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Abstract 

Dodecylbenzenesulfonic acid (DBSA) was used as an efficient, cheap and stable Brønsted catalyst for acetylation 
of alcohols and phenols and formylation of alcohols under solvent-free conditions. Various primary, secondary 
and tertiary alcohols were acetylated with acetic anhydride as an acetylating agent under solvent-free conditions in 
the presence of catalytic amount of DBSA at room temperature. Also, formylation of alcohols was catalyzed by 
DBSA with ethyl formate in high to excellent yields. This method showed high selectivity in acetylation and 
formylation of various alcohols and phenols. DBSA was recovered and reused in four successive runs without 
significant deterioration in catalytic activity. 
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1. Introduction 

Functional group protection strategies are central to 
target molecule synthesis. Among the many 
protecting groups of hydroxyl group of alcohols 
and phenols, acetylation and formylation reactions 
are one of the most important methods because of 
easy and fast formation of acetate and formate 
under mild conditions, their considerable stability 
under acidic conditions and easy removal of acetyl 
and formyl groups by alkaline hydrolysis (Rao et 
al., 2002). Acetyl halides and acetic anhydrides are 
usually employed as acetylating agents for 
acetylation of hydroxyl group in alcohols and 
phenols in the presence of acid or base catalysts 
(Rao et al., 2002), including 4-pyrrolidinopyridine 
(PPY) and 4-(dimethylamino)pyridine (DMAP) 
(Scriven, 1983), InCl3 (Chakraborti and Gulhane, 
2003), ZrOCl2-8H2O (Ghosh et al., 2005), TaCl5 

(Chandrasekhar et al., 1998), metal triflates such as 
Al(OTf)3 (Kamal et al., 2007), Gd(OTf)3 (Alleti et 
al., 2005), Sc(OTf)3 (Lee and Park, 2003), Ce(OTf)3 

(Dalpozzo et al., 2003), ZnO (Sarvari and Sharghi, 
2005), LiClO4 (Bandgar et al., 2002), Mg(ClO4)2 
(Bartoli et al., 2003), SmI2 (Ishii et al., 1996), 
NH2SO3H (Jin et al., 1998), Al(HSO4)3 (Shirini et 
al., 2004), ionic liquids (Lee and Park, 2003), 
distannoxane (Orita et al., 1999), and solid 
supported reagents and lipase enzymes (Berger et 
al., 1991).  
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Ethyl formate is the choice of formylating regent 
for alcohols and phenols because of its availability, 
its relatively low cost, its easy handling and the 
instability of the anhydride and the acid chloride of 
formic acid. Several catalysts have been reported in 
the literature that are able to perform the 
formylation reaction by ethyl formate, such as 
Bi(III) salts (Mohammadpoor-Baltork et al., 
2001a), Ce(OTf)4 (Iranpoor and Shekarriz, 1999), 
In(OTf)3 (Chauhan et al., 1999), silica triflate 
(Shirini et al., 2007), TiCl3(OTf) (Firouzabadi et al., 
2008), Chloral (Ram and Meher, 2002), Mg(HSO4)2 

(Shirini et al., 2002), heteropoly acids (Habibi et 
al., 2001) and cerium poly oxometalate (Mirkhani 
et al., 2004). 

However, some of these methods for the 
acetylation and formylation of alcohols and phenols 
suffer from one or several of the following 
disadvantages, such as: harsh reaction conditions, 
use of toxic solvents and metal containing catalysts, 
low yields of the desired products, tedious work-up 
procedure and long reaction times. Therefore, new 
methods and catalysts for the preparation of esters 
are still in demand. 

We wish to report a simple, efficient, eco-friendly 
and selective method for the acetylation of alcohols 
and phenols with acetic anhydride and formylation 
of alcohols with ethyl formate using 4-
dodecylbenzenesulfonic acid (DBSA) as a stable 
catalyst at room temperature. 
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2. Results and discussion 

2.1. Acetylation of alcohols and phenols 

In continuation of our systematic evaluation of the 
efficacy of DBSA as a catalyst, we report, herein, 
our results on acylation of alcohols, phenols using 
DBSA at room temperature under solvent-free 
conditions (Scheme 1).  

