http://ijsts.shirazu.ac.ir

Graded prime spectrum of a graded module

N. A. Ozkiirisci¹*, K. H. Oral¹ and U. Tekir²

¹Department of Mathematics, Faculty of Arts and Science, Yildiz Technical University, 34210, Esenler, Istanbul, Turkey ²Department of Mathematics, Faculty of Arts and Science, Marmara University, 34722, Goztepe, Istanbul, Turkey E-mails: aozk@yildiz.edu.tr, khoral@yildiz.edu.tr & utekir@marmara.edu.tr

Abstract

Let R be a graded ring and M be a graded R-module. We define a topology on graded prime spectrum G-Spec(M) of the graded R-module M which is analogous to that for G-Spec(R), and investigate several properties of the topology.

Keywords: Graded module; graded prime spectrum; graded prime submodule

1. Introduction

Let G be a multiplicative group. A commutative ring R with identity is called a G-graded ring if there exist additive subgroups R_g of R indexed by the elements $g \in G$ such that $R = \bigoplus_{g \in G} R_g$ and $R_{g}R_{h} \subseteq R_{gh}$ for all $g, h \in G$. The elements of R_{g} are called homogeneous elements of R of degree g. The homogeneous elements of the ring R are denoted by h(R), i.e. $h(R) = \bigcup_{g \in G} R_g$. If $a \in R$, then the element a can be written uniquely as $\sum_{g \in G} a_g$, where a_g is called the g*component* of a in R_{p} . Let R be a graded ring and I be an ideal of R. I is called graded prime ideal of R if $I \neq R$ and whenever $ab \in I$, then either $a \in I$ or $b \in I$, where $a, b \in h(R)$. The graded radical of I is the set of all $x \in R$ such that for each $g \in G$ there exists $n_g > 0$ with $x_{e}^{n_{g}} \in I$. Note that if $r \in h(R)$, then r is an element of graded radical of I if and only if $r^n \in I$ for some $n \in N$. The graded radical of Iis denoted by \sqrt{I} .

*Corresponding author Received: 14 October 2012 / Accepted: 20 February 2013

Let R be a G-graded ring and M an Rmodule. We recall that M is a G-graded Rmodule (or graded R-module) if there exists a family of subgroups $\{M_g\}_{g\in G}$ of M such that $M = \bigoplus_{g \in G} M_g$ and $R_g M_h \subseteq M_{gh}$ for all $g,h\in G$. Here $R_{g}M_{h}$ denotes the additive subgroup of M consisting of all finite sums of elements $r_g s_h$ where $r_g \in R_g$ and $s_h \in M_h$. Also, we write $h(M) = \bigcup_{g \in G} M_g$ and the elements of h(M) are called homogeneous. Let $M = \bigoplus_{g \in G} M_g$ be a graded R -module and N be a submodule of M. Then recall that N is a graded submodule of M if $N = \bigoplus_{g \in G} (N \cap M_g)$. In this case, $N_g = N \cap M_g$ is called the g-component of N.

Let M be a graded R-module and N be a graded R-submodule of M. Then recall that N is a graded prime submodule of M if $N \neq M$ and whenever $a \in h(R)$ and $m \in h(M)$ with $am \in N$, then either $m \in N$ or $a \in (N :_R M)$ where $(N :_R M) = \{r \in R \mid rM \subseteq N\}$. Graded prime submodules of graded modules have been studied by various authors, see, for example, [1-3].

A graded R-module M is called to be a multiplication graded module if for every graded submodule N of M has the form IM for some graded ideal I of R. Multiplication graded modules were characterized in [4]. N is a graded maximal submodule of M if $N \neq M$ and there is no graded submodule N' of M such that $N \subset N' \subset M$. A graded R -module M is called graded finitely generated if there are x_1, x_2, \dots, x_k in h(M) such that $M = \sum_{i=1}^{k} Rx_i$. An element $m \in M$ is called *nilpotent* if $(Rm)^{k} = 0$ for some positive integer k [5]. It is clear that, if M is graded multiplication then $Nil(M) = \bigcap P$ where the intersection runs over all graded prime submodules of M. Moreover, a faithful graded R-module M is multiplication if and only if $\bigcap_{\lambda \in \Lambda} (I_{\lambda}M) = \left(\bigcap_{\lambda \in \Lambda} I_{\lambda}\right)M$ where I_{λ}

is a graded ideal of R [6, Theorem 8].

The graded prime spectrum G - Spec(R) of a graded ring R consists of all graded prime ideals of R and similarly the graded prime spectrum G-Spec(M) of a graded module M consists of all graded prime submodules of M. For each graded ideal I of R, if we introduce the G- $V_G^R(I) = \left\{ p \in G - Spec(R) \mid p \supseteq I \right\}$ variety then the collection $\zeta(R) = \{ V_G^R(I) \mid I \triangleleft_G R \}$ satisfies the topology axioms for closed sets. This topology is called a Zariski topology on G-Spec(R). In this study, we generalize this prime spectrum to graded R-modules. For a graded submodule N of M we define the variety $V_G^*(N) = \{ P \in G - Spec(M) \mid P \supseteq N \}$ where the collection $\zeta^*(M) = \left\{ V_G^*(N) \mid N \right\}$ is a submodule of M does not satisfy all of the topology axioms for closed sets. Whenever $\zeta^{*}(M)$ is closed under finite union, then this topology is called a quasi-Zariski topology and the module M is called a G-top module. After this, define another we variety $V_G(N) = \left\{ P \in G - Spec(M) \,\middle| \, (P:M) \supseteq (N:M) \right\}$ of the graded module M, the collection

 $\zeta(M) = \{V_G(N) \mid N \text{ is a submodule of } M\}$ satisfies all of the topology axioms for the closed sets. Hence we obatain a topology on G-Spec(M) called a Zariski topology. Some properties of these topologies are given and we obtain some relations between properties of the graded prime spectrum G - Spec(R)and G-Spec(M)by using the map $\phi: G - Spec(M) \rightarrow G - Spec(R/Ann(M))$ defined by $P \mapsto (P:M)$ for $P \in G - Spec(M)$. Finally, we give some results that determine under what conditions the graded prime spectrum G-Spec(M) is T_0 , T_1 or T_2 -space.

