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Abstract

Let R be agraded ring and M be a graded R -module. We define a topology on graded prime spectrum
G —Spec(M) of thegraded R -module M which is analogous to that for G — Spec(R) , and investigate

severa properties of the topology.
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1. Introduction

Let G be a multiplicative group. A commutative
ring R with identity is called a G -graded ring if
there exist additive subgroups Rg of R indexed

by the elements g € G such that R= G—)6Rgand
ge

R,R € Ry, fordl g,heG. The elements of

R, are called homogeneous elements of R of
degree g . The homogeneous elements of the ring
R are denoted by h(R),ie h(R)=[JR,.1If
geG
aeR, then the edement @ can be written

uniquely as Zag , Where a, is called the Q-
geG

component of a in Rg Let R be a graded ring

and | beanidea of R. | iscaled graded prime
ideal of R if | # R and wheneverabe | , then
gither ael or bel ,where @, be h(R) . The

graded radical of | isthe set of al X€ R such
that for each geG there exists N, >0 with
X,© €l . Note that if reh(R), then r is an

element of graded radical of | if and only if
r" el forsome n eN . Thegraded radical of |

i denoted by /1 .
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Le R be a G-graded ring and M an R-
module. We recall that M is a G-graded R-
module (or graded R -module) if there exists a

family of subgroups {Mg} of M such that

ge

M=®M, ad RM,cM, for al

geG
g,heG. Hee R M, denotes the additive

subgroup of M consisting of al finite sums of
elements IS, where 1, e R and 5, eM,.

Also, we write h(M) = U M, and the elements
geG

of h(M) ae caled homogeneous. Let

M =@ M, beagraded R-moduleand N bea
geG

submodule of M . Then recall that N is agraded
submodule of M if N= @ (NAM, ). Inthis

geG
cae, Ny =N NM, is caled the g -component
of N.
Let M be a graded R-module and N be a
graded R -submodule of M . Then recall that N

is a graded prime submodule of M if N= M
and whenever ae h(R) and me h(M) with

ame N, then either me N or ae(N:R M)

where (N:RM)={reR|rM gN}. Graded

prime submodules of graded modules have been
studied by various authors, see, for example, [1-3].
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A graded R-module M is called to be a
multiplication graded module if for every graded

submodule N of M has the form |IM for some
graded ideal | of R. Multiplication graded
modules were characterized in [4]. N is agraded
maximal submodule of M if N # M and there is
no graded submodule N' of M such that

NcN'cM. A graded R-module M is
called graded finitely generated if there are

k
X, X0 2 % in (M) such that M =) Rx.
=
An edement MeM is cdled nilpotent if
(Rm)k =0 for some positive integer K [5]. It is
clear that, if M is graded multiplication then
Nil(M)zﬂP where the intersection runs over

all graded prime submodules of M . Moreover, a
faithful graded R -module M is multiplication if

and only if ﬂ(IlM):{ﬂll]M where |,

AeA AeA
isagraded ideal of R [6, Theorem 8].

The graded prime spectrum G — Spec(R) of a
graded ring R consists of al graded prime ideals
of R and similarly the graded prime spectrum
G —Spec(M) of a graded module M consists

of all graded prime submodules of M . For each
graded ideal | of R, if we introduce the G-

variety VGR(I):{peG—S)eC(R)| po I}
then the collection ((R)={VGR(I)|I S R}

satisfies the topology axioms for closed sets. This
topology is caled a Zariski topology on
G — Spec(R) . In this study, we generdize this

prime spectrum to graded R-modules. For a
graded submodule N of M we define the variety

V' (N)={PeG-Spec(M)| P2 N} where
the collection C*(M)={VG*(N)|N is a

submodule of M}does not satisfy all of the
topology axioms for closed sets. Whenever
¢ (M)is closed under finite union, then this

topology is called a quasi-Zariski topology and the

module M is called a G -top module. After this,
we define another variety

V5(N)={PeG—-Spec(M)|(P:M) 2 (N: M)}
of the graded module M, the collection

{(M)z{VG(N)| N is a submodule of l\/l}

satisfies al of the topology axioms for the closed
sets. Hence we obatain a topology on
G-—Spec(M) cdled a Zariski topology. Some

properties of these topologies are given and we
obtain some relations between properties of the
graded prime spectrum G- Spec(R) and

G- Spec(M) by usng the map

¢:G—SOGC(M)—)G—SJeC(R/Ann(M))
definedby P+ (P:M) for Pe G- Spec(M).

