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Abstract 

Let R  be a graded ring and M  be a graded R -module. We define a topology on graded prime spectrum 

( )G Spec M  of the graded R -module M  which is analogous to that for ( )G Spec R , and investigate 

several properties of the topology. 
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1. Introduction 

Let G  be a multiplicative group. A commutative 

ring R  with identity is called a G -graded ring if 

there exist additive subgroups gR  of R  indexed 

by the elements g G  such that g
g G

R R


  and 

g h ghR R R  for all ,g h G . The elements of 

gR  are called homogeneous elements of R  of 

degree g . The homogeneous elements of the ring 

R  are denoted by ( )h R , i.e. ( ) g
g G

h R R


  . If 

a R , then the element a  can be written 

uniquely as g
g G

a

 , where ga  is called the g -

component of a  in gR . Let R  be a graded ring 

and I  be an ideal of R . I  is called graded prime 
ideal of R  if I R  and whenever ab I , then 

either a I  or b I , where a , ( )b h R . The 

graded radical of I  is the set of all x R  such 

that for each g G  there exists 0gn   with 

gn

gx I . Note that if ( )r h R , then r  is an 

element of graded radical of I  if and only if 
nr I  for some n N . The graded radical of I  

is denoted by I . 
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Let R  be a G -graded ring and M  an R -

module. We recall that M  is a G -graded R -
module (or graded R -module) if there exists a 

family of subgroups  g g G
M


 of M  such that 

g
g G

M M


   and g h ghR M M  for all 

,g h G . Here g hR M  denotes the additive 

subgroup of M  consisting of all finite sums of 

elements g hr s  where g gr R  and h hs M . 

Also, we write ( ) g
g G

h M M


  and the elements 

of ( )h M  are called homogeneous. Let 

g
g G

M M


   be a graded R -module and N  be a 

submodule of M . Then recall that N  is a graded 

submodule of M  if  g
g G

N N M


   . In this 

case, g gN N M   is called the g -component 

of N . 

Let M  be a graded R -module and N  be a 

graded R -submodule of M . Then recall that N  

is a graded prime submodule of M  if N M  
and whenever ( )a h R  and ( )m h M  with 

am N , then either m N  or  :Ra N M  

where    :RN M r R rM N   . Graded 

prime submodules of graded modules have been 
studied by various authors, see, for example, [1-3]. 
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A graded R -module M  is called to be a 
multiplication graded module if for every graded 
submodule N  of M  has the form IM for some 
graded ideal I  of R . Multiplication graded 
modules were characterized in [4]. N  is a graded 

maximal submodule of M  if N M and there is 

no graded submodule 'N  of M  such that 

'N N M  . A graded R -module M  is 
called graded finitely generated if there are 

1 2, , , kx x x  in ( )h M  such that 
1

k

i
i

M Rx


 . 

An element m M  is called nilpotent if 

  0
k

Rm   for some positive integer k  [5]. It is 

clear that, if M  is graded multiplication then 

( )Nil M P  where the intersection runs over 

all graded prime submodules of M . Moreover, a 
faithful graded R -module M  is multiplication if 

and only if ( )I M I M 
  

 
  
 

   where I  

is a graded ideal of R  [6, Theorem 8]. 
The graded prime spectrum ( )G Spec R  of a 

graded ring R  consists of all graded prime ideals 
of R  and similarly the graded prime spectrum 

( )G Spec M  of a graded module M  consists 

of all graded prime submodules of M . For each 
graded ideal I  of R , if we introduce the G -

variety  ( ) ( )R
GV I p G Spec R p I     

then the collection  ( ) ( )R
G GR V I I R    

satisfies the topology axioms for closed sets. This 
topology is called a Zariski topology on 

( )G Spec R . In this study, we generalize this 

prime spectrum to graded R -modules. For a 
graded submodule N  of M  we define the variety 

 *( ) ( )GV N P G Spec M P N     where 

the collection * *( ) ( )GM V N N   is a 

submodule of M does not satisfy all of the 

topology axioms for closed sets. Whenever 
*( )M is closed under finite union, then this 

topology is called a quasi-Zariski topology and the 
module M  is called a G -top module. After this, 
we define another variety 

 ( ) ( ) ( : ) ( : )GV N P G Spec M P M N M   

 of the graded module ,M  the collection 

( ) ( )GM V N N   is a submodule of M  

satisfies all of the topology axioms for the closed 
sets. Hence we obatain a topology on 

( )G Spec M  called a Zariski topology. Some 

properties of these topologies are given and we 
obtain some relations between properties of the 
graded prime spectrum ( )G Spec R  and 

( )G Spec M  by using the map 

 : ( ) ( )G Spec M G Spec R Ann M     

defined by ( : )P P M  for ( )P G Spec M  . 