Throughout this paper, we deal with G-graded rings and graded R-modules. If I is a graded ideal of R and N is a graded submodule of Mwe write respectively, $I \lhd_G R$ and $N <_G M$. Throughout this paper we assume that G - Spec(M) is nonempty.

2. The Zariski topology on G - Spec(R)

In this section we will give some properties of the G-variety $V_G^R(S) = \{p \in G - Spec(R) \mid p \supseteq S\}$ for a homogeneous subset S of R. Note that, if the graded ideal I is generated by S, then it is clear that $V_G^R(S) = V_G^R(I)$. Also, $V_G^R(I) = V_G^R(\sqrt{I})$ for any graded ideal I of R. Therefore, we can easily see that $V_G^R(rR) = V_G^R(r)$ for any $r \in h(R)$. We show that the set G - Spec(R) is a topology for the closed sets $V_G^R(I)$.

Proposition 2.1. Let I, J and $\{I_i\}_{i \in \Lambda}$ be graded ideals of the graded ring R. Then the following hold for G-variety of ideals:

(1)
$$V_G^R(0) = G - Spec(R)$$
 and $V_G^R(R) = \emptyset$,
(2) $\bigcap_{i \in \Lambda} V_G^R(I_i) = V_G^R\left(\sum_{i \in \Lambda} I_i\right) = V_G^R\left(\bigcup_{i \in \Lambda} I_i\right)$,
(3) $V_G^R(I) \cup V_G^R(J) = V_G^R(I \cap J) = V_G^R(IJ)$.

Proof: (1) For any $p \in G - Spec(R)$, $0 \subseteq p$, so $p \in V_G^R(0)$. Hence $G - Spec(R) = V_G^R(0)$.

Suppose that $V_G^{R}(R) \neq \emptyset$. Then there is $p \in V_G^{-R}(R)$. Hence $1 \in R \subseteq p$, a contradiction. (2) Let $p \in \bigcap_{i \in A} V_G^R(I_i)$. Then $p \in V_G^R(I_i)$ and we obtain that $I_i \subseteq p$ for all $i \in \Lambda$. Hence $\sum_{i=1}^{n} I_i \subseteq p$, so that $p \in V_G^R \left(\sum_{i=1}^{n} I_i \right)$. Conversely, let $p \in V_G^R\left(\sum_{i \in \Lambda} I_i\right)$. Then $\sum_{i \in \Lambda} I_i \subseteq p$ and so $I_i \subseteq p$ for all $i \in \Lambda$. This shows that $p \in V_G^R(I_i)$ for all $i \in \Lambda$ and hence $p \in \bigcap_{i \in \Lambda} V_G^R(I_i).$ Since $V_G^R(I) \subseteq V_G^R(I \cap J)$ (3) and $V_{C}^{R}(J) \subset V_{C}^{R}(I \cap J)$, $V_G^R(I) \cup V_G^R(J) \subseteq V_G^R(I \cap J)$. For the reverse inclusion, let $p \in V_G^R(I \cap J)$. Then $I \cap J \subseteq p$.

inclusion, let $p \in V_G^R(I \cap J)$. For the reverse inclusion, let $p \in V_G^R(I \cap J)$. Then $I \cap J \subseteq p$. Since p is a graded prime ideal, then $I \subseteq p$ or $J \subseteq p$. So that $p \in V_G^R(I)$ or $p \in V_G^R(J)$. We obtain $V_G^R(I \cap J) \subseteq V_G^R(I) \cup V_G^R(J)$.

Corollary 2.2. Let *R* be a graded ring. The collection $\zeta(R) = \{V_G^R(I) \mid I \lhd_G R\}$ of all varieties of graded ideals of *R* satisfies the axioms of topological space for closed sets. We call this topology the *Zariski topology* on G - Spec(R).

Theorem 2.3. Let R be a graded ring. For any homogeneous elements r and s of R, we have the following properties:

(1) The set $D_r = G - Spec(R) \setminus V_G^R(rR)$ is open in G - Spec(R) and the family $\{D_r \mid r \in h(R)\}$ is the basis for the Zariski topology on G - Spec(R).

(2) For the open sets D_r and D_s , we have $D_r \cap D_s = D_{rs}$.

(3) For the open sets D_r and D_s , we have $D_r = D_s$ if and only if $\sqrt{rR} = \sqrt{sR}$.

(4) The open set D_r is quasi compact for all $r \in h(R)$.

(5) The space G - Spec(R) is a T_0 -space for the Zariski topology.

Proof: (1) Assume that U is an open set in G - Spec(R). Thus $U = G - Spec(R) \setminus V_G^R(I)$ for some graded ideal I of R. Notice that $I = \bigcup_{g \in G} I_g = \langle h(I) \rangle$. Then $V_G^R(I) = V_G^R(h(I)) = \bigcap_{r \in h(I)} V_G^R(r)$. Hence $U = \bigcup_{r \in h(I)} (G - Spec(R) \setminus V_G^R(r)) = \bigcup_{r \in h(I)} D_r$.

This implies that $\{D_r | r \in h(R)\}$ is a basis for the Zariski topology on G - Spec(R).

(2) Let $p \in D_r \cap D_s$ for the open sets D_r and D_s . Then $r \notin p$ and $s \notin p$, so that $rs \notin p$. It follows that $p \in D_{rs}$ and hence $D_r \cap D_s \subseteq D_{rs}$. For reverse inclusion, assume that $p \in D_{rs}$. Then $rs \notin p$, namely $r \notin p$ and $s \notin p$. Hence $p \in D_r$ and $p \in D_s$, so that $D_{rs} \subseteq D_r \cap D_s$.