Finally, we give some results that determine under
what conditions the graded prime spectrum

G-Spec(M) isT,, T, or T, -space.

Throughout this paper, we deal with G -graded
rings and graded R-modules. If | is a graded
ideal of R and N is a graded submodule of M

we write respectively, | <g R and N <4 M.

Throughout this paper we assume that
G — Spec(M) isnonempty.

2. The Zariski topology on G — Spec(R)

In this section we will give some properties of the
G -variety V£ (S)={peG-Spec(R)| p=2 S}
for a homogeneous subset S of R. Note that, if
the graded ideal | is generated by S, then it is
clear that V& (S) =V (1) . Also, V(1) =VGR(JT)
for any graded ideal | of R. Therefore, we can
easily see tha VE(rR)=VS(r) for any
r € h(R) . We show that the set G — Spec(R) is
atopology for the closed sets VS (1) .

Proposition 2.1. Let |,J and {Ii}ieA be graded

ideals of the graded ring R. Then the following
hold for G -variety of ideals:

1) VE(0) = G- ec(R) and VE(R) =T,

@ ﬂvGR(li):vGR(Zlij:VGR(Uli)

ieA ieA ieA

3 VR UVE() =V 1) =VR(1J).

Proof: (1) Forany pe G- Spec(R), 0c p, so
peV,"(0). Hence G- Spec(R)=V,"(0).
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Suppose that V. R(R)#Q. Then there is

peV,"(R).Hencele Rc p, acontradiction.

@ Let pe[ V(). Then peVE(l;) and
ieA

we obtain that |, < p for al i€A. Hence

Zli C P, sothat peVGR(ZIij.Conversely,

ieA ieA

let peVGR(ZIij. Then ZIig p and o
ieA ieA

l,cp for al ieA. This shows that

peVs(l;) for al ieA ad hence

peQVGR(Ii)'

(3) since  VZ(1)cVE(I nJ) and
VGR(J)gVGR(I NJ),

VE(1)UVEI) cVE(I N ). For the reverse
inclusion, let peVGR(I ﬁJ). Then I N"Jcp.
Since P is agraded prime ideal, then | < p or
Jc p.Sothat peVE(I) or peVy(J). we
obtain V(I n J) c VE(1) uVE Q).

Corollary 2.2. Le¢ R be a graded ring. The
collection {(R)z{VGR(I)“ < R} of all

varieties of graded ideals of R satisfies the axioms
of topological space for closed sets. We cal this
topology the Zariski topology on G — Spec(R) .

Theorem 2.3. Let R be a graded ring. For any
homogeneous elements r and S of R, we have
the following properties:

(1) The st D, =G—Fpec(R)\V; (TR) is
open in G-Spec(R) and the family
{D,|reh(R)} is the basis for the Zariski
topology on G — Spec(R) .

(2) For the open sets D, and D, we have
D, nD,=D,.

(3) For the open sets D, and D, we have
D, = D, if and only if JIR=VR.

(4) The open set Dr is quasi compact for all
r e h(R).

(5) The space G — Spec(R) isa T, -space for the
Zariski topology.

Proof: (1) Assume that U is an open set in
G —Spec(R) . Thus U =G - Spec(R)\V (1)
for some graded ideal | of R. Notice that
1 =|J1, =(h(1))- Then VE(1) =VE(h(1)) = ﬂ)vg*(r)'

geG reh(l

Hence y = | J (G—Soec(R)\VGR(r))= Uo-

reh(l) reh(1)
This implies that {D, |r € h(R)} is a basis for
the Zariski topology on G — Spec(R) .