Finally, we give some results that determine under 
what conditions the graded prime spectrum 

( )G Spec M  is 0T , 1T  or 2T -space. 

Throughout this paper, we deal with G -graded 
rings and graded R -modules. If I  is a graded 
ideal of R  and N  is a graded submodule of M  

we write respectively, GI R  and GN M . 

Throughout this paper we assume that 
( )G Spec M  is nonempty. 

2. The Zariski topology on ( )G Spec R  

In this section we will give some properties of the 

G -variety  ( ) ( )R
GV S p G Spec R p S   

 
for a homogeneous subset S  of R . Note that, if 

the graded ideal I  is generated by S , then it is 

clear that ( ) ( )R R
G GV S V I . Also,  ( )R R

G GV I V I  

for any graded ideal I  of R . Therefore, we can 

easily see that ( ) ( )R R
G GV rR V r  for any 

( )r h R . We show that the set ( )G Spec R  is 

a topology for the closed sets ( )R
GV I . 

 

Proposition 2.1. Let ,I J  and  i i
I


 be graded 

ideals of the graded ring R . Then the following 
hold for G -variety of ideals: 

(1) (0) ( )R
GV G Spec R   and ( )R

GV R  , 

(2)  R R R
G i G i G i

ii i

V I V I V I
 

  
    

   
  , 

(3) ( ) ( ) ( ) ( )R R R R
G G G GV I V J V I J V IJ    . 

 
Proof: (1) For any ( )p G Spec R  , 0 p , so 

(0)R
Gp V . Hence ( ) (0)R

GG Spec R V  . 
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Suppose that ( )R
GV R   . Then there is 

( )R
Gp V R . Hence 1 R p  , a contradiction. 

(2) Let ( )R
G i

i

p V I


 . Then ( )R
G ip V I  and 

we obtain that iI p  for all i . Hence 

i
i

I p


 , so that 
R

G i
i

p V I


 
  

 
 . Conversely, 

let 
R

G i
i

p V I


   
 
 . Then i

i

I p


  and so 

iI p  for all i . This shows that 

 R
G ip V I  for all i  and hence 

( )R
G i

i

p V I


 . 

(3) Since ( ) ( )R R
G GV I V I J   and 

( ) ( )R R
G GV J V I J  , 

( ) ( ) ( )R R R
G G GV I V J V I J   . For the reverse 

inclusion, let  R
Gp V I J  . Then I J p  . 

Since p  is a graded prime ideal, then I p  or 

J p . So that ( )R
Gp V I  or ( )R

Gp V J . We 

obtain ( ) ( ) ( )R R R
G G GV I J V I V J   . 

 
Corollary 2.2. Let R  be a graded ring. The 

collection  ( ) ( )R
G GR V I I R    of all 

varieties of graded ideals of R  satisfies the axioms 
of topological space for closed sets. We call this 
topology the Zariski topology on ( )G Spec R . 

 
Theorem 2.3. Let R  be a graded ring. For any 
homogeneous elements r  and s  of R , we have 
the following properties: 

(1) The set  ( ) \ R
r GD G Spec R V rR   is 

open in ( )G Spec R  and the family 

 ( )rD r h R  is the basis for the Zariski 

topology on ( )G Spec R . 

(2) For the open sets rD  and sD , we have 

r s rsD D D  . 

(3) For the open sets rD  and sD , we have 

r sD D  if and only if rR sR . 

(4) The open set rD  is quasi compact for all 

( )r h R . 

(5) The space ( )G Spec R  is a 0T -space for the 

Zariski topology. 
 
Proof: (1) Assume that U  is an open set in 

( )G Spec R . Thus  ( ) \ R
GU G Spec R V I   

for some graded ideal I  of R . Notice that 

( )g
g G

I I h I


  . Then  
( )

( ) ( ) ( )R R R
G G G

r h I

V I V h I V r


  
. 