(3) Suppose that $D_r = D_s$. Then $V_G^R(rR) = V_G^R(sR)$, so that $r \in p$ if and only if $s \in p$. This implies $\sqrt{rR} = \sqrt{sR}$. Conversely, assume that $\sqrt{rR} = \sqrt{sR}$. It follows that $r \in p$ if and only if $s \in p$. Then $V_G^R(rR) = V_G^R(sR)$ and hence $D_r = D_s$.

(4) Let $r \in h(R)$ and suppose that $\{D_{s_i} | i \in \Lambda\}$ is an open cover of D_r , where for each $i \in \Lambda$, $s_i \in h(R)$. Then,

 $G - Spec(R) \setminus V_G^R(rR) = D_r \subseteq \bigcup_{i \in \Lambda} D_{s_i} = \bigcup_{i \in \Lambda} (G - Spec(R) \setminus V_G^R(s_iR))$ $= G - Spec(R) \setminus V_G^R\left(\sum_{i \in \Lambda} s_iR\right) \quad \text{and} \quad \text{hence}$

$$\begin{split} V_G^R & \left(\sum_{i \in \Lambda} s_i R\right) \subseteq V_G^R(R) \text{. It follows from (3) that} \\ & \sqrt{rR} \subseteq \sqrt{\sum_{i \in \Lambda} s_i R} \text{, then there exists a positive} \\ & \text{integer } n \text{ such that } r^n \in \sum_{i \in \Lambda} s_i R \text{. Then there} \\ & \text{exists } i_1, i_2, \cdots, i_m \in \Lambda, \quad t_{i_1}, t_{i_2}, \cdots, t_{i_m} \in h(R) \end{split}$$

such that $r^n = s_{i_1}t_{i_1} + s_{i_2}t_{i_2} + \dots + s_{i_m}t_{i_m}$. Let $\Delta = \{i_1, i_2, \dots, i_m\} \subseteq \Lambda$. Notice that $p \in V_G^R(r)$ iff $p \in V_G^R(r^n)$. $(rR)^n \subseteq \sum_{j \in \Lambda} s_j R$ implies

$$V_{G}^{R}\left(\sum_{j\in\Delta}s_{j}R\right)\subseteq V_{G}^{R}\left(r^{n}\right)=V_{G}^{R}\left(r\right).$$
 Therefore
$$\bigcap_{j\in\Delta}V_{G}^{R}\left(s_{j}\right)\subseteq V_{G}^{R}\left(r\right), \quad \text{SO} \qquad \bigcup_{i\in\Delta}\left(G-Spec(R)\setminus V_{G}^{R}\left(s_{i}\right)\right)$$

 $\supseteq G - Spec(R) \setminus V_G^R(r) \text{ and hence } D_r \subseteq \bigcup_{i \in \Delta} D_{s_i}.$

Since Δ is finite set, D_r is quasi compact.

(5) Let $p, q \in G - Spec(R)$ and $p \neq q$. Then $p \setminus q \neq \emptyset$ or $q \setminus p \neq \emptyset$. Suppose that $p \setminus q \neq \emptyset$. Then there exists an element $r \in p \setminus q$ for $r \in h(R)$. Then $p \notin D_r$ and since $rR \not\subset q$, we get $q \notin V_G^R(rR)$. So $q \in D_r$ and since D_r is an open set, G - Spec(R) is a T_0 -space for the Zariski topology.

3. The Zariski topology on G - Spec(M)

In this section we will give different varieties for any graded submodule of a graded module. Also, we investigate under what conditions these varieties give a topology on G - Spec(M). Now we give some relations between graded ideals of R and graded submodules of graded R-modules M.

Lemma 3.1. Let R be a G-graded ring, M be a graded R-module, and N be a graded R-submodule of M. Then the following hold:

(i) $(N:_R M) = \{r \in R \mid rM \subseteq N\}$ is a graded ideal of R.

(ii) If I is a graded ideal of R, $r \in h(R)$ and $x \in h(M)$, then IN, rN, and Rx are graded submodules of M.

Proof: One can look for the proof of (i) and (ii) to [1, Lemma 2.1], [7, Lemma 2.2], and [6, Lemma 1]. Also, for the proof of (i), see [5, Lemma 1.2 (iii)].

Theorem 3.2. Let M be a graded R-module. If N is a graded prime submodule of M then $(N:_R M)$ is a graded prime ideal of R. The converse part is true when M is a multiplication graded R-module.

Proof: One can look for the proof to [6, Theorem 3].

Proposition 3.3. Let M be a graded R -module. For any graded submodule N of M, we define the variety of N to be $V_G^*(N) = \{P \in G - Spec(M) \mid P \supseteq N\}$. Then the following hold: (1) $V_G^*(0) = G - Spec(M)$ and $V_G^*(M) = \emptyset$.

(2) $\bigcap_{i \in \Lambda} V_G^* \left(N_i \right) = V_G^* \left(\sum_{i \in \Lambda} N_i \right), \text{ for any family} \left\{ N_i \right\}_{i \in \Lambda} \text{ of graded submodules.}$

(3) $V_G^*(N) \cup V_G^*(L) \subseteq V_G^*(N \cap L)$ for any graded submodules N, L of M.