(2 Let pe D, ND, for the open sets D, and
D,.Then rg p and S¢ p, sothat Isg p. It
followsthat P € D, and hence D, "D, = D, .
For reverse inclusion, assume that P€ D, . Then
rsg p, namely r¢p and S¢p. Hence
peD, and pe D, sothat D, < D, " Dx.
©) Suppose  that D, =D,. Then
VE(rR) =V (sR), so that I € p if and only if
Se P. This implies x/ﬁ:@ Conversely,
assumethat /TR = /SR . It followsthat I € p if
and only if Se p. Then VS (rR) =V (SR) and
hence D, = D .

(4) Let r € h(R) and suppose that {Ds |i eA}
is an open cover of D,, where for each i € A,
s €h(R). Then,
G- Spec(R)\WE(rR) =D, ggDa = J(G-ec(R\VE(sR)

ieA

=G-Sec(R) \VGR(ZS Rj and  hence

ieA
VE (ZS RJ cVS(R) . It follows from (3) that
ieA

VIR C IZSR , then there exists a positive
ieA

integer N such that rneZSR. Then there
ieA

exigts iy, 0 €A, til,tiz,---,timeh(R)
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such that r"=st +St ++5t . Let
A={i,,i,, i} A Notice that pe Vg (r)
iff peVe(r"). (R"<c) SR implies

jeA

VGR[ZSj R]gVGR(r”)=VGR(r).

jeA

Therefore

NVE(s)eVEm: P (G- Spec(RIWVA(s))

jeA ieA

5 G- Spec(R) \ VE(r) and hence D, <|JD, -
Since A isfinite set, Dr isquasi compact.

(5) Let p, e G—pec(R) and p#(Q. Then
p\g=d o q\p#<. Suppose that
p\g#< . Then there exists an element

rep\qg for reh(R). Then pg D, and since
rRez q, we get Q%VGR(I’R). So ge D, and

since D, is an open set, G— Spec(R) isa T,-
space for the Zariski topology.

3. The Zariski topology on G — Spec(M )

In this section we will give different varieties for
any graded submodule of a graded module. Also,
we investigate under what conditions these varieties

give a topology on G — Spec(M ) . Now we give
some relations between graded ideals of R and
graded submodules of graded R -modules M .

Lemma3.1. Let R bea G-graded ring, M bea
graded R-module, and N be a graded R-
submodule of M . Then the following hold:

) (NxgM)={reR|rM cN}is a graded
ideal of R,

(i) If | is a graded ided of R, r e h(R) and
xeh(M), then IN, rN, and RX are graded
submodulesof M .

Proof: One can look for the proof of (i) and (ii) to
[1, Lemma2.1], [7, Lemma2.2], and [6, Lemma 1].
Also, for the proof of (i), see[5, Lemma 1.2 (iii)].

Theorem 3.2. Let M be a graded R-module. If
N is a graded prime submodule of M then

(N:x M) is a graded prime ideal of R. The
converse part is true when M is a multiplication
graded R -module.

Proof: One can look for the proof to [6, Theorem
3].

Proposition 3.3. Let M be a graded R -module.
For any graded submodule N of M , we define
the variety of N to be

Vo (N)={PeG-Spec(M)|Po N}. Then
the following hold:
(1) Vg (0) =G —Spec(M) and V5 (M) =D

@) an(Ni):VG* [Z Nij, for any family

ieA icA
{ N, }ie , Of graded submodules.

@ Vo(N)UVg(L)cVe(NNL) for any
graded submodules N, L of M .

Proof: (1) Trivial.
@ Let Pe(|Va(N)). Then, PeV (N)

ieA
givesus N, P for al ieA. It follows that

ZNigP and  hence PeVé(ZNi].

ieA ieA
Conversely, assume that P eV, (Z Nij. Then
ieA

ZNi cPandso, N P foral i eA. Thus
ieA
P (Ve (N;) and equality holds.

ieA
(3 Since NNLc N and NnLcL, then
VZ(N) = Vo(NANL) and V(L) cVa(NAL).
Hence Vi (N) UV (L) c Vo (NNL).

