In this article we implement an operational matrix of fractional integration for Legendre polynomials. We proposed an algorithm to obtain an approximation solution for fractional differential equations, described in Riemann-Liouville sense, based on shifted Legendre polynomials. This method was applied to solve linear multi-order fractional differential equation with initial conditions, and the exact solutions obtained for some illustrated examples. Numerical results reveal that this method gives ideal approximation for linear multi-order fractional differential equations.
Erjaee, G. H., Akrami, M. H., & Atabakzadeh, M. H. (2013). The operational matrix of fractional integration for shifted Legendre polynomials. Iranian Journal of Science, 37(4), 439-444. doi: 10.22099/ijsts.2013.1778
MLA
G. H. Erjaee; M. H. Akrami; M. H. Atabakzadeh. "The operational matrix of fractional integration for shifted Legendre polynomials", Iranian Journal of Science, 37, 4, 2013, 439-444. doi: 10.22099/ijsts.2013.1778
HARVARD
Erjaee, G. H., Akrami, M. H., Atabakzadeh, M. H. (2013). 'The operational matrix of fractional integration for shifted Legendre polynomials', Iranian Journal of Science, 37(4), pp. 439-444. doi: 10.22099/ijsts.2013.1778
VANCOUVER
Erjaee, G. H., Akrami, M. H., Atabakzadeh, M. H. The operational matrix of fractional integration for shifted Legendre polynomials. Iranian Journal of Science, 2013; 37(4): 439-444. doi: 10.22099/ijsts.2013.1778