Proof: (1) Trivial. (2) Let $P \in \bigcap_{i \in \Lambda} V_G^*(N_i)$. Then, $P \in V_G^*(N_i)$ gives us $N_i \subseteq P$ for all $i \in \Lambda$. It follows that $\sum_{i \in \Lambda} N_i \subseteq P$ and hence $P \in V_G^*\left(\sum_{i \in \Lambda} N_i\right)$. Conversely, assume that $P \in V_G^*\left(\sum_{i \in \Lambda} N_i\right)$. Then $\sum_{i \in \Lambda} N_i \subseteq P$ and so, $N_i \subseteq P$ for all $i \in \Lambda$. Thus $P \in \bigcap_{i \in \Lambda} V_G^*(N_i)$ and equality holds. (3) Since $N \cap L \subseteq N$ and $N \cap L \subseteq L$, then $V_G^*(N) \subseteq V_G^*(N \cap L)$ and $V_G^*(L) \subseteq V_G^*(N \cap L)$. Hence $V_G^*(N) \cup V_G^*(L) \subseteq V_G^*(N \cap L)$. Remark that, the reverse inclusion in Proposition 3.3 (3) is not true in general. For this, if we take the

Z₂-graded Z-module $M = Z \times Z$ and $N = 4Z \times \{0\}, L = \{0\} \times 4Z$ as graded submodules of M, then $P = \{0\} \times \{0\} \in V^*(N \cap L)$ but $P \notin V_G^*(N) \cup V_G^*(L)$ since $N \not\subset P$ and $L \not\subset P$, where $P \in G - Spec(M)$.

Definition 3.4. Let M be a graded R -module and $\zeta^*(M)$ be the set of all varieties $V_G^*(N)$ of M, i.e., $\zeta^*(M) = \{V_G^*(N) | N <_G M\}$.

M is called a *G*-top module if the set $\zeta^*(M)$ is closed under finite union. Then $\zeta^*(M)$ is a topology on G-Spec(M) and this topology is called a *quasi Zariski topology* on G-Spec(M), denoted by τ^* .

Theorem 3.5. If M is a multiplication graded R -module, then M is a G -top module.

Proof: It is enough to prove that the inclusion $V_{G}^{*}(N \cap L) \subseteq V_{G}^{*}(N) \cup V_{G}^{*}(L)$ is satisfied. Let $P \in V_{G}^{*}(N \cap L)$. Then $N \cap L \subset P$ and we get $(N \cap L: M) \subseteq (P:M)$. Since (P:M) is a ideal graded prime and $(N \cap L:M) = (N:M) \cap (L:M),$ we get $(N:M) \subseteq (P:M)$ or $(L:M) \subseteq (P:M)$. $(N:M)M \subset (P:M)M$ Then $(L:M)M \subset (P:M)M$. Since M is graded multiplication module, then $N \subseteq P$ or $L \subseteq P$. Hence $P \in V_G^*(N) \cup V_G^*(L)$.

Proposition 3.6. Let *M* be a graded *R*-module. Then the family $\zeta'(M) = \{V_G^*(IM) \mid I \lhd_G R\}$ is closed under finite union. Further, $\zeta'(M)$ is a topology on G - Spec(M) denoted by τ' .

Proposition 3.7. Let M be a graded R-module. If M is a G-top module then the quasi Zariski topology τ^* on G - Spec(M) is finer than τ' .

Now we define another variety for a graded submodule N of a graded module M. We define the variety of N to be $V_G(N) = \{P \in G - Spec(M) | (P:M) \supseteq (N:M)\}$

The following proposition shows that this variety satisfies the topology axioms for closed sets.

Proposition 3.8. Let M be a graded R -module. Then the following hold:

(1)
$$V_G(0) = G - Spec(M)$$
 and $V_G(M) = \emptyset$.
(2) $\bigcap_{i \in \Lambda} V_G(N_i) = V_G\left(\sum_{i \in \Lambda} (N_i : M)M\right)$, for any

family $\{N_i\}_{i \in \Lambda}$ of graded submodules.

(3) $V_G(N) \cup V_G(L) = V_G(N \cap L)$ for any graded submodules N, L of M.

Proof: (1) It is clear. (2) Let $P \in \bigcap_{i \in \Lambda} V_G(N_i)$. For all $i \in \Lambda$, $P \in V_{C}(N_{i})$ implies $(N_{i}:M) \subset (P:M)$. Then $(N_i:M)M \subseteq (P:M)M$. It follows that $\sum_{i \in \Lambda} (N_i : M) M \subseteq (P : M) M \subseteq P \quad \text{for}$ all $i \in \Lambda$. Therefore $P \in V_G \left(\sum_{i=1}^{N} (N_i : M) M \right)$, so $\bigcap_{i=1}^{n} V_G(N_i) \subseteq V_G\left(\sum_{i=1}^{n} (N_i:M)M\right).$ Conversely, let $P \in V_G\left(\sum_{i=1}^{N} (N_i : M)M\right)$. Then $\left(\sum_{i=1}^{N} \left(N_{i}:M\right)M:M\right) \subseteq \left(P:M\right).$ Since $(N_i:M) \subseteq \left(\sum_{i=1}^{N} (N_i:M)M:M\right),$ we get $(N_i:M) \subset (P:M)$ for all $i \in \Lambda$. Thus $P \in V_G(N_i),$ for all $i \in \Lambda$. Hence $P \in \bigcap_{i \in \Lambda} V_G(N_i).$ (3) Let $P \in V_G(N \cap L)$. Then $(N \cap L: M) \subseteq (P:M)$, so that $(N:M) \cap (L:M) \subset (P:M)$. Since (P:M) is graded prime ideal, then $(N:M) \subseteq (P:M)$ or $(L:M) \subseteq (P:M)$. It follows that $P \in V_G(N)$ or $P \in V_G(L)$. Hence $P \in V_G(N) \cup V_G(L)$. Reverse inclusion is clear.

Definition 3.9. Let M be a graded R-module. Since $\zeta(M) = \{V_G(N) \mid N <_G M\}$ is closed under finite union, the family $\zeta(M)$ satisfies the axioms of topological space for closed sets. So, there exists a topology on G - Spec(M) called the *Zariski topology* and denoted by τ .