Hence   
( )

( ) \ R
G

r h I

U G Spec R V r


 
( )

r
r h I

D


  . 

This implies that  ( )rD r h R  is a basis for 

the Zariski topology on ( )G Spec R . 

(2) Let r sp D D   for the open sets rD  and 

sD . Then r p  and s p , so that rs p . It 

follows that rsp D  and hence r s rsD D D  . 

For reverse inclusion, assume that rsp D . Then 

rs p , namely r p  and s p . Hence 

rp D  and sp D , so that rs r sD D D  . 

(3) Suppose that r sD D . Then 

( ) ( )R R
G GV rR V sR , so that r p  if and only if 

s p . This implies rR sR . Conversely, 

assume that rR sR . It follows that r p  if 

and only if s p . Then ( ) ( )R R
G GV rR V sR  and 

hence r sD D . 

(4) Let ( )r h R  and suppose that  
isD i  

is an open cover of rD , where for each i , 

( )is h R . Then, 

 ( ) \ ( ) ( ) \ ( )
i

R R
G r s G i

i i

G Spec R V rR D D G Spec R V s R
 

     
 

( ) \ R
G i

i

G Spec R V s R


    
 
  and hence 

( )R R
G i G

i

V s R V R


   
 
 . It follows from (3) that 

i
i

rR s R


   , then there exists a positive 

integer n  such that n
i

i

r s R


 . Then there 

exists 1 2, , , mi i i  , 
1 2
, , , ( )

mi i it t t h R  
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such that 
1 1 2 2 m m

n
i i i i i ir s t s t s t    . Let 

 1 2, , , mi i i   . Notice that ( )R
Gp V r  

iff ( )R n
Gp V r . ( )n

j
j

rR s R


  implies 

  ( )R R n R
G j G G

j

V s R V r V r


 
  

 
 . Therefore 

  ( )R R
G j G

j

V s V r


 , so   ( ) \ R
G i

i

G Spec R V s




( )G Spec R  \ ( )R
GV r  and hence 

ir s
i

D D


 . 

Since   is finite set, rD  is quasi compact. 

(5) Let ,p  ( )q G Spec R   and p q . Then 

\p q    or \q p   . Suppose that 

\p q   . Then there exists an element 

\r p q  for ( )r h R . Then rp D  and since 

rR q , we get  R
Gq V rR . So rq D  and 

since rD  is an open set, ( )G Spec R  is a 0T -

space for the Zariski topology. 

3. The Zariski topology on ( )G Spec M  

In this section we will give different varieties for 
any graded submodule of a graded module. Also, 
we investigate under what conditions these varieties 
give a topology on ( )G Spec M . Now we give 

some relations between graded ideals of R  and 
graded submodules of graded R -modules .M  
 
Lemma 3.1. Let R  be a G -graded ring, M  be a 

graded R -module, and N  be a graded R -
submodule of M . Then the following hold: 

(i)  ( : )RN M r R rM N   is a graded 

ideal of R , 
(ii) If I  is a graded ideal of R , ( )r h R  and 

( )x h M , then IN , rN , and Rx  are graded 

submodules of M . 
 
Proof: One can look for the proof of (i) and (ii) to 
[1, Lemma 2.1], [7, Lemma 2.2], and [6, Lemma 1]. 
Also, for the proof of (i), see [5, Lemma 1.2 (iii)].    
 
Theorem 3.2. Let M  be a graded R -module. If 
N  is a graded prime submodule of M  then 

( : )RN M  is a graded prime ideal of R . The 

converse part is true when M  is a multiplication 
graded R -module. 

 
Proof: One can look for the proof to [6, Theorem 
3]. 
 
Proposition 3.3. Let M  be a graded R -module. 
For any graded submodule N  of M , we define 

the variety of N  to be 

 *( ) ( )GV N P G Spec M P N    . Then 

the following hold: 

(1) *(0) ( )GV G Spec M   and  *
GV M  . 

(2)  * *
G i G i

ii

V N V N


   
 
 , for any family 

 i i
N


 of graded submodules. 

(3)      * * *
G G GV N V L V N L    for any 

graded submodules ,N L  of .M  

 
Proof: (1) Trivial. 

(2) Let  *
G i

i

P V N


 . Then,  *
G iP V N  

gives us iN P  for all i . It follows that 

i
i

N P


  and hence 
*

G i
i

P V N


   
 
 . 