Remark that, the reverse inclusion in Proposition
3.3 (3) isnot truein general. For this, if we take the

Z,-graded  Z-module M =ZxZ and
N =4Z x{0}, L ={0}x4Z as graded submodules

of M, then P={0}x{0} eV (NNL) but
PeV;(N)UV;(L) snce NzP and
Lz P,where Pe G- Spec(M).

Definition 3.4. Let M beagraded R -module and
¢ (M) bethe set of al varieties V,(N) of M,

ie, ¢"(M)={Vs(N)|N<c M}
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M iscaled a G -top module if the set £ (M)

is closed under finite union. Then ¢ (M) is a
topology on G — Spec(M) and this topology is
called aquasi Zariski topology on G — Spec(M ),
denoted by 7 .

Theorem 3.5. If M isamultiplication graded R -
module, then M isa G -top module.

Proof: It is enough to prove that the inclusion
VZ(N ML) Vi (N)UVS(L) is satisfied. Let
PeV,(NNL). Then NNLc P and we get
(NNL:M)c(P:M). Since (P:M)is a
graded prime ideal and
(NNL:M)=(N:M)n(L:M), we get
(N:M)c(P:M) o (L:M)c(P:M).
Then (N:-MM c(P:M)M or
(L:M)M c(P:M)M. Since M is graded
multiplication module, then Nc P or LC P.
Hence P eV (N) UV, (L).

Proposition 3.6. Let M be a graded R -module.
Thenthe family ¢'(M) ={V¢ (IM)| I <¢ R}

is closed under finite union. Further, {'(M) isa
topology on G — Spec(M ) denoted by 7.

Proposition 3.7. Let M be a graded R -module.
If M isa G-top module then the quasi Zariski
topology 7 on G — Spec(M ) isfinerthan 7.
Now we define another variety for a graded
submodule N of a graded module M . We define
the variety of N to be
V5(N) ={PeG-Spec(M)|(P:M) 2 (N: M)}
The following proposition shows that this variety
satisfies the topology axioms for closed sets.

Proposition 3.8. Let M be a graded R -module.
Then the following hold:

(1) Vg (0) =G —Fpec(M) and V5 (M) =

@) ﬂVG(Ni):VG(Z(Ni :M)Mj,for any

ieA ieA

family {Ni }iEA of graded submodules.

3 Vs(N)UV(L)=V5(NNL) for any
graded submodules N, L of M .

Proof: (1) Itisclear.

@ Let Pe[)Vo(N). For dl ieA,
ieA

PeV;(N,) implies (N:M)c(P:M).

Then (Ni:M)Mg(P:M)M.Itfollowsthat

Y(NM)Mc(P:M)M P for

ieA

ieA

(e (M)<Ve SN MM |

ieA ieA

i € A. Therefore PeVG(Z(Ni :M)Mj,so

Conversely, let P eV, (Z(Ni MM j . Then

ieA

(Z(Ni:M)M:M];(P:M). Since

ieA

(Ni:M)QKZ(Ni:M)M:Mj, we get
ieA

(N:M)c(P:M) for al ieA. Thus

PeVs(N,), for al ieA. Hence

Pe(Vs(N).

ieA
(3) Let peVG(Nm_).Then (NAL:M)c (P:M),
so tha (N:M)n(L:M)c(P:M). Since
(P:M) is graded prime idea, then
(N:M)c(P:M) or (L:M)c(P:M). 1t
follows that P eVg;(N) or PeV,(L). Hence

PeV, ( N)UVG(L). Reverseinclusionisclear.

Definition 3.9. Let M be a graded R-module.
Since {(I\/I)={VG(N)| N < M} is closed

under finite union, the family ¢'(M) satisfies the
axioms of topological space for closed sets. So,
there exists a topology on G — Spec(M) caled
the Zariski topology and denoted by 7.