Definition 3.10. Let M be a graded R-module and $p \in G - Spec(R)$. Then the set $G - Spec_p(M)$ is defined to be $\left\{ P \in G - Spec(M) | (P:M) = p \right\}.$

Now we give some relations between the varieties $V_G^*(N)$ and $V_G(N)$ for any submodule N of the graded R -module M.

Lemma 3.11: Let M be a graded R -module and N, L be graded submodules of M.

(1) If (N:M) = (L:M), then $V_G(N) = V_G(L)$.

The converse is true if N and L are graded prime submodules.

$$V_{G}(N) = V_{G}((N:M)M) = V_{G}^{*}((N:M)M).$$

Theorem 3.12. For any graded R -module M, the Zariski topology τ on G - Spec(M) is identical with τ' and the quasi Zariski topology τ^* on G - Spec(M) is finer than the Zariski topology τ .

Proof: It is clear.

Let M be a graded R -module. Now we give the relation between G - Spec(M) and $G - Spec(\mathbb{R}/Ann(M))$. For this we set X^M and $X^{\overline{R}}$ to represent G - Spec(M) and $G - Spec(\overline{R})$ respectively, where $\overline{R} = \mathbb{R}/Ann(M)$. The map $\varphi: X^M \to X^{\overline{R}}$, defined by $P \mapsto \overline{(P:M)}$ for $P \in X^M$ is called the *natural map* of X^M .

Proposition 3.13. Let M be a graded R -module. The natural map φ of X^M is continuous for the Zariski topologies defined on M and \overline{R} . More precisely, $\varphi^{-1}(V_G^{\overline{R}}(\overline{I})) = V_G(IM)$ for every graded ideal I of R containing Ann(M).

Proof: Let \overline{I} be a graded ideal of \overline{R} , $V_G^{\overline{R}}(\overline{I}) \in \zeta(\overline{R})$ and $P \in \varphi^{-1}(V_G^{\overline{R}}(\overline{I}))$. Then $\overline{(P:M)} = \varphi(P) \in V_G^{\overline{R}}(\overline{I})$, thus $\overline{(P:M)} \supseteq \overline{I}$. It follows that $(P:M) \supseteq I$, that $P \in V_G(IM)$. Therefore $\varphi^{-1}(V_G^{\bar{R}}(\bar{I})) \subseteq V_G(IM)$. For the converse inclusion, let $P \in V_G(IM)$. Then, $IM \subseteq P \in G - Spec(M)$ and hence $I \subseteq (P:M) \subseteq G - Spec(R)$. And so we get $\varphi(P) = \overline{(P:M)} \in V_G^{\bar{R}}(\bar{I})$. This implies $P \in \varphi^{-1}(V_G^{\bar{R}}(\bar{I}))$. Hence the proof is completed.

Proposition 3.14. The following statements are equivalent for any graded R-module M and any $P, Q \in X^M$:

(1) The natural map φ is injective.

(2) If $V_G(P) = V_G(Q)$, then P = Q.

(3) $|G - Spec_p(M)| \le 1$ for every $p \in G - Spec(R)$.

Proof: (1) \Rightarrow (2): Suppose that $V_G(P) = V_G(Q)$. By Lemma 3.11, we get $\overline{(P:M)} = \overline{(Q:M)}$. Thus $\varphi(P) = \varphi(Q)$. Since φ is injective, we obtain P = Q.

(2) \Rightarrow (3): Let $|G - Spec_p(M)| > 1$ and let P, $Q \in G - Spec_p(M)$ such that $P \neq Q$. So, (P:M) = (Q:M) = p. Hence we get $V_G(P) = V_G(Q)$ and by hypothesis we obtain P = Q, which is a contradiction.

 $(3) \Rightarrow (1): \text{ Let } \varphi(P) = \varphi(Q). \text{ It follows that}$ $\overline{(P:M)} = \overline{(Q:M)}. \text{ So, we can write}$ $(P:M) = (Q:M) = p \text{ and since } |G-Spec_p(M)| \le 1,$ we get P = Q.

Proposition 3.15. Let M be a graded R -module and let φ be the natural map of X^M . If φ is surjective, then φ is both open and closed, more precisely for every $N <_G M$, $\varphi(V_G(N)) = V_G^{\overline{R}}(\overline{(N:M)})$ and $\varphi(X^M \setminus V_G(N)) = X^{\overline{R}} \setminus V_G^{\overline{R}}(\overline{(N:M)})$.

Proof: Since φ is a continuous map such that $\varphi^{-1}\left(V_G^{\overline{R}}(\overline{I})\right) = V_G(IM)$, we get for every $N <_G M$, $\varphi^{-1}\left(V_G^{\overline{R}}\left(\overline{(N:M)}\right)\right) = V_G\left((N:M)M\right) = V_G(N)$. As φ is surjective,

$$\begin{split} \varphi \circ \varphi^{-1} \left(V_{G}^{\bar{R}} \left(\overline{(N:M)} \right) \right) &= V_{G}^{\bar{R}} \left(\overline{(N:M)} \right). \text{ Thus } \\ \varphi \left(V_{G}(N) \right) &= V_{G}^{\bar{R}} \left(\overline{(N:M)} \right). \text{ Similarly } \\ \varphi \left(X^{M} \setminus V_{G}(N) \right) &= \varphi \left(\varphi^{-1}(X^{\bar{R}}) \setminus \varphi^{-1} \left(V_{G}^{\bar{R}} \left(\overline{(N:M)} \right) \right) \right) \\ &= \varphi \circ \varphi^{-1} \left(X^{\bar{R}} \setminus V_{G}^{\bar{R}} \left(\overline{(N:M)} \right) \text{ and } \text{ so } \\ \varphi \left(X^{M} \setminus V_{G}(N) \right) &= X^{\bar{R}} \setminus V_{G}^{\bar{R}} \left(\overline{(N:M)} \right). \end{split}$$

Corollary 3.16. Let φ be surjective and M be a graded R-module. Then φ is bijective if and only if φ is homeomorphic.