Conversely, assume that 
*

G i
i

P V N


   
 
 . Then 

i
i

N P


  and so, iN P  for all i . Thus 

 *
G i

i

P V N


  and equality holds. 

(3) Since N L N   and N L L  , then 
* *( ) ( )G GV N V N L   and * *( ) ( )G GV L V N L  . 

Hence * * *( ) ( ) ( )G G GV N V L V N L   . 

Remark that, the reverse inclusion in Proposition 
3.3 (3) is not true in general. For this, if we take the 
Z2-graded Z-module  M Z Z  and 

4 {0} N Z , {0} 4 L Z  as graded submodules 

of ,M  then 
*{0} {0} ( )P V N L     but 

P    * *
G GV N V L  since N P  and 

L P , where ( )P G Spec M  . 

 
Definition 3.4. Let M  be a graded R -module and 

*( )M  be the set of all varieties 
*( )GV N  of M , 

i.e.,  * *( ) ( )G GM V N N M   . 
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M  is called a G -top module if the set 
*( )M  

is closed under finite union. Then 
*( )M  is a 

topology on ( )G Spec M  and this topology is 

called a quasi Zariski topology on ( )G Spec M , 

denoted by * . 
 
Theorem 3.5. If M  is a multiplication graded R -
module, then M  is a G -top module. 
 
Proof: It is enough to prove that the inclusion 

* * *( ) ( ) ( )G G GV N L V N V L    is satisfied. Let 
*( )GP V N L  . Then N L P   and we get 

( : ) ( : )N L M P M  . Since ( : )P M is a 

graded prime ideal and 
( : ) ( : ) ( : )N L M N M L M   , we get 

( : ) ( : )N M P M  or ( : ) ( : )L M P M . 

Then ( : ) ( : )N M M P M M  or 

( : ) ( : ) .L M M P M M  Since M  is graded 

multiplication module, then N P  or L P . 

Hence * *( ) ( )G GP V N V L  . 

 
Proposition 3.6. Let M  be a graded R -module. 

Then the family  *'( ) ( )G GM V IM I R    

is closed under finite union. Further, '( )M  is a 

topology on ( )G Spec M  denoted by ' . 

 
Proposition 3.7. Let M  be a graded R -module. 
If M  is a G -top module then the quasi Zariski 

topology *  on ( )G Spec M  is finer than ' . 

Now we define another variety for a graded 
submodule N  of a graded module M . We define 

the variety of N  to be 

 ( ) ( ) ( : ) ( : )GV N P G Spec M P M N M     

The following proposition shows that this variety 
satisfies the topology axioms for closed sets. 
 
Proposition 3.8. Let M  be a graded R -module. 
Then the following hold: 

(1) (0) ( )GV G Spec M   and  GV M  . 

(2)    :G i G i
ii

V N V N M M


   
 
 , for any 

family  i i
N


 of graded submodules. 

(3)      G G GV N V L V N L    for any 

graded submodules ,N  L  of M . 

 
Proof: (1) It is clear. 

(2) Let  G i
i

P V N


 . For all i , 

 G iP V N  implies  : ( : )iN M P M . 

Then  : ( : )iN M M P M M . It follows that 

 : ( : )i
i

N M M P M M P


   for all 

i . Therefore  :G i
i

P V N M M


   
 
 , so 

   :G i G i
ii

V N V N M M


   
 
 . 

Conversely, let  :G i
i

P V N M M


   
 
 . Then 

 : : ( : )i
i

N M M M P M


   
 
 . Since 

 ( : ) : :i i
i

N M N M M M


   
 
 , we get 

( : ) ( : )iN M P M  for all i . Thus 

 G iP V N , for all i . Hence 

 G i
i

P V N


 . 

(3) Let  GP V N L  . Then ( : ) ( : )N L M P M  , 

so that ( : ) ( : ) ( : )N M L M P M  . Since 

( : )P M  is graded prime ideal, then 

( : ) ( : )N M P M  or ( : ) ( : )L M P M . It 

follows that ( )GP V N  or ( )GP V L . Hence 

   G GP V N V L  . Reverse inclusion is clear. 

 
Definition 3.9. Let M  be a graded R -module. 

Since  ( ) ( )G GM V N N M    is closed 

under finite union, the family ( )M  satisfies the 

axioms of topological space for closed sets. So, 
there exists a topology on ( )G Spec M  called 

the Zariski topology and denoted by  . 
 