Definition 3.10. Let¢ M be a graded R -module
and peG-Spec(R). Then the et
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G- Sec, (M) is  defined to be
{PeG-Sec(M)|(P:M)=p}.

Now we give some relations between the varieties
V. (N) and V;(N) for any submodule N of the

graded R -module M .

Lemma 3.11: Let M beagraded R -module and
N, L begraded submodulesof M .

@) If (N:M)=(L:M), then V(N)=V,(L).

The converseistrueif N and L are graded prime
submodules.

2

V;(N) =V, ((N :M)M ) =V; ((N MM ) :

Theorem 3.12. For any graded R -module M , the
Zariski topology 7 on G — Spec(M ) isidentica

with 7' and the quasi Zariski topology 7~ on
G —Spec(M) is finer than the Zariski topology
T.

Proof: Itisclear.
Let M be agraded R-module. Now we give the
relation between G- Spec(M) and

G—QDGC(%nn(M)). For this we set X"
and XR® to represent G- Spec(M) and
G - Spec(R) respectively, where R= 5/Ann(M )
The map ¢@: X" > X®,  defined by
PHW for Pe X" iscalled the natural
map of X™ .

Proposition 3.13. Let M be agraded R -module.
The natural map ¢ of XM is continuous for the

Zariski topologies defined on M and R. More
precisely, ¢"1(VGR (I_))=VG(IM) for every
gradedideal | of R containing Ann(M) .

PrE)oE Lee | be a graded ideal of ﬁ,
VE() el(R) and Peqfl(v(f(l‘)). Then
(P:M)=p(P)eVE(I), thus (P:M) T .
It follows that (P:M) |, that PeV,(IM).

Therefore (p‘l(v(f(l_))gve(lm). For the

converse inclusion, let P eV (IM). Then,
IM c PeG-Spec(M) and hence
lc(P:M)cG—Sec(R). And so we get
p(P)=(P:M)eVE(). This  implies

Pep™ (VGFie (I_)) . Hence the proof is completed.

Proposition 3.14. The following statements are
equivalent for any graded R-module M and any

P, Qe X":

(1) The natural map ¢ isinjective.

) 1f V5 (P) =V (Q) , then P=Q.

(3) |G- Spec, (M)| <1 for every pe G- Spec(R) -

Proof: (1)=(2): Suppose that V,(P) =V;(Q).
By Lemma 3.11, we get (P:M)=(Q:M).
Thus @(P)=¢(Q). Since ¢ is injective, we
obtain P=Q.

(2=(3): Let |G- Spec,(M)|>1 and let P,
QeG-Spec,(M) such tha P=Q. So,
(P:M)=(Q:M)=p. Hence we get
V;(P)=V;(Q) and by hypothesis we obtain
P =Q, whichisacontradiction.

R)=(1): Let @(P)=¢(Q). It follows that

(P:M)=(Q:M). So, we can write
(P:M)=(Q:M)=p and since |G- Spec,(M)|<1,
weget P=Q.

Proposition 3.15. Let M beagraded R -module and

let @ be the natural map of X" . If @ is surjective,
then ¢ isboth open and closed, more precisely for every

N<,M, go(vG(N)):vGF’*((N:M)) and
(XM \W,(N)) = xﬁ\vj((N : M)).

Proof: Since ¢ is a continuous map such that
ot (VGﬁ(I_)) =V;(IM), we get for every
N<; M,

o7 (V& ((NTM)) = V5 (N M)M) = V5 (N).
As @ issurjective,
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pop ™ (VE((NTM))) =VE ((NM)). Ths
o(Va(N)) =V ((N:M)).
(X" Wo(N) = (¢ (X )\ 0™ (VE (N7 M)

:(pogo’l(Xﬁ\VGﬁ((N:M)) and S0

Similarly

o( XM W, (N)) = xF’*\vGF’*((N ‘M)).

Corollary 3.16. Let @ be surjectiveand M be a

graded R -module. Then ¢ isbijective if and only
if @ ishomeomorphic.

