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Abstract 

Let  be a Banach algebra and :  a derivation. In this paper, it is proved, under certain conditions, that 
, where  is the Jacobson radical of . Moreover, we prove that if  is unital and 

:  is a continuous derivation, then ⋂ 	 ⋂ 	 ⋂ 	 , where  

denotes the set of all primitive ideals such that  is commutative,  denotes the set of all maximal (modular) 

ideals such that  is commutative, and Φ  is the set of all non-zero multiplicative linear functionals from  into 

. In addition, we present several results about the range of a derivation on algebras having the property ( ). 
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1. Introduction 

Bounded derivations initiated in 1953 by Kaplansky 
and had its peak development around 1966-68 with 
the work by Kadison and Sakai, and was essentially 
finished in 1977-78 with work by Elliott, Akemann, 
and Pedersen, but the subject of bounded 
derivations from one algebra into another is still 
under development. 

General theory of unbounded derivations was 
started by Sakai, Powers, Helemkii, Sinai, and 
Robinson around 1974. Derivations appear in 
various branches of mathematics and physics. The 
study of derivation theory in operator algebras is 
motivated by questions in quantum physics and 
statistical mechanics (Bratteli, 1987; Bratteli, 
1997). Now, we are going to recall the definition of 
a derivation. Suppose that  is an algebra and  is 
an -bimodule. A linear mapping :  is 
called a derivation if  for 
all , . Let us introduce the background of 
our investigation. In 1955, Singer and Wermer 
obtained a fundamental result which started 
investigation into the ranges of derivations on 
Banach algebras. The result states that every 
bounded derivation on a commutative Banach 
algebra maps into the Jacobson radical. In the same 
paper they conjectured that the assumption of 
boundedness is not necessary. In 1988, Thomas 
proved this conjecture. Indeed, he proved that every 
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derivation on a commutative Banach algebra maps 
into its Jacobson radical. Recall that the set 

				|				 				 b  is named the center 

of . By putting , we have 

				|				 , , 0				 		 , , where 
,  for , . In this study, it is 

proved that if :  is a derivation and 
, then . 
Suppose that  is a closed bi-ideal of  and 
:  is a map. A pair ,  is called a 

derivation generator if 
		|		 , . In this article the 

following result is proved:  
Let  be a linear mapping and ,  be a 

derivation generator such that . If  is a 

commutative, semi-simple Banach algebra, then 
. By this result, we prove that 

⋂ 	 ⋂ 	 ⋂ 	  if  is 
unital and :  is a continuous derivation, 
where  denotes the set of all primitive ideals 

such that  is commutative,  denotes the set 

of all maximal (modular) ideals such that  is 

commutative and Φ  is the set of all non-zero 
multiplicative linear functionals on . Moreover, 
in this paper an ideal which is called zero prime is 
defined as follows:  

A bi-ideal  of  is called a zero prime ideal if 
ab=0 implies that a  or b . 

Let  be a unital Banach algebra with the 
property , which introduced in (Alaminos, 
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2009), and  is a closed zero prime ideal of  
which is invariant under a linear mapping D:

, and furthermore there exists a positive number 
N such that D a N a  for all 
a . If D 1 0 then D . Brasar and 
Mathieu (Bresar, 1995) proved that every spectrally 
bounded derivation on a unital Banach algebra 
maps into the Jacobson radical. We recall that a 
linear mapping T:  is called spectrally 
bounded if there is a constant M 0 such that 
r T a Mr a  for all a , where r a

lim a  denotes the spectral radius of an 
element a and  is also a complex Banach algebra. 

2. Main results 

Throughout this paper  denotes a complex 
Banach algebra and Φ  denotes the set of all non-
zero multiplicative linear functionals on . 
Moreover, Q  is the set of all quasi-nilpotent 
elements of , i.e. the set of elements a in  such 

that lim a 0.  
It is well-known that Z , the center of , is a 

closed subalgebra of . We define 
Z

Z

Z
Z

 for all positive integer n. It is clear that 

Z 0  if and only if Z Z . If n = 
2, for example, we have  
  
Z
Z

 Z
Z

 

 
a Z |		ab ba Z b

 

 
a Z |		 ab ba c

c ab
ba 		 		b, c  

 
a Z | a, b , c 0 

		b, c . 
 

Hence, Z a 		|		 a, b , c
0		 		b, c . Moreover, if n = 3 then we have 
Z a 		| a, b , c , d 0		 		b, c, d

. Thus, by induction on n, we obtain that  
 
Z a 		| . . . a, a , a , a , . . . , a

0		 		a , a , a , . . . , a . 
 