Definition 3.10. Let M  be a graded R -module 
and ( )p G Spec R  . Then the set 
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( )pG Spec M  is defined to be 

 ( ) ( : )P G Spec M P M p   . 

Now we give some relations between the varieties 
* ( )GV N  and ( )GV N  for any submodule N  of the 

graded R -module .M  
 
Lemma 3.11: Let M  be a graded R -module and 

,N  L  be graded submodules of M . 

(1) If ( : ) ( : )N M L M , then ( ) ( )G GV N V L . 

The converse is true if N  and L  are graded prime 
submodules. 
(2) 

   *( ) ( : ) ( : )G G GV N V N M M V N M M  . 

 
Theorem 3.12. For any graded R -module M , the 
Zariski topology   on ( )G Spec M  is identical 

with '  and the quasi Zariski topology *  on 
( )G Spec M  is finer than the Zariski topology 

 . 
 
Proof: It is clear.    
Let M  be a graded R -module. Now we give the 
relation between ( )G Spec M  and 

 ( )
RG Spec Ann M . For this we set MX  

and RX  to represent ( )G Spec M  and 

( )G Spec R  respectively, where 
( )

RR Ann M . 

The map : M RX X  , defined by 

( : )P P M  for MP X  is called the natural 

map of MX . 
 
Proposition 3.13. Let M  be a graded R -module. 

The natural map   of MX  is continuous for the 

Zariski topologies defined on M  and R . More 

precisely,  1 ( ) ( )R
G GV I V IM   for every 

graded ideal I  of R  containing ( )Ann M . 

 

Proof: Let I  be a graded ideal of R , 

( ) ( )R
GV I R  and  1 ( )R

GP V I . Then 

( : ) ( ) ( )R
GP M P V I  , thus ( : )P M I . 

It follows that ( : )P M I , that ( )GP V IM . 

Therefore  1 ( ) ( )R
G GV I V IM  . For the 

converse inclusion, let ( )GP V IM . Then, 

( )IM P G Spec M    and hence 

( : ) ( )I P M G Spec R   . And so we get 

( ) ( : ) ( )R
GP P M V I   . This implies 

 1 ( )R
GP V I . Hence the proof is completed.    

 
Proposition 3.14. The following statements are 
equivalent for any graded R -module M  and any 

,P  
MQ X : 

(1) The natural map   is injective. 

(2) If ( ) ( )G GV P V Q , then P Q . 

(3) ( ) 1pG Spec M   for every ( )p G Spec R  . 

 

Proof: (1) (2): Suppose that ( ) ( )G GV P V Q . 

By Lemma 3.11, we get ( : ) ( : )P M Q M . 

Thus ( ) ( )P Q  . Since   is injective, we 

obtain P Q . 

(2) (3): Let ( ) 1pG Spec M   and let ,P  

( )pQ G Spec M   such that P Q . So, 

( : ) ( : )P M Q M p  . Hence we get 

( ) ( )G GV P V Q  and by hypothesis we obtain 

P Q , which is a contradiction. 

(3) (1): Let ( ) ( )P Q  . It follows that 

( : ) ( : )P M Q M . So, we can write 

( : ) ( : )P M Q M p   and since ( ) 1pG Spec M  , 

we get P Q .    

 
Proposition 3.15. Let M  be a graded R -module and 

let   be the natural map of 
MX . If   is surjective, 

then   is both open and closed, more precisely for every 

GN M ,    ( ) ( : )R
G GV N V N M   and 

( \ ( ))M
GX V N  \ ( : )R R

GX V N M . 

 
Proof: Since   is a continuous map such that 

 1 ( ) ( )R
G GV I V IM  , we get for every 

GN M , 

    1 ( : ) ( : ) ( )R
G G GV N M V N M M V N   . 

As   is surjective, 
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    1 ( : ) ( : )R R
G GV N M V N M   . Thus 

   ( ) ( : )R
G GV N V N M  . Similarly 

     1 1\ ( ) ( ) \ ( : )M R R
G GX V N X V N M    

   1 \ ( : )R R
GX V N M    and so 

   \ ( ) \ ( : )M R R
G GX V N X V N M  .    

 
Corollary 3.16. Let   be surjective and M  be a 

graded R -module. Then   is bijective if and only 

if   is homeomorphic. 