Proposition 3.17: Let M and M' be graded R-modules, $X^{M} = G - Spec(M)$ and $X^{M'} = G - Spec(M')$. If $f: M \to M'$ is an epimorphism, then the function $\phi: X^{M'} \to X^{M}$ defined by $P' \to f^{-1}(P')$ is continuous.

Proof: For any $N <_G M$ and $P' \in X^{M'}$ and any closed set $V_G(N)$ of X^M , we have $P' \in \phi^{-1}(V_G(N)) = \phi^{-1}(V_G^*((N:M)M))$ iff $\phi(P') = f^{-1}(P') \supset (N:M)M$ iff

$$P' \supseteq f((N:M)M) = (N:M)M' \quad \text{iff}$$

$$P' \in V_G^*((N:M)M') = V_G((N:M)M').$$

Thus $\phi^{-1}(V_G(N)) = V_G((N:M)M')$. Hence ϕ is continuous.

4. A base for the Zariski topolgy on G - Spec(M)

In this section we write $X_r = X^M \setminus V_G(rM)$ of X^M for $r \in h(R)$ and show that $B = \{X_r \mid r \in h(R)\}$ forms a base for X^M . Further, we compare this base with the base of $X^{\overline{R}}$. For each element r of h(R), we write $X_r = X^M \setminus V_G(rM)$. Clearly, every X_r is an open set of X^M and we have $X_0 = \emptyset$ and $X_1 = X^M$ for $0_R, 1_R \in h(R)$. **Proposition 4.1:** Let M be a graded R-module with natural map φ on X^M and $r \in h(R)$. Then, (1) $\varphi^{-1}(D_{\overline{r}}) = X_r$

(2) $\varphi(X_r) \subseteq D_{\overline{r}}$. If φ is surjective, then the equality holds.

(3) The set $B = \{X_r \mid r \in h(R)\}$ is a base for the Zariski topology on X^M .

(4)
$$X_{rs} = X_r \cap X_s$$
, for any $r, s \in h(R)$

Proof: (1) $\varphi^{-1}(D_{\overline{r}}) = \varphi^{-1}(X^{\overline{R}} \setminus V_{G}^{\overline{R}}(\overline{rR}))$ $= X^{M} \setminus \varphi^{-1}(V_{G}^{\overline{R}}(\overline{rR})) = X^{M} \setminus V_{G}(rM) = X_{r}.$ (2) Trivial. (3) Let U be any open set in X^{M} . Since $\zeta(M) = \zeta'(M) = \{V_{G}^{*}(IM) = V_{G}(IM) | I \triangleleft_{G} R\}$ by Lemma 3.11, $U = X^{M} \setminus V_{G}(IM)$ for some

graded ideal I of R. Notice that $I = \langle h(I) \rangle$. Then, $IM = \langle h(I) \rangle M = \langle h(I)M \rangle$. So,

$$V_G(IM) = V_G(h(I)M) = \bigcap_{r \in h(I)} V_G(rM).$$
 It

follows that $U = X^{M} \setminus V_{G}(IM) = X^{M} \setminus \bigcap_{r \in h(I)} V_{G}(rM) = \bigcup_{r \in h(I)} X_{r} \cdot$

Therefore B is a base for the Zariski topology on X^{M} .

(4) $X_{r_{s}} = \varphi^{-1} (D_{\overline{r_{s}}}) = \varphi^{-1} (D_{\overline{r}} \cap D_{\overline{s}}) = \varphi^{-1} (D_{\overline{r}}) \cap \varphi^{-1} (D_{\overline{s}}) = X_{r} \cap X_{s}$ by (1).

Theorem 4.2. Let M be a graded R-module. If the natural map φ is surjective, then the open set X_r is quasi compact for each $r \in h(R)$. Specifically, X^M is quasi compact.

Proof: As the set $B = \{X_r \mid r \in h(R)\}$ is a base for the Zariski topology by Proposition 4.1(3), for every open cover of X_r , there is a set $\{r_{\alpha} \in h(R) \mid \alpha \in \Lambda\}$ such that $X_r \subseteq \bigcup_{\alpha \in \Lambda} X_{r_{\alpha}}$. Then $D_{\overline{r}} = \varphi(X_r) \subseteq \bigcup_{\alpha \in \Lambda} \varphi(X_{r_{\alpha}}) = \bigcup_{\alpha \in \Lambda} D_{\overline{r_{\alpha}}}$ by Proposition 10(2). Since $D_{\overline{r}}$ is quasi compact, there exists a finite subset $\Lambda' \subset \Lambda$ such that

$$D_{\overline{r}} \subseteq \bigcup_{\alpha \in \Lambda'} D_{\overline{r}_{\alpha}}$$
. Hence we obtain
 $X_r = \varphi^{-1}(D_{\overline{r}}) \subseteq \bigcup_{\alpha \in \Lambda'} X_{r_{\alpha}}$.

Let M be a graded R-module and Y be any subset of X^M . We will denote the intersection of all elements in Y by $\xi(Y)$ and the closure of Yin X^M for the Zariski topology by Cl(Y).

Proposition 4.3. Let M be a graded R-module and $Y \subseteq X^M$. Then $V_G(\xi(Y)) = Cl(Y)$. In particular, Y is closed if and only if $V_G(\xi(Y)) = Y$.

Proof: We can see easily that $Y \subseteq V_G(\xi(Y))$. Let $V_G(L)$ be any closed subset of X^M which contains Y. Thus for all $Q \in Y$, we have $(Q:M) \supseteq (L:M)$. This implies that $(L:M) \subseteq \bigcap_{Q \in Y} (Q:M) \subseteq (\xi(Y):M)$. So, $(P:M) \supseteq (\xi(Y):M) \supseteq (L:M)$ for every

 $P \in V_G(\xi(Y))$, that is, $V_G(\xi(Y)) \subseteq V_G(L)$. Hence $V_G(\xi(Y))$ is the smallest closed subset of X^M including Y, which means $V_G(\xi(Y)) = Cl(Y)$.

