits in (9)-(11) obviously exist. 
We write ܵ ൌ ܵ. Then, we obtain by (3) and 
Lemma 1.1 that 
 
‖ఞܮ‖ ൌ ߯ሺܵܣሻ.																																																							ሺ12ሻ 
 
(i) Let ܣ א ሺܺ, ܿሻ. Then, we have ܵܣ א ࣧబ and 
so it follows by using Lemma 1.6 that 
 

߯ሺܵܣሻ ൌ lim
՜ஶ

൬sup
௫אௌ

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ൰,													ሺ13ሻ 

 
where ܲ: ܿ ՜ ܿ ሺݎ א Գሻ is the operator defined 
by ܲሺݔሻ ൌ ሺ₀ݔ, ,₁ݔ . . . , ,ݔ 0,0, . . . ሻ for all ݔ ൌ
ሺݔሻ א ܿ. This yields that ‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ ൌ
supவ|∑ ܽݔ | for all ݔ א ܺ and every ݎ א Գ. 
Thus, by combining (1), (2) and Lemma 2.2, we 
have 
 

sup
௫אௌ

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ ൌ sup
வ

‖ܣ‖
כ ൌ sup

வ
൭|തܽ|



൱ ሺ14ሻ 

 
for every ݎ א Գ. 
(13) and (14) imply that 
 

߯ሺܵܣሻ ൌ lim
՜ஶ

ቌsup
வ

൭|തܽ|


൱ቍ ൌ limsup
՜ஶ

൭|തܽ|


൱. 

 
Now, (9) follows from (12). 

(ii) Let ܣ א ሺܺ, ܿሻ. Then, we have ܵܣ א ࣧ. Also, 
we know that every ݖ ൌ ሺݖሻ א ܿ has a unique 
representation ݖ ൌ ݈݁  ∑ ሺݖ െ ݈ሻ݁ሺሻஶ

ୀ , where 
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݈ ൌ lim՜ஶ  . Thus, we define the projectorsݖ
ܲ: ܿ ՜ ܿ	ሺݎ א Գሻ by ܲሺݖሻ ൌ ݈݁ and ܲሺݖሻ ൌ ݈݁ 
∑ ሺݖ െ ݈ሻ݁ሺሻିଵ
ୀ  for ݎ  1. Then, we have that 

ሺܫ െ ܲሻሺݖሻ ൌ ∑ ሺݖ െ ݈ሻ݁ሺሻஶ
ୀ  for every ݎ א Գ 

and whence 
 
‖ሺܫ െ ܲሻሺݖሻ‖ℓಮ ൌ sup

ஹ
ݖ| െ ݈|																											ሺ15ሻ 

 
for all ݖ א ܿ and every ݎ א Գ. So, one can easily see 
that ‖ܫ െ ܲ‖ ൌ 2 for all ݎ א Գ. Hence, we obtain 
from (12) and Lemma 1.7 that 
 
1
2
. lim
՜ஶ

൬sup
௫אௌ

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ൰  ‖ఞܮ‖

 lim
՜ஶ

൬sup
௫אௌ

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ൰.									ሺ16ሻ 

 
On the other hand, it is given that ܺ ൌ ݎ

ሺܤሻ or 
∞ݎ
ሺܤሻ, and let ܻ be respective of the spaces ܿ or 
ℓஶ. Also, for every given ݔ א ܺ, let ݕ א ܻ be the 
associated sequence defined by (6). Since ܣ א
ሺܺ, ܿሻ, we have by Lemma 2.3 that ̅ܣ א ሺܻ, ܿሻ and 
ݔܣ ൌ  Further, it follows from Lemma 1.2 that .ݕܣ̅
the limits ߙത ൌ lim՜ஶ തܽ for all ݇, ߙത ൌ ሺߙതሻ א
ܻఉ ൌ ℓଵ and lim՜ஶ ∑ തܽݕ ൌ ∑ ݕതߙ . 
Consequently, we derive from (15) that 
 

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ ൌ ‖ሺܫ െ ܲሻሺ̅ݕܣሻ‖ℓಮ										 

ൌ sup
ஹ

อ̅ܣݕ െߙതݕ


อ 

ൌ sup
ஹ

อሺതܽ െ ݕതሻߙ


อ 

 
for all ݎ א Գ. Moreover, since ݔ א ܵ ൌ ܵ if and 
only if ݕ א ܵ, we obtain by (1) and Lemma 1.4 
that 
 

sup
௫אௌ

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ

ൌ sup
ஹ

൭sup
௫אௌೊ

อሺതܽ െ ݕതሻߙ


อ൱			 

ൌ sup
ஹ

ܣ̅‖ െ ത‖ߙ
כ  

	ൌ sup
ஹ

ܣ̅‖ െ  ത‖ℓభߙ

 
for all ݎ א Գ. Hence, we get (10) from (16). 
Finally, to prove (iii) we define the operators 
ܲ: ℓஶ ՜ ℓஶ ሺݎ א Գሻ as in the proof of part (i) for 

all ݔ ൌ ሺݔሻ א ℓஶ. Then, we have 
 

ܵܣ ؿ ܲሺܵܣሻ  ሺܫ െ ܲሻሺܵܣሻ;	ሺݎ א Գሻ. 
 

Thus, it follows by the elementary properties of 
the function ߯ that 
 

0  ߯ሺܵܣሻ  ߯൫ ܲሺܵܣሻ൯  ߯ሺሺܫ െ ܲሻሺܵܣሻሻ 
ൌ ߯ሺሺܫ െ ܲሻሺܵܣሻሻ 

									 sup
௫אௌ

‖ሺܫ െ ܲሻሺݔܣሻ‖ℓಮ 

ൌ sup
வ

 										‖ℓభܣ̅‖

 
for all ݎ א Գ and hence, 
 

0  ߯ሺܵܣሻ  lim
՜ஶ

൬sup
வ

 ‖ℓభ൰ܣ̅‖

ൌ limsup
՜ஶ

 																				.‖ℓభܣ̅‖
 

This and (12) together imply (11) and completes 
the proof. 
 
Corollary 3.2. Let ܺ denote any of the spaces 
ݎ
ሺܤሻ or ݎ∞

ሺܤሻ. Then, we have  
(i) If ܣ א ሺܺ, ܿሻ, then 
 

	if	only	and	if	compact	is	ܮ lim՜ஶ
൭|തܽ|



൱ ൌ 0. 

 
(ii) If ܣ א ሺܺ, ܿሻ, then 
 

	if	only	and	if	compact	is	ܮ lim՜ஶ
൭|തܽ െ |തߙ



൱ ൌ 0, 

 
where ߙത ൌ lim՜ஶ തܽ for all ݇ א Գ. 
(iii) If ܣ א ሺܺ, ℓஶሻ, then 
 

	if	compact	is	ܮ lim՜ஶ
൭|തܽ|



൱ ൌ 0. 

 
Proof: This result follows from Theorem 3.1 by 
using (4). 
Since the matrix ܶ is a triangle we have the 
following observation from [14, Corollaries 6.9 and 
6.11]. 
 
Corollary 3.3. For every matrix ܣ א ሺݎ∞

ሺܤሻ, ܿሻ 
or ܣ א ሺݎ∞

ሺܤሻ, ℓஶሻ, the operator ܮ	is	compact. 
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