Initially, the reaction between benzyl alcohol 
(1mmol) and acetic anhydride (1.2 mmol), as a 
model reaction, was examined in the presence of 
varying amount of the catalyst under solvent-free 
conditions at ambient temperature and the results 
were presented in Table 1.   

 

ROH + (CH3CO)2O
DBSA

R-OCOCH3

R=Aryl, alkyl
rt

 
 

Scheme 1 
 
According to these data, the highest yield of the 

desired product was obtained in shortest time when 
0.1 mmol of DBSA was loaded in the reaction 
mixture (Table1, entry4). In order to elucidate the 
role of the catalyst, a control reaction was 
conducted using benzyl alcohol and acetic 
anhydride in the absence of catalyst and only 5% of 
benzyl acetate was formed after 12 h at room 
temperature under solvent-free conditions (Table 1, 
entry 1). Using higher amount of DBSA made the 
yield of the reaction lower and the reaction time 
longer (Table 1, entries 5-7).  

On the other hand, this catalyst was not efficient 
in the presence of common organic solvents such as 
CH2Cl2, H2O, CHCl3, CH3CN and CH3CO2Et at 
room temperature (Table 2, entries 1–5). This 
observation confirms that the solvent-free condition 
plays an important role in this acetylation reaction 
and a rate enhancement was carried out without any 
solvent (Table 2, entry 6). 

 
Table 1. Effect of the amount of DBSA on the 
conversion of benzyl alcohol to benzyl acetate at room 
temperature under solvent-free conditionsa 
 

Entry DBSA (mmol) Time (min) Yieldb (%) 
1 None 720 5 
2 0.05 15 81 
3 0.075 8 86 
4 0.1 2 97 
5 0.125 4 94 
6 0.15 5 93 
7 0.2 5 90  

aReaction conditions: benzyl alcohol (1mmol) and acetic 
anhydride (1.2 mmol), r.t. 
bIsolated yield. 

 
For showing generality and scope of the reaction, 

the acylation reaction of a wide variety of alcohols 
and phenols was studied under the optimization 

conditions and the results were summarized in 
Table3. Although all primary and secondary 
alcohols carried out the acetylation reaction easily, 
fast and in quantitatively yields (Table 3, entries1-
3, 13, 18, 19, and 21), primary alcohols reacted 
with acetic anhydride faster than secondary ones 
(Table 3, entries1-3, 13, 18, and 19). 
 
Table 2. Effect of solvent on the acetylation of benzyl 
alcohola 
 

Entry Solvent Time (min) Yield b (%) 
1 CH2Cl2 6 45 
2 H2O 10 52 
3 CHCl3 4 58 
4 CH3CN 3 87 
5 CH3CO2Et 3 91 
6 Solvent-free 2 97 

 
a Reaction conditions: benzyl alcohol (1mmol), acetic anhydride 
(1.2 mmol) and DBSA (0.1 mmol), room temperature. 
 bIsolated yield 
 

3-Phenyl-2-methyl-2-propanol, as a tertiary alcohol, 
was also acylated smoothly in high yield without any 
side product but in longer reaction time in compare to 
primary and secondary alcohols (Table 3, entry20). 

Phenols were also acetylated in short reaction times 
with acetic anhydride in the presence of DBSA 
catalyst under optimized conditions. The acetylation 
of phenols with electron-donor groups was faster than 
those with electron-withdrawing groups (Table 3, 
entries5, 6, 9- 12, 14-17). 

Selective acetylation among the different type of 
alcohols and phenols was checked by using 
competitive method. In these experiments, a mixture 
of substrates, 1mmol of each, was treated with 1 mmol 
of acetic anhydride under solvent-free condition in the 
presence of DBSA at room temperature. The results 
were summarized in Table 4. According to these data, 
it was possible to acetylate primary alcohol selectively 
against secondary alcohol (Table 4, entry 1) and 
phenol (Table 4, entry 4). Also, secondary alcohol and 
phenol were selectively acetylated in the presence of 
tertiary alcohol (Table 4, entry 2) and lesser active 
phenols, such as p-bromophenol and p-nitrophenol, 
(Table 4, entry 3) respectively. 