Proposition 4.4. Let M be a graded R-module, $P \in X^M$, and $\delta = \{(Q:M) \mid Q \in X^M\} \subseteq X^R$. Then,

(1) $Cl(\{P\}) = V_G(P)$.

(2) For any $Q \in X^M$, $Q \in Cl(\{P\})$, if and only if $(Q:M) \supseteq (P:M)$ if and only if $V_G(P) \supseteq V_G(Q)$.

(3) Let M be a finitely generated graded R -module. The set $\{P\}$ is closed in X^{M} if and only if

a) p = (P:M) is a maximal element of the set δ , and

b)
$$G - Spec_p(M) = \{P\}$$
, that is,
 $|G - Spec_p(M)| = 1$.

Proof: (1) We can easily see that (1) holds by taking $Y = \{P\}$ from Proposition 4.3. (2) This follows from (1).

(3) Assume that $\{P\}$ is closed in X^{M} . Hence $\{P\} = Cl(\{P\}) = V_G(P)$ by (1). Let $q \in \delta$ such that $p \subset q$. Then there exists $Q \in X^M$ such that q = (Q:M). So, $(P:M) = p \subseteq (Q:M)$. We have $Q \in V_{C}(P) = \{P\}$, namely Q = P. So, p = q and p is a maximal element of the set $P^* \in G - Spec_n(M)$. δ . Let Then $(P^*:M) = p = (P:M)$ and so $P^* \in V_G(P) = \{P\}$. Hence $G - Spec_n(M) = \{P\}$. Conversely, we suppose that (a) and (b) hold. Since P is graded prime we have $\{P\} \subseteq V_G(P)$. If $Q \in V_G(P)$, then $q = (Q:M) \supseteq (P:M) = p$. Therefore q = p by (a) and Q = P by (b). Thus $V_G(P) \subseteq \{P\}$, so that $V_G(P) = \{P\}$. By (1), $Cl(\{P\}) = \{P\}$. Hence the set $\{P\}$ is closed in X^{M}

The following corollary is a result of Proposition 4.4(1).

Corollary 4.5. For every graded prime submodule P of a graded R-module M, $V_G(P)$ is an irreducible closed subset of X^M .

Proposition 4.6. Let M be a graded R-module and Y be a subset of X^M . If $\xi(Y)$ is a graded prime submodule of M, then Y is irreducible.

Proof: Assume that $\xi(Y)$ is a graded prime submodule of M. Then, $V_G(\xi(Y)) = Cl(Y)$ is irreducible by Corollary 4.5 and Proposition 4.3. So Y is irreducible.

Corollary 4.7. Let M be a graded R-module. If $Y = \{P_i \mid i \in \Lambda\}$ is a non-empty family of graded prime submodules P_i of M, which is linearly ordered by inclusion, then Y is irreducible in X^M .

Proof: Let $\xi(Y) = \bigcap_{i \in \Lambda} P_i = P$. *P* is a proper submodule of *M*. Suppose that $rm \in P$ but $m \notin P$ where $r \in h(R)$ and $m \in h(M)$. Then $m \notin P_i$ for some $i \in \Lambda$. Since P_i is a graded prime submodule, we get $r \in (P_i:M)$. Let *j* be any element of Λ such that $j \neq i$. Since *Y* is linearly ordered by inclusion, we have either $P_i \subseteq P_j$ or $P_j \subseteq P_i$. If $P_i \subseteq P_j$, then we obtain $r \in (P_i:M) \subseteq (P_j:M)$. If $P_j \subseteq P_i$, then since $m \notin P_i$ and P_j is a graded prime submodule, we have $r \in (P_j:M)$. Hence $r \in (P:M)$ and $\xi(Y)$ is a graded prime submodule, so *Y* is irreducible on X^M by Proposition 4.6.

Proposition 4.8. Let M be a graded multiplication R-module. If Nil(M) is graded prime submodule of M, then X^{M} is irreducible.

Proof: Let U and V be open subsets of X^M and P_U and P_V be elements of U and V, respectively. Then there exist submodules N and K of M such that $U = X^M \setminus V_G(N)$ and $V = X^M \setminus V_G(K)$. So $P_U \notin V_G(N)$ and $P_V \notin V_G(K)$, that is, $N \not\subset P_U$ and $K \not\subset P_V$. Since $Nil(M) \subseteq P_U$, $N \not\subset Nil(M)$. Hence, we get $Nil(M) \in U$. Similarly $Nil(M) \in V$. Consequently, $Nil(M) \in U \cap V \neq \emptyset$ and we obtain X^M , irreducible.

Proposition 4.9. Let M be a graded R -module. Assume that $G - Spec_p(M) \neq \emptyset$ for some $p \in G - Spec(R)$. Then the following hold: (a) $G - Spec_p(M)$ is irreducible.

(b) If p is a graded maximal ideal of R, then $G - Spec_p(M)$ is an irreducible closed subset of X^M .

