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Abstract 

In this paper we have studied the separation for the Laplace differential operator of the form 
 

, ,  

 
in the Hilbert space ² ,	with potential , ¹ . We show that certain properties of positive 
solutions of the disconjugate second order differential expression P[u] imply the separation of minimal and 
maximal operators determined by P i.e, the property that ² ² , ². A property leading 
to a new proof and generalization of a 1971 separation criterion due to Everitt and Giertz. This result will allow 
the development of several new sufficient conditions for separation and various inequalities associated with 
separation. A final result of this paper shows that the disconjugacy of ² for some 0	implies the 
separation of P. 
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1. Introduction 

The concept of separation of differential operators 
was first introduced by Everitt and Giertz in [1]. 
Mohamed and Atia [2] have studied the separation 
property of the Sturm-Liouville differential 
operator of the form 
 

 
 
in the space ,	for 1,2,	 where 
ℓ 	is an operator potential which is a bounded 

linear operator on ℓ ,	and  is a 
positive continuous function on R.  
Mohamed and Atia[3] have studied the separation 
of the Schrodinger operator of the form 
 

, 
 
with the operator potential ¹ ⁿ, ₁ ,	in 

the Hilbert space ₂ ⁿ, ₁ ,	where ∑ 	 is 

the Laplace operator in Rⁿ.  
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Mohamed and Atia[4] have studied the separation 
of the Laplace-Beltrami differential operator of the 
form 
 

1

det	
	 det	 	

, 
 
for every ⁿ,	in the Hilbert space 
₂ , ₁ 	with the operator potential 	
	 ¹ , ₁ ,	where ₁ 	is the space of all 
bounded linear operators on the Hilbert space H₁, 

	is the Riemannian matrix and g⁻¹(x) 
is the inverse of the matrix g(x). 

In [5] Brown has shown that certain properties of 
positive solutions of discongugate second order 
differential expressions 
 

′ ′  
 
imply the separation of the minimal and maximal 
operators determined by M in , where 

a,∞  and a -∞. More fundamental results of 
separation have been obtained by Brown [6] and 
[7]. 
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In this paper we have generalized this work to 
prove the separation of the two dimensional 
Laplace operator. 

Consider the two dimensional Laplace differential 
operator of the form 
 

, ,                (1) 
 
P is said disconjugate on Ω if and only if there 
exists a positive solution u(x,y) on the interior of Ω. 
For additional discussions see [8]. We show that 
properties of positive solutions of disconjugate 
second order differential operator (1) [9], imply the 
separation of minimal and maximal operators 
determined by P in L²(Ω) i.e, the property that P[u] 

 L²(Ω)  qu  L²(Ω). In particular, the preminimal 
and maximal operators L₀′ and L are given by P[u] 
for u in domain ₀′	 ∞ , the space of 
infinitely differential functions with compact 
support in the interior of Ω and 
 

² 	¦	
, ² 	 

 
where  stands for the real locally absolutely 
continuous functions on Ω, and ²  denotes the 
usual Hilbert space associated with equivalence 
classes of Lebesgue square integrable functions f 
and g having norm 
 

| , | 		 , 

 
and inner product 
 

, , 	 , 		 . 

 
The minimal operator L₀ with domain D₀ is 

defined as the closure of L₀′. 
With the above definitions one can show that: 
(i) ∞ ₀′	 ₀ . (ii) D₀′, D₀ and D 

are dense in L²(Ω). 
P is a limit point of  at ∞ if there is at most one 

solution of P[u]=0 which is in L² (Ω). 
 
Proposition 1. If P is separated on ₀ then it is 
separated on D if P is  at ∞. 
We now turn to the central concern of this paper. 
 
Theorem 2. Let q(x,y) be C¹ functions. Suppose the 
laplace differential operator of the form (1) has a 
positive solution on the interior of Ω such that: 

²

2 ,	                                                        (2) 
 

1 δ

, δ 0, .	                                     (3) 
 
Then q ≥ 0 and P is separated on L₂(Ω). 
 