A comparison among DBSA and the other acid 
catalysts, which were reported in the literature, in 
acetylation of alcohols and phenols revealed 
advantages of DBSA over most of them in terms of 
lower reaction temperature, shorter reaction times, and 
higher yields in the acid catalyzed acetylation reaction 
of alcohols and phenols (Tables 5-7). To show the 
effect of dodecyl group on the benzene ring of DBSA, 
the acetylation of benzyl alcohol, (-)-menthol and 
phenol was explored in the presence of p-TSA (Tables 
5-7, entry 2). Therefore, the key factor in such 
chemical transformation is probably not only the acid 
strength, but also the amphipathic behavior of DBSA 
which plays an important role in accelerating the 
reaction (Shrikhande Janhavi, 2007). 
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Table 3. Acetylation of alcohols and phenols catalyzed by DBSA at room  

temperature under solvent-free conditions with acetic anhydridea 

 

Entry Substrate Product b Time 
(min) 

Yield
c(%) 

Ref. 

 
1 
 

 
 

 
  

2 
 
97 

 
(Bartoli et al., 2003) 

 
 
2 

  

 
4 

 
94 

 
 (Bartoli et al., 2003) 

 
 
3 
 

 
 

 
 

 
2 

 
96 

 
(Bartoli et al., 2003) 

 
 
4 
 

 
 
 

 

 
4 

 
96 

 
(Sarvari and Sharghi, 
2005) 

 
 
5 

 
 

 

 
5 

 
93 

 
(Bartoli et al., 2003) 

 
 
 
6 
 
 

 
 

 

 
5 

 
94 

 
(Bartoli et al., 2003) 

 
 
7 

 
 
 

 

 
6 

 
92 

 
(Bartoli et al., 2003) 

 
 
8 
 

  

 
5 

 
93 

 
(Bartoli et al., 2003) 

 
 
9 

 
 
 

 

 
 
 
3 
 

 
94 

 
(Bartoli et al., 2003) 

 
 
 
10 

  

 
 
4 

 
 
93 

 
 
(Bartoli et al., 2003) 
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11 
 
 

 
 

 

 
 

4 92 (Bartoli et al., 2003) 

 
 
12 
 
 

  

7 89 
(Farhadi and Zaidi, 
2009) 

 
 
13 

  

 
3 

 
95 

 
(Bartoli et al., 2003) 

 
 
14 
 
 

  

 
6 

 
88 

 
(Bartoli et al., 2003) 

 
 
15 
 
 

  

 
3 

 
92 

 
(Yoon et al., 2008) 

 
 
16 
 
 

  

4 94 (Ghosh et al., 2005) 

 
 
17 
 
 

 
 

 

 
4 

 
90 

 
(Bartoli et al., 2003) 

 
18 

 
 

 

2 

 
 
96 
 

(Alleti et al., 2005) 
 

 
     19 
 
  

 
 
 

 
 
3 

 
93 

(Sarvari and Sharghi, 
2005) 

 
 
20 

 
 
 
 

 

 
20 

 
84 

(Niknam and Saberi, 
2009b) 

 
 
21 
 

 
 

 

 

4 

 

95 

 
(Firouzabadi et al., 
2008) 

 

aReaction conditions: Substrate (1mmol), Ac2O (1.2 mmol), DBSA( 0.1 mmol), room temperature 
bThe known products were identified by comparison of their IR, 1H NMR and 13C NMR spectra with those reported in the literature  
cIsolated yield 
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Table 4. Selective acetylation of different alcohols and phenolsa 
 

 
aReaction conditions: Substrate (1mmol), Ac2O (1 mmol), DBSA( 0.1 mmol), room temperature 
bIsolated yield 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Entry Substrate Product Yield(%)b 
 
 
 
