In this paper, we introduce a class of rings which is a generalization of reversible rings. Let R be a ring with identity. A ring R is called central reversible if for any a,b ∈ R, ab=0 implies ba belongs to the center of R. Since every reversible ring is central reversible, we study sufficient conditions for central reversible rings to be reversible. We prove that some results of reversible rings can be extended to central reversible rings for these general settings.
Kose, H., Ungor, B., Halicioglu, S., & Harmanci, A. (2014). A generalization of reversible rings. Iranian Journal of Science, 38(1), 43-48. doi: 10.22099/ijsts.2014.1903
MLA
H. Kose; B. Ungor; S. Halicioglu; A. Harmanci. "A generalization of reversible rings", Iranian Journal of Science, 38, 1, 2014, 43-48. doi: 10.22099/ijsts.2014.1903
HARVARD
Kose, H., Ungor, B., Halicioglu, S., Harmanci, A. (2014). 'A generalization of reversible rings', Iranian Journal of Science, 38(1), pp. 43-48. doi: 10.22099/ijsts.2014.1903
VANCOUVER
Kose, H., Ungor, B., Halicioglu, S., Harmanci, A. A generalization of reversible rings. Iranian Journal of Science, 2014; 38(1): 43-48. doi: 10.22099/ijsts.2014.1903