Clearly, 0 Z Z Z . . .
Z . . .  and Z

Z

Z

Z
, where 

m, n  and m n. Moreover, Z  if and 

only if Z
Z Z

. It means that 
Z

 is 

commutative if and only if Z .  
Recall that an algebra  is called semi-prime if 

a a 0  implies that a = 0 for each a . 

Proposition 2.1. (i)Suppose that Q 0 . Then 
 is commutative if and only if a, a, b 0 for 

all a, b .  
(ii) Suppose that  is a semi-prime Banach algebra. 
Then Z Z  for all n . Hence,  is 
commutative if and only if Z  for some 
n .  
 
Proof: (i) Suppose that  is commutative. Clearly 
a, a, b 0 for all a, b . Conversely, assume 

that a, b , a 0 for all a, b . It follows from 
Proposition 18.13 of (Bonsall, 1973), that a, b
Q  for all a, b . Since Q 0 ,  is 
commutative.  
(ii) We shall prove this part of the statement by 
induction on n. Suppose that a Z , i.e. 
a, b Z  for all b . It follows from 

Lemma 3.1 of (Hejazian, 2005) that a Z . So, 
Z Z  and since Z Z , 
Z Z . Assume that a Z  implies 
that a Z . Let a Z . Therefore, 
. . . a, a , a , . . . , a , a Z  for all 

a , a , a , . . . , a .  
Set b . . . a, a , a , . . . , a . Hence, 

b, a Z  for all a . By the case n = 2, 
b Z .  
It means that . . . a, a , a , . . . , a

Z . Thus, a Z . Induction hypothesis 
results in a Z . Hence, Z Z
Z , so Z Z  for all n .  
Suppose that  is commutative. Clearly, Z

 for all n . Conversely, assume that Z
 for some positive integer n, so Z

Z . It is well-known that if Z  then  is 
commutative.  

Mathieu (2005) proved that the following result 
holds: 
 
Theorem 2.2. Let d be a derivation on a Banach 
algebra . Then the following three conditions are 
equivalent: 
(i) a, d a rad  for all a ; 
(ii) d	is	spectrally bounded; 
(iii) d rad , 
where a, b ab ba and rad  is denoted the 
Jacobson radical of .  
 
Theorem 2.3. Suppose that D:  is a 
derivation. If Z  then D rad .  
 
Proof: First of all, we define another product on  

by the following form: a • b  a, b . 

Clearly, a • b b • a, i.e. • is commutative. In 
addition, a • b c a • b a • c and a b •
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c a • c b • c for all a, b, c . Since Z
, we have  

 
 a • b • c a •  

  

  

 a • b • c 
 
for all a, b, c . Let a and b be two arbitrary 

elements of . Then a • b a
b . Therefore,  is a Banach algebra with the 
original norm and this new product. We denote this 
algebra by . D is a derivation on , because  
 
 D a • b D  

 
D D D D

 

 
D D D D

 

 D a • b a • D b . 
 

Since  is commutative Banach algebra, it 
follows from Theorem 4.4 of (Thomas, 1988) that 
D rad Q . Since a  in  is 
equivalent to a  in , Q Q  and thus, 
D Q . It means that D is spectrally 
bounded and by using the Theorem 2.2 D
rad  is obtained. 
 
Definition 2.4. Let σ:  be a linear mapping. 
A linear mapping d:  is called a σ
derivation if d ab d a σ b σ a d b  for all 
a, b  (for more details see (Hosseini et al., 
2011; Hosseini et al., 2013; Hosseini et al., 2011; 
Mirzavaziri and Moslehian, 2007; Mirzavaziri and 
Moslehian, 2006; Mirzavaziri, 2008). 
 
Definition 2.5. (Derivation Generator) Suppose that 
D:  is a map and  is a closed bi-ideal of . 
A pair D,  is called a derivation generator if 
D ab D a b aD b 		|		a, b .  

 
Example 2.6. Suppose that D:  is a map and 
σ:  is an endomorphism. It is well-known 
that ker σ  is a closed bi-ideal of . D, ker σ  is 
a derivation generator, whenever σD:  is a 
σ-derivation. Since σD ab σD a σ b
σ a σD b , D ab D a b aD b 		|, b
ker σ ker σ . Thus, D, ker σ  is a derivation 
generator. 
 