 
 
1 
 
 
 
 

   
 
94 
 
 
 
 
 
0 

 
 
 
 
 
 
2 
 
 
 

 
 

  
 
 
 
89 
 
 
 
0 
 

 
 
 
 
 
 
 
3 
 
 
 
 
 

 
 
 

  
 
 
91 
 
 
 
0 
 
 
 
0 

 
 
 
 
4 

 
 
 
 
 
 

 
 
 

 
 
93 
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Table 5. Comparison of some of the reported acid catalysts with DBSA  
in acetylation of benzyl alcohol using acetic anhydride 

Entry Catalyst Solvent Temp 
(oC) 

Time 
(min) 

Yield 
(%)b 

Ref. 

1 DBSA Solvent-free rt 2 97 Present work 

2 p-TSA Solvent-free rt 5 96 ---a 
3 SBNPSA Solvent-free rt 20 98 (Niknam and Saberi, 2009b) 
4 Sulfuric acid ([3-(3-silica propyl) 

sulfanyl] propyl) ester 
 
Solvent-free 

 
rt 

 
5 

 
96 

 
(Niknam and Saberi, 2009a) 

5 H14[NaP5W30O110] Solvent-free rt 72 95 (Heravi et al, 2006) 
6 Sulfamic acid Solvent-free rt 120 99 (Jin et al., 1998) 
7 Cu(BF4)2 Solvent-free rt 60 96 (Chakraborti et al, 2004) 
8 BiCl3 Solvent-free rt 35 98 (Mohammadpoor-Boltark et al., 

2001b) 
9 CMPSIM-Gd DMSO rt 90 99 (Yoon et al., 2008) 

 
aThis experiment was performed by the authors 
bIsolated yield 
 
Table 6. Comparison of some of the reported acid catalysts with DBSA in acetylation of (-)-menthol using acetic anhydride 

Entry Catalyst Solvent Temp. 
(oC) 

Time 
(min) 

Yield
(%)b 

Ref. 

1 DBSA Solvent-free rt 3 95 Present work 
2 p-TSA Solvent-free rt 12 93 ---a 
3 Saccharinsulfonic acid CH2Cl2 reflux 90 92 (Shirini et al., 2009) 
4 Sulfamic acid CHCl3 62 120 NR (Jin et al., 1998) 
5 Cu(BF4)2 Solvent-free rt 30 95 (Chakraborti et al, 2004) 
6 BiCl3 Solvent-free reflux 20 94 (Mohammadpoor-Boltark et al., 2001b) 
7 CMPSIM-Gd DMSO rt 24h 18 (Yoon et al., 2008)  

aThis experiment was performed by the authors 
bIsolated yield 
 

Table 7. Comparison of some of the reported acid catalysts with DBSA in acetylation of phenol using acetic anhydride 

Entry Catalyst Solvent Temp. 
(oC) 

Time 
(min) 

Yield
(%)b 

Ref. 

1 DBSA Solvent-free rt 4 96 Present work 
2 P -TSA Solvent-free rt 10 95 ---a 
3 SBNPSA Solvent-free rt 360 92 (Niknam and Saberi, 2009b) 
 
4 

Sulfuric acid ([3-(3-silica 
propyl) sulfanyl]propyl) 
ester 

 
Solvent-free 

 
rt 

 
120 

 
0 

 
(Niknam and Saberi, 2009a) 

5 H14[NaP5W30O110] Solvent-free rt 60 95 (Heravi et al, 2006) 
6 Sulfamic acid CH2Cl2 rt 120 98 (Jin et al., 1998) 
7 Cu(BF4)2 Solvent-free rt 30 97 (Chakraborti et al, 2004) 
8 BiCl3 Solvent-free reflux 50 97 (Mohammadpoor-Boltark et al., 

2001b) 
9 CMPSIM-Gd DMSO rt 5 94 (Yoon et al., 2008) 
 
aThis experiment was performed by the authors 
bIsolated yield 
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Table 10. Formylation of alcohols with ethyl formate in the presence of  
DBSA catalyst at room temperature under solvent-free conditionsa 

 
Entry Substrate Productb Time 

(min) 
Yield
(%)c 

Ref. 