Proof: For the separation proof we need only show 
that u satisfy an inequality of the form ²

² ²,	where c, d are positive 
constants. 
First, we prove that 
 

, 
 

satisfies the P.D.E. of the form 
 

² .                                          (4) 
 
We have,  
 

 

								 ,	 
 
and 
 

 

								 . 
 
By substituting in (4), we get 
 

2 2
 

2
 

 
Hence 
 

2 ,                                     (5) 
 
since 
 

² 4 0, 
 

so it is a parabolic equation. 
The solution of the equation (5) is as follows: 
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2 1 0 , 1, 

1 0		 . 
 
Suppose that w=y, so 
 

	 , 

	  

       2 ,																																							 6  
 

	 , 

	 –  

,																																																						 7  
 
And 
 

	  

                   																																																							 8  
 

By substituting from (6), (7) and (8) into (5), we 
get 
 

. 
 
Hence 
 

₁ ₂ . 
 

The conditions (2) and (3) are equivalent to the 
conditions 
 

	                                                      (9) 
 
and 
 

.                                                     

(10) 
 

To see this, note that from the definition of z and 
(6), (7), we get 
 
         (2)  

2

 

                

 

             

    . 

        (3)  

1

 
 
              

 

             
 

. 

 
Next we define the operators 

 

, 

 
and 
 

, 

 
where ∞  and 	 ². 

Now we derive sufficient conditions for the 
separation of  as follows: 
We have 
 

	 , ,  
 
and 
 

 

								

 

                                    .  
 
So  
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, . 

 
Using (9), we obtain  

 

, , ,

,

2

 

				 .																								 

 
By the triangle inequality it also follows that 
 

4 . 
 

The remaining step is to use the separation of  
to show that M, which is restricted to  is also 
separated. 

We first observe that 
 

 

                                      

. 
 
Since 
 

. 

 
So 
 

. 

 
Suppose that 
 

, 

 
then 
 

. 

 
A consequence of (9) and (10) is that 

 

1 . 

 
Then 
 

0. 
 
Now, also 
 

,  
 
Since 
 

2 . 
 
So 
 

1
4

 

																									
1
4

,  

																																										 ,        (11) 
 
and 
 

,

,  

																												 ,  

																						 ,  

																												 ,

,  

																																											 ,

,  

												 ,  

, ,  

																																			 ,

,  

																																				 ,

,  

																																																	 ,  

																																																	 , 													 12  
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we find that 
 

, , ,  

, ,  

												 , , ,  

 
Since 
 

3 3 , 

 
and 
 

. 

 
Hence 
 

1 3 .                         (13) 
 
But 
 

, 

 
So 
 

, 

 
Hence 
 

2
. 

 
Then (13) becomes 
 

1 3 .                         (14) 
 
From (11), (12) and (14), we obtain 
 

1
8

1 3
16

. 
 
This immediately yields the separation inequality 
 

16
1 3

. 
 

The final result of this paper is quite different 
from Theorem 2, but it reinforces the connection 
between disconjugacy and separation. In addition, 
the proof is quite elementary. 
 

Theorem 3. Suppose that 

λ , is disconjugate on Ω for some 0. 

Then , is separated. 

 
Proof: It is well known that the disconjugacy of  
is equivalent to the positive definiteness of the 
functional 
 

∬ λ | | 	  

for , 
 
see for example [8, Theorem 6.2]. In other words, 
we must have the inequality 
 

∬ 	 ∬ | | 	 ,  (15) 
 
with equality holding iff 0.	 

Now consider the expression 
 

, 

 
where u is an appropriate function in ² ²; . If 

, then the Cauchy-Schwrtz inequality 
and (15) yields that 
 

λ λ . 
 

It follows that the inequality 
 

λ , 
 
holds on the  functions, and therefore on D₀. 
Because P is  at ∞ we again conclude that it is 
separated on D. Hence the proof. 
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