Example 2.7. Set . Then  is a Banach 
algebra by the following action and norm: a, b
c, d ac, bd  and a, b a b  for all 
a, b, c . We define D:  by D a, b
0, b c , where c  is a fixed element of . 

Obviously, D is a non-linear mapping. Assume that 
0, a 		|		a . One can easily show that  is 

a closed bi-ideal of . We have  
D a, b c, d a, b D c, d D a, b c, d  

0, bd c  
0, bd bc 0, bd c d  
0, c bc bd c d . 

Therefore, D,  is a derivation generator.  
 
Remark 2.8. If D is a linear mapping, then D,  is 

a derivation generator if and only if d:  

defined by d a D a  is a derivation. Let  
be a unital algebra with unit 1. Since d is a 
derivation, d 1 , thus D 1 .  
 
Proposition 2.9. Suppose that D,  is a derivation 
generator such that D is a linear mapping. If  is a 
bounded set in  then D is a derivation.  
 
Proof: Since  is bounded, there exists a positive 
number m such that x m for all x . Hence, 
D ab D a b aD b m for all a, b . 

Let ε be an arbitrary positive number. We have 

D ab D a b aD b m. It 

implies that D ab aD b D a b ε. 
Since ε was arbitrary, D ab D a b aD b 0 
for all a, b  and consequently D is a derivation.  
 
Theorem 2.10. Suppose that D,  is a derivation 
generator such that D is a linear mapping and  is 

invariant under D. Furthermore, assume that  is a 

commutative, semi-simple Banach algebra. Then 
D .  
 

Proof: We define d:  by d a D a
. If a b  then a b . Since D , 
D a b . Hence, D a D b  and it 
implies that d is well-defined. Clearly, d is a linear 
mapping. For convenience, we denote a  by a. 
Since D,  is a derivation generator, D ab
aD b D a b		|		a, b . Thus d ab
ad b d a b D ab aD b D a b  

for all a, b . So, d is a derivation. By Theorem 

4.4. (Thomas, 1988), d rad . Since  is 

semi-simple, d  and so, D a  for 

all a . It implies that D .  
We will denote the kernel of φ Φ  by M . 

 
Corollary 2.11. Let  be a unital Banach algebra 
and D:  be a continuous derivation. Then 
D ⋂ 	P ⋂ 	M

⋂ 	M , where M , P  and Φ  are the 
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symbols which introduced in the introduction. In 
particular, If ⋂ 	P 0 , then D 0. 
 
Proof: Assume that P . According to 
Theorem 6.2.3 (Dales, 2003), D . Since 
D,  is a derivation generator, Theorem 2.10 

implies that D  and so, D
⋂ 	P , since  was an arbitrary element of 
P . We know that if  is unital then every 
(maximal) ideal of  is a (maximal) modular ideal 
(Murphy, 1990). Moreover, it follows from 
Proposition 1.4.34 (iii) (Dales, 2000) that each 
maximal modular ideal in  is primitive. Thus, 
M P  and it results that ⋂ 	P

⋂ 	M . According to Proposition 3.1.2 
(Dales, 2003) M  is a maximal ideal of  for every 
φ Φ . Since φ ab φ a φ b φ b φ a
φ ba  for all a, b , it means that ab ba
M . Thus, a M b M b M a

M , i.e. 
M

 is a commutative Banach algebra. 

Thus, M 		|		φ Φ M . We have  
 
 ⋂ 	P ⋂ 	M

⋂ 	M  
 
and it causes that D ⋂ 	P

⋂ 	M ⋂ 	M .  
 
Definition 2.12. Let : , where  is a 
Banach space, be a bilinear map. We say that  
preserves zero product if 		ab 0 then a, b
0		for	all		a, b 			 B . 
 
Definition 2.13. A Banach algebra  has the 
property  if for every continuous bilinear map 
: , where  is an arbitrary Banach 

space, B  implies that ab, c a, bc  for all 
a, b, c  (for more details see (Alaminos, 2009).  
We say that a proper bi-ideal  is pre-prime if 
ab  implies that a  or b . It is clear that if 

 is a pre-prime ideal of  then 
A
 is a domain. 

Obviously, every pre-prime ideal is zero prime. 
According to Proposition 1.3.46 (i) (Dales, 2000), 
every prime ideal of a commutative algebra is zero 
prime. Moreover, if  is a domain then every ideal 
in  is a zero prime ideal. In fact,  is domain if 
and only if 0  is a zero prime ideal. Set 
PP 	 		 		is		a		pre prime		ideal  
and 
P 	 		 		is		a		zero		prime		ideal . 