 
Proposition 3.17: Let M  and 'M  be graded R -

modules, ( )MX G Spec M   and 
' ( ')MX G Spec M  . If : 'f M M  is an 

epimorphism, then the function 
': M MX X   

defined by 
1' ( ')P f P  is continuous. 

 

Proof: For any GN M  and '' MP X  and any 

closed set ( )GV N  of MX , we have 

    1 1 *' ( ) ( : )G GP V N V N M M     iff 

   1' ' ( : )P f P N M M    iff 

 ' ( : ) ( : ) 'P f N M M N M M   iff 

   *' ( : ) ' ( : ) 'G GP V N M M V N M M  . 

Thus    1 ( ) ( : ) 'G GV N V N M M  . Hence 

  is continuous.    

4. A base for the Zariski topolgy on 
( )G Spec M  

In this section we write \ ( )M
r GX X V rM  of 

MX  for ( )r h R  and show that 

 ( )rB X r h R   forms a base for MX . 

Further, we compare this base with the base of RX . 
For each element r  of ( )h R , we write 

\ ( )M
r GX X V rM . Clearly, every rX  is an 

open set of MX  and we have 0X   and 

1
MX X  for 0 ,1 ( )R R h R . 

 

Proposition 4.1: Let M  be a graded R -module 

with natural map   on MX  and ( )r h R . 

Then, 

(1) 
1( )r rD X   

(2) ( )r rX D  . If   is surjective, then the 

equality holds. 

(3) The set  ( )rB X r h R   is a base for the 

Zariski topology on MX . 

(4) rs r sX X X  , for any ,r  ( )s h R . 

 

Proof:  (1)   1 1 R

r
D X   \ ( )R

GV rR

MX \  1 ( )R M
GV rR X  \ ( )G rV rM X . 

(2) Trivial. 

(3) Let U  be any open set in MX . Since 

 *( ) '( ) ( ) ( )G G GM M V IM V IM I R    

by Lemma 3.11, \ ( )M
GU X V IM  for some 

graded ideal I  of R . Notice that ( )I h I . 

Then, ( ) ( )IM h I M h I M  . So, 

 
( )

( ) ( ) ( )G G G
r h I

V IM V h I M V rM


   . It 

follows that 

( ) ( )

\ ( ) \ ( )M M
G G r

r h I r h I

U X V IM X V rM X
 

    . 

Therefore B  is a base for the Zariski topology on 
MX . 

(4)        1 1 1 1
rs r s r s r srs

X D D D D D X X              

by (1).    
 
Theorem 4.2. Let M  be a graded R -module. If 
the natural map   is surjective, then the open set 

rX  is quasi compact for each ( )r h R . 

Specifically, MX  is quasi compact. 
 

Proof: As the set  ( )rB X r h R   is a base 

for the Zariski topology by Proposition 4.1(3), for 

every open cover of rX , there is a set 

 ( )r h R    such that r rX X




  . 

Then    r r r rD X X D
 

 

 
 

     by 

Proposition 10(2). Since rD  is quasi compact, 

there exists a finite subset '    such that 
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'
r rD D




  . Hence we obtain 

 1

'
r r rX D X








   .    

Let M  be a graded R -module and Y  be any 

subset of MX . We will denote the intersection of 
all elements in Y  by ( )Y  and the closure of Y  

in MX  for the Zariski topology by ( )Cl Y . 

 
Proposition 4.3. Let M  be a graded R -module 

and 
MY X . Then  ( ) ( )GV Y Cl Y  . In 

particular, Y  is closed if and only if 

 ( )GV Y Y  . 

 

Proof: We can see easily that  ( )GY V Y . 

Let ( )GV L  be any closed subset of MX  which 

contains Y . Thus for all Q Y , we have 

( : ) ( : )Q M L M . This implies that 

 ( : ) ( : ) ( ) :
Q Y

L M Q M Y M


  . So, 

 ( : ) ( ) : ( : )P M Y M L M   for every 

 ( )GP V Y , that is,  ( ) ( )G GV Y V L  . 

Hence  ( )GV Y  is the smallest closed subset of 

MX  including Y , which means  ( ) ( )GV Y Cl Y  . 

 
Proposition 4.4. Let M  be a graded R -module, 

MP X , and  ( : ) M RQ M Q X X    . 

Then,  

(1)    ( )GCl P V P . 