Proposition 3.17: Let M and M ' be graded R -
modules, XM =G - Fec(M) and
XM =G-Fec(M).If f:M >M" isan
epimorphism, then the function ¢: X" — X"
defined by P'— f(P") is continuous.

Proof: Forany N < M and P'e XM and any
cosed set Vo (N) of XY, we have
P'eg (Vo(N))=¢" (Ve ((N:M)M)) iff
$(P)=f*(P)(N:M)M iff
P'of((N:MM)=(N:M)M" iff
P'eVé((N:M)M')zVG((N:M)M').

Thus ¢ (V5(N)) =V ((N:M)M"). Hence

@ iscontinuous.

4, A base for the Zariski topolgy on
G — Spec(M)

In this section we write X, = X" \V,(rM) of
X" for reh(R) and show that
B:{Xr|reh(R)} forms a base for X" .

Further, we compare this base with the base of X .
For each element r of h(R), we write

X, = X" \V,(rM). Clealy, every X, is an
open set of X" and we have X,=< and
X, = X" for 0,1, e h(R).

Proposition 4.1: Let M be a graded R -module

with natura map @ on X™ and r eh(R).
Then,

1) (p_l(DF) = Xr

2 @o(X,)<D.. If ¢ is surjective, then the
equality holds.

(3 Theset B={X,|r eh(R)} isabasefor the

Zariski topology on X™ .
4 X =X NX, forany r, se h(R).

Proof: (1) go‘l(D;):qo‘l(Xﬁ\VGﬁ(fﬁ))

= X"\ (VE(R)) = X" \ V(M) = X, .
(2) Trivial.

(3) Let U be any open set in XM . Since
CM) =<' (M) ={Vi(IM) =V (IM)| I < R}
by Lemma 3.11, U = X" \\V,(IM) for some
graded idea | of R. Notice that | =(h(l)).
Then,  IM =(h(1))M =(h()M).  so,
Vo(IM) =V, (h(OM )= [] Vs (rM). It
follows that o
U=X"\V;(IM)=X"\ [ Vs(rM)= (] X, -

r
reh(l) reh(l)

Therefore B is a base for the Zariski topology on
X M

(4) Xs=¢"(D5)=¢"(D,nDs)=¢*(D;)ng™(Dg)= X, N X,
by (2).

Theorem 4.2. Let M be agraded R-module. If
the natural map ¢ is surjective, then the open set

X, is quas compact for each reh(R).

Specificaly, X™ isquasi compact.

Proof: As the set Bz{Xr | re h(R)} is a base

for the Zariski topology by Proposition 4.1(3), for

every open cover of X, , there is a set

{ra eh(R)|aeA} such that X, < U X, .

ael
Then D, =p(X, )= [Jo(X, )=UD, by
ael ael

Proposition 10(2). Since Df is quasi compact,
there exists a finite subset A'c A such that
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D, c U D, . Hence we obtain
ael'
X, =¢ (D)= | X, .
ael’

Let M be a graded R-module and Y be any

subset of X™ . We will denote the intersection of
al elementsin Y by £(Y) and the closure of Y

in X™ for the Zariski topology by CI(Y).

Proposition 4.3. Let M be a graded R -module
and Y XM, Then VG(f(Y))zCl(Y). In
particular, Y is closed if and only if

Ve(g(Y)):Y-

Proof: We can see easily that Y <V (cf(Y))
Let V(L) be any closed subset of X" which

contains Y. Thus for al QeY, we have
(Q:M)o(L:M). This implies that

(L:M)c Q@ M)S(EY):M). o

QeY
(P:M)(&(Y):M)(L:M)  for every
PeV;(&(Y)), that is Vg (&E(Y))cVs(L).
Hence V; (&(Y)) is the smallest closed subset of
XM including Y , which means V, (£(Y))=CI(Y)-

Proposition 4.4. Le¢ M be a graded R -module,
Pe X" and 5:{(Q:M)\QexM}ng.
Then,

(1) CI({P})=Vs(P).