Clearly, PP P . So,  
 
 ⋂ 	P ⋂ 	PP . 
 

Definition 2.14. A bilinear map :  is 
called a left two variables derivation if ab, c
a, c b a b, c  for all a, b, c . Similarly,  

is called a right two variables derivation whenever 
a, bc a, b c b a, c  for all a, b, c . 

A bilinear map :  is said to be a two 
variables derivation if it is a left as well as a right 
two variables derivation.  
 
Example 2.15. The bilinear map :  
which is defined by a, b a, b ab ba is a 
two variables derivation.  
 
Remark 2.16. Suppose that ,  are unital and 
:  is a left two variables derivation. 

We have 1, a 1.1, a 1 1, a
1, a 1, so 1, a 0. Similarly, if  is a right 

two variables derivation, then a, 1 0. Clearly, 
if ab, c a, bc  for all a, b, c  then 
a, b 1a, b 1, ab 0 and it means 

that  is identically zero. 
 
Proposition 2.17. Suppose that  has an 
approximate identity and  is a closed zero prime 
ideal of . If  has the property ( ) then a, b  

for all a, b , i.e.  is commutative. In particular, 

if ⋂ 	P 0  then  is commutative.  

Proof: We define a bilinear map :  by 

a, b a, b . Clearly,  preserves zero 
product, furthermore, it is a continuous two 
variables derivation. According to Remark 2.16,  
is identically zero. Hence, a, b  for all a, b

.  
 
Proposition 2.18. Suppose that  is a unital 
domain with the property ( ). Then every 
continuous linear mapping T:  is a 
centralizer, i.e. T ab T a b aT b  for all 
a, b . In particular, if T 1 0 then T 0.  
 
Proof: We define a bilinear map :  
by a, b T a b (a, b ) which is clearly 
continuous. If ab 0 then a 0 or b 0, since  
is a domain. It implies that a, b 0 and hence 

 preserves zero product. By the hypothesis,  has 
the property ( ) and so, ab, c a, bc  for all 
a, b, c . If we put c 1, then T ab 1 T a b. 
Using the same strategy, we can observe that 
T ab aT b  which means that T is a centralizer. 
Obviously, if T 1 0 then T 0.  
 
Theorem 2.19. Suppose that  is a unital Banach 
algebra with the property . Let D:  be a 
linear mapping and  be a closed zero prime ideal 
of  which is invariant under D. If D 1 	 	and 
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there exists a positive number N such that D a
N a  for all a  then D .  

 

Proof: We define :  by a, b
D a b  a, b . Obviously,  is a 
continuous bilinear map. Assume that ab = 0 then 
a  or b . If a , then D a , since  is 
invariant under D. Hence, a, b D a b  
and if b  then a, b D a b . So,  
preserves zero product. Since  has the property 

, ab, c a, bc  for all a, b, c . Hence, 
a, 1 1a, 1 1, a . It implies that 

D a  for all a . It means that D a  
and so, D .  
 
Corollary 2.20. Suppose that  is a unital domain 
with the property . If D:  is a continuous 
derivation then D is identically zero.  
 
Proof: Set 0 . Then  is a closed zero prime 
ideal. Previous theorem gives the result. Moreover, 
we can obtain this result by using Proposition 2.18.  
 
Theorem 2.21. Let  be a unital Banach -
bimodule, where  has the property ( ) and let 
D:  be a linear mapping for which 
D ab D a b aD b m a b  for some 
positive number m. If ab = 0 implies that D a b
aD b 0 then D is a derivation if and only if 
D 1 0.  
 
Proof: Let D be a derivation. It is routine to show 
that D 1 0. Conversely, assume that D 1 0. 
We define :  by a, b D ab
D a b aD b  (a, b ). Obviously,  is a 
continuous bilinear map. If ab 0, then it follows 
from the hypothesis that a, b D ab
aD b D a b 0, i.e.  preserves zero product. 
Since  has the property ( ), ab, c a, bc  
for all a, b, c . Hence, a, b 1a, b
1, ab D ab D 1 ab 1D ab 0 for all 

a, b  as a consequence D ab D a b
aD b . So, D is a derivation.  
We present an example about an algebra which is a 
domain with the property . Suppose that  has 
the property  and PP . By [(Alaminos, 

2009), Proposition 2.4]  has the property . It is 

easy to see that  is also a domain. 
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