(2) For any 
MQ X ,   Q Cl P , if and only 

if ( : ) ( : )Q M P M  if and only if 

( ) ( )G GV P V Q . 

(3) Let M  be a finitely generated graded R -

module. The set  P  is closed in MX  if and only 

if 
a) ( : )p P M  is a maximal element of the set 

 , and 

b)  ( )pG Spec M P  , that is, 

( ) 1pG Spec M  . 

Proof: (1) We can easily see that (1) holds by 

taking  Y P  from Proposition 4.3.  

(2) This follows from (1).  

(3) Assume that  P  is closed in MX . Hence 

     ( )GP Cl P V P   by (1). Let q   

such that p q . Then there exists 
MQ X  such 

that ( : )q Q M . So, ( : ) ( : )P M p Q M  . 

We have  ( )GQ V P P  , namely Q P  . 

So, p q  and p  is a maximal element of the set 

 . Let 
* ( )pP G Spec M  . Then 

*( : ) ( : )P M p P M   and so  * ( )GP V P P  . 

Hence  ( )pG Spec M P  . Conversely, we 

suppose that (a) and (b) hold. Since P  is graded 

prime we have   ( )GP V P . If ( )GQ V P , 

then ( : ) ( : )q Q M P M p   . Therefore 

q p  by (a) and Q P  by (b). Thus 

 ( )GV P P , so that  ( )GV P P . By (1), 

    Cl P P . Hence the set  P  is closed in 

MX .    
The following corollary is a result of Proposition 

4.4(1). 
 
Corollary 4.5. For every graded prime submodule 

P  of a graded R -module M , ( )GV P  is an 

irreducible closed subset of MX . 
 
Proposition 4.6. Let M  be a graded R -module 

and Y  be a subset of MX . If ( )Y  is a graded 

prime submodule of M , then Y  is irreducible.  
 
Proof: Assume that ( )Y  is a graded prime 

submodule of M . Then,  ( ) ( )GV Y Cl Y   is 

irreducible by Corollary 4.5 and Proposition 4.3. So 
Y  is irreducible.    
 
Corollary 4.7. Let M  be a graded R -module. If  

 iY P i   is a non-empty family of graded 

prime submodules iP  of M , which is linearly 

ordered by inclusion, then Y  is irreducible in MX . 
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Proof: Let ( ) i
i

Y P P


  . P  is a proper 

submodule of M . Suppose that rm P  but 

m P  where ( )r h R  and ( )m h M . Then 

im P  for some i . Since iP  is a graded 

prime submodule, we get  :ir P M . Let j  be 

any element of   such that j i . Since Y  is 

linearly ordered by inclusion, we have either 

i jP P  or j iP P . If i jP P , then we obtain 

 : ( : )i jr P M P M  . If j iP P , then since 

im P  and jP  is a graded prime submodule, we 

have  :jr P M . Hence ( : )r P M  and 

( )Y  is a graded prime submodule, so Y  is 

irreducible on MX  by Proposition 4.6.    
 
Proposition 4.8. Let M  be a graded multiplication 
R -module. If ( )Nil M  is graded prime 

submodule of M , then MX  is irreducible. 
 

Proof: Let U  and V  be open subsets of MX  and 

UP  and VP  be elements of U  and V , 

respectively. Then there exist submodules N  and 

K  of M  such that \ ( )M
GU X V N  and 

\ ( )M
GV X V K . So ( )U GP V N  and 

( )V GP V K , that is, UN P  and VK P . 

Since ( ) UNil M P , ( )N Nil M . Hence, we 

get ( )Nil M U . Similarly ( )Nil M V . 

Consequently, ( )Nil M U V     and we 

obtain MX , irreducible. 
 
Proposition 4.9. Let M  be a graded R -module. 

Assume that ( )pG Spec M    for some 

( )p G Spec R  . Then the following hold: 

(a) ( )pG Spec M  is irreducible. 

(b) If p  is a graded maximal ideal of R , then 

( )pG Spec M  is an irreducible closed subset of 

MX . 
 
Proof: (a) Let 

 ( ) ( ) ( : ) ,p i iG Spec M P G Spec M P M p i      . 