Proof: (a) Let

 $G-Spec_{p}(M) = \left\{ P_{i} \in G-Spec(M) \mid (P_{i}:M) = p, i \in \Lambda \right\}.$ Then $\xi(G-Spec_p(M)) = \bigcap_{i \in \Lambda} P_i$ is a graded prime submodule. Indeed, we assume $rm \in \bigcap P_i$ $r \notin \left(\bigcap_{i\in\Lambda} P_i: M\right) = \bigcap_{i\in\Lambda} (P_i: M),$ and where $r \in h(R)$ and $m \in h(M)$. Notice that $(P_i:M) = p$. Then $r \notin p = (P_i:M)$ for all $i \in \Lambda$. Since $rm \in P_i$ and P_i is graded prime, we get $m \in P_i$ for all $i \in \Lambda$. Hence $m \in \bigcap P_i$ and $G - Spec_n(M)$ is irreducible by Proposition 4.6. (b) To prove this, it suffices to show that $G - Spec_{p}(M) = V_{G}(pM)$ for the graded maximal ideal p. Let $N \in V_G(pM)$, that is, $(N:M) \supseteq (pM:M) \supseteq p$. Since pis maximal, (N:M) = p. So, $N \in G - Spec_n(M)$. Conversely, let $P \in G - Spec_p(M)$. Then $(P:M) = p \subset (pM:M)$ and because of maximality of p, we obtain p = (pM : M) and so $P \in V_G(pM)$.

Proposition 4.10. Let M be a graded R-module and Y be a subset of X^M such that $(\xi(Y):M) = p$ is a graded prime ideal of R. If $G - Spec_p(M) \neq \emptyset$, then Y is irreducible.

Proof: Take $P \in G - Spec_p(M)$. Since $(P:M) = p = (\xi(Y):M)$ we have $V_G(P) = V_G(\xi(Y)) = Cl(Y)$ by Lemma 3.11 and Proposition 4.3. Therefore, Cl(Y) is irreducible and so is Y.

Theorem 4.11. Let M be a graded R-module. Then the following statements are equivalent for any $P, Q \in X^M$:

(1) X^{M} is T_{0} -space. (2) The natural map φ is injective. (3) If $V_{G}(P) = V_{G}(Q)$, then P = Q.

(4)
$$|G - Spec_p(M)| \le 1$$
 for every $p \in G - Spec(R)$.

Proof: (1) \Leftrightarrow (3) follows from Proposition 4.4 and the fact that a topological space is a T_0 -space if and only if the closures of distinct points are distinct. The equivalences of (2), (3), and (4) are proved in Proposition 3.14.

Corollary 4.12. Let M be a G-top module, in particular, let M be a graded multiplication module. Then G - Spec(M) is a T_0 -space for the Zariski topology.

Proposition 4.13. Let M be a graded R-module and $\delta = \{(P:M) \mid P \in X^M\} \subseteq X^R$. Then G - Spec(M) is a T_1 -space if and only if (1) (P:M) = p is a maximal element of δ for all $P \in X^M$, (2) $|G - Spec_p(M)| = 1$ for all

 $p \in G - Spec(R)$.

Proof: If G - Spec(M) is a T_1 -space then the singleton sets are closed in X^M . So we obtain (1) and (2) by Proposition 4.4(3). Conversely, (1) and (2) are equivalent so that the singleton set $\{P\}$ is closed in X^M for every $P \in X^M$, that is, X^M is a T_1 -space.

Theorem 4.14. Let M be a graded R-module. Then X^M is a T_1 -space if and only if every graded prime submodule of M is maximal.

Proof: Assume that X^M is a T_1 -space. Let P be any graded prime submodule of M. By Proposition 4.4(1), $Cl(\{P\}) = V_G(P)$ and since X^M is a T_1 -space, every singleton subset of X^M is closed, that is, $Cl(\{P\}) = V_G(P) = \{P\}$. Now, assume that $P \subseteq Q$. It follows that $(P:M) \subseteq (Q:M)$. So $Q \in V_G(P) = \{P\}$ and we obtain P = Q. For the converse, suppose that every graded prime submodule of M is maximal. Then for all $P \in X^M$ we have $\{P\} = V_G(P)$, and every singleton subset of X^M is closed. Hence X^M is a T_1 -space.

Theorem 4.15. Let M be a graded multiplication R -module. Then X^M is a T_1 -space if and only if it is a T_2 -space.

Proof: Assume that X^M is a T_2 -space. Then it is a T_1 -space. Conversely, assume that X^M is a T_1 space. If $|X^M| = 1$ or $|X^M| = 2$, then X^M is a T_2 -space. Now assume that $|X^M| > 2$. Then we can take three distinct elements in X^M , say P_1 , P_2 , and P_3 . Since M is graded multiplication, $V_G(P_1P_3) = \{P_1, P_3\} = X^M \setminus V_G(P_2)$, $V_G(P_2P_3) = \{P_2, P_3\} = X^M \setminus V_G(P_1)$ and $V_G(P_2) = \{P_2\} = X^M \setminus V_G(P_1P_3)$ are open sets in X^M . This implies that $P_1 \in V_G(P_1P_3)$ and $P_2 \in V_G(P_2)$. Moreover, $V_G(P_1P_3) \cap V_G(P_2) = \emptyset$.

References

- Atani, S. E. (2006). On Graded Prime Submodules. Chiang Mai J. Sci., 33(1), 3-7.
- [2] Atani, S. E. & Farzalipour, F. (2006). Notes on The Graded Prime Submodules. *Int. Math. Forum.*, 38, 1871-1880.
- [3] Escoriza, J. & Torrecillas, B. (2000). Multiplication Graded Rings. *Lecture Notes in Pure and Appl. Math.*, 208, 127-137.
- [4] Escoriza, J. & Torrecillas, B. (1998). Multiplication Objects in Commutative Grothendieck Categories. *Comm. Algebra*. 26(6), 1867-1883.
- [5] Lee, S. C. & Varmazyar, R. (2012). Semiprime Submodules of Graded Multiplication Modules. J. Korean Math. Soc. 49(2), 435-447.
- [6] Oral, K. H., Tekir, U. & Agargun, A. G. (2011). On Graded Prime and Primary Submodules. *Turk. J. Math.*, 35(2), 159-167.
- [7] Atani, S. E. & Farzalipour, F. (2007). On Graded Secondary Modules. *Turk. J. Math.* 31, 371-378.
- [8] Duraivel, T. (1994). Topology on Spectrum of Modules. J. Ramanujan Math. Soc., 9(1), 25-34.