 
1 

   
10 

 
92 
 

 
(Niknam and Saberi, 2009b) 
 

 
2 

 

  
10 

 
91 
 

 
(Niknam and Saberi, 2009b) 
 

 
3 

   
 
 
20 

 
 
 
89 

 
(Niknam and Saberi, 2009b) 
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25 

 
 
 
85 

 
 
(Shirini et al., 2007) 
 

 
 
5 
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(Shirini et al., 2007) 
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(Shirini et al., 2007) 
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(Niknam and Saberi, 2009b) 
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3. Experimental 

3.1. General 

Chemical  materials were purchased from the 
Merck, Flucka Chemical Company in high purity. 
The formylated products were characterized by 
comparison of their spectral and physical data such 
as NMR, FT-IR, and melting point with available 
literature data. 

The NMR spectra were recorded on a Bruker 
avance DPX 250MHz spectrometer in chloroform 
(CDCl3) using tetramethylsilane (TMS) as an 
internal reference. Fourier transform infrared (FT-
IR) spectra were obtained using a Shimadzu FT-IR 
8300 spectrophotometer 

3.2. General procedure for acetylation with acetic 
anhydride 

To a mixture of substrate (1 mmol) and acetic 
anhydride (1.2 mmol), DBSA (0.1 mmol) was 
added and the mixture was stirred at room 
temperature. The progress of the reaction was 
monitored by TLC. After completion of the 
reaction, CH2Cl2 (10mL) and saturated NaHCO3 
(10mL) were added and organic layer was extracted 
from aqueous layer. The organic layer was washed 
twice with water (2×10mL), dried over anhydrous 
Na2SO4, filtered, and concentrated to afford the 
crude product. If needed, further purification was 
performed by column chromatography on silica gel 
to product the pure acetate. Aqueous layer, which 
includes catalyst salt, was acidified by HCl (5%, 
15mL) and then Et2O (10mL) was added. DBSA 
catalyst was recovered and regenerated by 
extraction of this acidic solution and evaporation of 
diethyl ether under reduced pressure. It is 
noteworthy that DBSA could be reused without 
significant decrease in activity. 

3.3. General procedure for formylation of alcohols 
with ethyl formate 

DBSA (0.2 mmol) was added to a mixture of 
substrate (1 mmol) and ethyl formate (2 mmol) and 
the mixture was stirred at room temperature. The 
progress of the reaction was monitored by TLC. 
After completion of the reaction, CH2Cl2 (10mL) 
and saturated NaHCO3 (10mL) was added and 
organic layer was extracted from aqueous layer. 
The organic layer was washed twice with water 
(2×10 mL), dried over anhydrous Na2SO4, filtered, 
and concentrated to afford the crude product. If 
needed, further purification was performed by 
column chromatography on silica gel which 
produced the pure acetate. Aqueous layer, which 
includes catalyst salt, was acidified by HCl (5%, 

15mL) and then Et2O (10 mL) was added to the 
previous solution. DBSA catalyst was recovered 
and regenerated by extraction of this acidic solution 
and evaporation of diethyl ether under reduced 
pressure. It is noteworthy that DBSA could be 
reused without significant decrease in activity. 

4. Conclusion 

In conclusion, we have shown that DBSA, which is 
a cheap, commercially available and stable 
combined Brønsted acid-surfactant-catalyst 
(BASC) (Manabe et al., 2001; Sanzhong et al., 
2007; Shrikhande Janhavi, 2007), is an efficient, 
eco-friendly, recyclable, versatile and 
chemoselective catalyst for the acetylation of 
alcohols and phenols and formylation of alcohols at 
room temperature under mild conditions. The 
method has advantages in term of short reaction 
times, operation at room temperature, excellent 
yields and ease of operation, and excellent 
chemoselectivity. In addition, even hindered 
substrates can be acetylated with acetic anhydride 
in high yields at room temperature.  
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