@@ Forany Qe XM, QeCl ({P}) if and only
if (Q:M)o(P:M) if and only if
Vs(P)2V:(Q).

(3 Let M be a finitely generated graded R-
module. The set {P} isclosedin X™ if and only
g) p=(P:M) isamaxima element of the set
o ,and

b) G-Soec,(M)={P}, tha s
|G — Spec, (M)[=1.

Proof: (1) We can easily see that (1) holds by
taking Y = { P} from Proposition 4.3.

(2) Thisfollowsfrom (1).

(3) Assume that {P} is closed in X" . Hence

{P}=CI({P})=Vs(P) by (1. Let qe&
suchthat P < Q. Thenthereexists Q€ X" such
that q=(Q:M).So, (P:M)=pc(Q:M).
We have QEVG(P)z{P}, nanedy Q=P .
So, p=( and P isamaximal element of the set
5. Le P eG-Fec,(M). Then
(P':M)=p=(P:M) andso P" eV (P)={P}.
Hence G-Spec,(M)={P}. Conversely, we
suppose that (a) and (b) hold. Since P is graded
prime we have {P} cV:(P). 1f QeVy(P),
then q=(Q:M)>>(P:M)=p. Therefore
q=pP by @ ad Q=P by (b). Thus
Vs(P)={P}, s that V;(P)={P}. By (1),
Cl ({P})z{P} Hence the set {P} is closed in
xM.

The following corollary is a result of Proposition
4.4(2).

Corollary 4.5. For every graded prime submodule
P of a graded R-module M, V;(P) is an
irreducible closed subset of X™ .

Proposition 4.6. Let M be a graded R -module
and Y be asubset of XM . If £(Y) is a graded
prime submodule of M , then Y isirreducible.

Proof: Assume that &(Y) is a graded prime

submodule of M . Then, VG(f(Y))zCl (Y) is

irreducible by Corollary 4.5 and Proposition 4.3. So
Y isirreducible.

Corollary 4.7. Let M be agraded R-module. If

Y= {P|| = A} is a non-empty family of graded
prime submodules P of M, which is linearly

ordered by inclusion, then Y isirreduciblein X" .
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Proof: Let §(Y)=ﬂR=P. P is a proper
ieA

submodule of M . Suppose that rme P but

Mg P where r e h(R) and me h(M). Then

Mg P for some i € A. Since P is a graded

|
prime submodule, we get I G(FI’ X I\/I). Let | be
any element of A such that j #i. Since Y is
linearly ordered by inclusion, we have either
Pc P o P cR.If BcP, then we obtain
re(Fi):M)g(Pj :M).1f P, c R, then since

me P and P] is a graded prime submodule, we

have re(F’j :M). Hence re(P:M) and
£(Y) is a graded prime submodule, so Y is
irreducibleon X™ by Proposition 4.6.

Proposition 4.8. Let M be a graded multiplication
R-module. If Nil(M) is graded prime

submoduleof M , then X™ isirreducible.

Proof: Let U and V' be open subsetsof X and
P, and R be dements of U and V,

respectively. Then there exist submodules N and
K of M such that U=X"\V,(N) and
V=X"\V,(K). So P, gV, (N) and
R ¢V;(K), that iss NzR, and KzR,.
Since Nil(M) < R,, N & Nil(M). Hence, we
gt Nil(M)eU. Similaly Nil(M)eV.
Consequently, Nil(M)eU NV #d and we

obtain XM | irreducible.

Proposition 4.9. Let M be a graded R -module.
Assume that G-—Spec, (M) =D for some

p € G — Spec(R) . Then the following hold:

(@ G- Spec, (M) isirreducible.

(b) If p is agraded maximal ideal of R, then
G —Spec, (M) isan irreducible closed subset of
xM.