Then  ( )p i
i

G Spec M P


   is a graded 

prime submodule. Indeed, we assume i
i

rm P


  

and  : :i i
i i

r P M P M
 

 
  
 
  , where 

( )r h R  and ( )m h M . Notice that 

 :iP M p . Then  :ir p P M   for all 

i . Since irm P  and iP  is graded prime, we 

get im P  for all i . Hence i
i

m P


  and 

( )pG Spec M  is irreducible by Proposition 4.6. 

(b) To prove this, it suffices to show that 

( ) ( )p GG Spec M V pM   for the graded 

maximal ideal p . Let ( )GN V pM , that is, 

( : ) ( : )N M pM M p  . Since p  is 

maximal, ( : )N M p . So, ( )pN G Spec M  . 

Conversely, let ( )pP G Spec M  . Then 

( : ) ( : )P M p pM M   and because of 

maximality of p , we obtain ( : )p pM M  and 

so ( )GP V pM .    

 
Proposition 4.10. Let M  be a graded R -module 

and Y  be a subset of MX  such that 

 ( ) :Y M p   is a graded prime ideal of R . If 

( )pG Spec M   , then Y  is irreducible. 

 

Proof: Take ( )pP G Spec M  . Since 

 ( : ) ( ) :P M p Y M   we have 

 ( ) ( ) ( )G GV P V Y Cl Y   by Lemma 3.11 

and Proposition 4.3. Therefore, ( )Cl Y  is 

irreducible and so is Y .    
 
Theorem 4.11. Let M  be a graded R -module. 
Then the following statements are equivalent for 

any ,P  
MQ X  : 

(1) MX  is 0T -space. 

(2) The natural map   is injective. 

(3) If ( ) ( )G GV P V Q , then P Q . 
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(4) ( ) 1pG Spec M   for every 

( )p G Spec R  . 

 
Proof: (1) (3) follows from Proposition 4.4 and 

the fact that a topological space is a 0T -space if and 

only if the closures of distinct points are distinct. 
The equivalences of (2), (3), and (4) are proved in 
Proposition 3.14. 
 
Corollary 4.12. Let M  be a G -top module, in 
particular, let M  be a graded multiplication 

module. Then ( )G Spec M  is a 0T -space for 

the Zariski topology. 
 
Proposition 4.13. Let M  be a graded R -module 

and  ( : ) M RP M P X X    . Then 

( )G Spec M  is a 1T -space if and only if 

(1) ( : )P M p  is a maximal element of   for 

all MP X , 

(2) ( ) 1pG Spec M   for all 

( )p G Spec R  . 

 

Proof: If ( )G Spec M  is a 1T -space then the 

singleton sets are closed in MX . So we obtain (1) 
and (2) by Proposition 4.4(3). Conversely, (1) and 

(2) are equivalent so that the singleton set  P  is 

closed in MX  for every MP X , that is, MX  is 

a 1T -space.    

 
Theorem 4.14. Let M  be a graded R -module. 

Then MX  is a 1T -space if and only if every 

graded prime submodule of M  is maximal. 
 

Proof: Assume that MX  is a 1T -space. Let P  be 

any graded prime submodule of M . By 

Proposition 4.4(1),    ( )GCl P V P  and since 

MX  is a 1T -space, every singleton subset of MX  

is closed, that is,     ( )GCl P V P P  . 

Now, assume that P Q . It follows that 

( : ) ( : )P M Q M . So  ( )GQ V P P   and 

we obtain P Q . For the converse, suppose that 

every graded prime submodule of M  is maximal. 

Then for all MP X  we have   ( )GP V P , 

and every singleton subset of MX  is closed. Hence 
MX  is a 1T -space.    

 
Theorem 4.15. Let M  be a graded multiplication 

R -module. Then MX  is a 1T -space if and only if 

it is a 2T -space. 

 

Proof: Assume that MX  is a 2T -space. Then it is 

a 1T -space. Conversely, assume that MX  is a 1T -

space. If 1MX   or 2MX  , then MX  is a 

2T -space. Now assume that 2MX  . Then we 

can take three distinct elements in MX , say 1,P  

2 ,P  and 3P . Since M  is graded multiplication, 

     1 3 1 3 2, \M
G GV PP P P X V P  , 

     2 3 2 3 1, \M
G GV P P P P X V P   and 

     2 2 1 3\M
G GV P P X V PP   are open sets 

in MX . This implies that  1 1 3GP V PP  and 

 2 2GP V P . Moreover,    1 3 2G GV PP V P  .  
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