Proof: (a) Let

G- 5pec, (M) ={R «G-pec(M)| (R:M) = p, i e Af-
Then §(G—SJGCP(M))=HF{ is a graded
ieA
prime submodule. Indeed, we assume rme ﬂ P
ieA
and r%(ﬂPi:Mj:ﬂ(F?:M), where
ieA ieA
reh(R) ad meh(M). Notice that
(R:M)=p. Then rg p=(R:M) for all
ieA.Since rme P and P isgraded prime, we
get me PR for al i € A. Hence meﬂR and
ieA

G — Spec, (M) isirreducible by Proposition 4.6.
(b) To prove this, it suffices to show that
G—-Jec,(M)=V;(pM) for the graded
maximal idea p. Let N eV (pM), that is,
(N:-M)o(pM M) p. Since p s
maxima, (N:M)=p. So, NeG-Spec,(M).
Conversely, let PeG-Spec,(M). Then
(P:M)=pc(pM:M) and because of
maximality of P, we obtain p=(pM : M) and
so PeV,(pM).

Proposition 4.10. Let M be a graded R -module
and Y be a subset of XM such that

(cf(Y) l\/l)z P isagraded primeidea of R.If
G—Jec, (M) =D, then Y isirreducible.

Proof: Take PeG-Sec,(M). Since

(P:M)=p=(&(Y):M) we have

Vs (P) =V (£(Y))=CI(Y) by Lemma 3.11
and Proposition 4.3. Therefore, CI(Y) is
irreducibleand sois Y .

Theorem 4.11. Let M be a graded R -module.
Then the following statements are equivalent for

any P, Qe X" :

@ XM is T, -space.

(2) The natural map @ isinjective.
(3) 1f V5 (P)=V;(Q) , then P=Q.
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4 ‘G — Spec, (M )‘ <1 for every
pe G- Spec(R).

Proof: (1)&(3) follows from Proposition 4.4 and
the fact that atopological spaceisa TO -space if and

only if the closures of distinct points are distinct.
The equivalences of (2), (3), and (4) are proved in
Proposition 3.14.

Corollary 4.12. Let M be a G -top module, in
particular, let M be a graded multiplication
module. Then G—Spec(M) is a T, -space for
the Zariski topology.

Proposition 4.13. Let M be a graded R -module
and 5:{(P:M)\ PeXM}gXR. Then
G- Spec(M) isa T, -spaceif and only if

() (P:M)=p isamaxima element of & for
dl Pe X",

@  [G-Spec,M)|=1  for
peG-Sec(R).

Proof: If G—Spec(M) is a T, -space then the

singleton sets are closed in X™ . So we obtain (1)
and (2) by Proposition 4.4(3). Conversely, (1) and

(2) are equivalent so that the singleton set {P} is

closedin X" forevery Pe XM  thatis, X is
a T, -space.

Theorem 4.14. Let M be a graded R -module.
Then X" is a T,-space if and only if every
graded prime submodule of M is maximal.

Proof: Assumethat X" isa T,-space. Let P be
any graded prime submodule of M. By
Proposition 4.4(1), Cl ({ P}) =V, (P) and since
XM isa T, -space, every singleton subset of X M
is closed, that is, CI({P})=V(P)={P}.
Now, assume that P < Q. It follows that
(P:M)c(Q:M).so QeVy(P)={P} and

we obtain P = Q. For the converse, suppose that

every graded prime submodule of M is maximal.
Then for dl Pe X" we have {P} =V, (P),
and every singleton subset of X M isclosed. Hence

XM isa T, -space.

Theorem 4.15. Let M be a graded multiplication
R -module. Then X" isa T,-spaceif and only if

itisa T, -space.

Proof: Assumethat X" isa T, -space. Then it iis
a T, -space. Conversely, assume that X Misa T-
space. |If ‘XM‘zl or ‘XM‘:Z, then X" isa
T, -space. Now assume that ‘XM ‘ > 2. Then we

can take three distinct elements in X™ | say B,
P,, and B,. Since M is graded multiplication,

Vo(RR)={R.R}=X"\V;(R).
Va(PR)={PR = X" \Wo(R) e
Vs (R)={R}=X"\V;(BR) ae open sets

in X" . This implies that P, €V (RR) and
P, €V (R). Moreover, Vi, (RR) NV, (R) =2
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