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Abstract 

In this study, we focused on - Legendre curves and non-	 	- Legendre curves in 3-dimensional Heisenberg  group 

. Also, we gave some characterizations of these curves. 
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1. Introduction 

In mathematics , the Heisenberg group, named after 
Werner Heisenberg, is the group of 3 3 upper 
triangular matrices of the form 
 

1
0 1
0 0 1

 

 
or its generalizations under the operation of matrix 
multiplication. In 1987, L. Bianchi classified the 
homogeneous metrics. L. Bianchi, E. Cartan and G. 
Vranceanu found the following 2-parameter family 
of homogeneous Riemannian metrics on the 
cartesian 3- space , , : 
 

, 1 μ 2 1 μ
, 	 , μ

. 
 
In this family, if μ 0, the Euclidean metric is 
obtained, and if 0, μ 0, the Heisenberg 
metric is obtained. Inoguchi studied the differential 
geometry of Heisenberg metric. 

The Legendre curves play an important role in the 
study of contact manifolds. In a 3- dimensional 
Sasakian manifold, the Legendre curves are studied 
by Baikousis and Blair who gave the Frenet 3-
frame in this space [1]. Yıldırım gave some 
characterizations of Legendre curves in 
Homogeneous space [2]. İlarslan gave a 
characterization of curves on non-Euclidean 
manifolds [3]. On the other hand, Baikosis and 
Hirica studied Legendre curves in Riemannian and 
Lorentzian Sasaki spaces [4]. Also, Legendre 
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curves in - Sasakian spaces are studied by Özgür 
and Tripathi [5]. In this study, we focused on 

Legendre curves in 3-dimensional Heisenberg 

group in and gave a characterization of these 
curves. Also, we gave similar results for non- 

Legendre curves in 3-dimensional Heisenberg 

group in . 

2. Preliminaries 

In this section, we will give some basic concepts 
related to Sasakian geometry for later use. 

The Heisenberg group  can be seen as the 
Euclidean space with the multiplication 
 

, , , , , ,
2

 

 
and with the Riemannian metric 
 

, 	 , μ .        (1) 
 

 is a three dimensional, connected, simply 
connected and 2-step nilpotent Lie group. The Lie 
algebra of  has a basis 
 

                                                    (2) 

 
which is dual to 
 

.
	                                (3) 
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For this basis Lie brackets are 
, , , , 0,[6]. 

To study curves in , we shall use their Frenet 
vector fields and equations. Let :  be a 
differentiable curve parametrized by arc length and 
let , ,  be the orthonormal frame field 
tangent defined as follows: by  we denote  
tangent to , by  the unit vector field in the 
direction  normal to 	and we choose 

, so that , ,  is a positive 
oriented orthonormal basis. Thus, we have the 
following Frenet equations [7]: 
 

0 0
0

0 0
.                             (4) 

 
Now, let us consider the odd-dimensional 

Riemannian manifold , . So, the Riemannian 
manifold ,  is said to be an almost contact 
metric manifold if there exist on  a 1,1 tensor 
field , a vector field  (called the Reeb vector 
field) and a 1-form  such that 
 

1,  
 
and 
 

, ,  
 
for any vector fields ,  on . In particular, in an 
almost contact metric manifold we also have 

0 and 0. 
Such a manifold is said to be contact metric 

manifold, if Ф, where Ф , ,Ф  is 
called the fundamental 2-form of . If  is a 
Killing vector field, then  is said to be a 

contact manifold, we have 
,   

for any , . 
On the other hand, the almost contact metric 

structure of  is said to be normal if 
, , , , ,
, , [8, 9]. 

A normal contact metric manifold is called a 
Sasakian Manifold. It can be proved that a Sasakian 
manifold is contact, and that an almost contact 
metric manifold is Sasakian if and only if 
 

,  
 
for any , . Furthermore, assuming that , 

 and defining 
: ,

2
 

 

where ∑ , it can be easily seen 

that  is a Sasakian space. Since all computings 

have  coefficients, we have denoted  as 

Sasakian space. We need the following Lemma 

for later use: 
 
Lemma: Let  and  be two vector fields in 

,  and  be Riemannian connections on 
and , respectively. Thus, 

 

, , .         (5) 
 

On the other hand, if  is the contact distribution 
in a contact manifold , , , , defined by the 
subspaces |	 0 , then a 
one-dimensional integral submanifold of  will be 
called a Legendre curve. A curve : , 
parametrized by its arc length is a Legendre curve if 
and only if 0, [8, 9]. 

3.		  Legendre Curves in  

Theorem 3.1. Let :  be a non-geodesic 

 Legendre curve. The Frenet frame of  is 

, ,  and the Frenet formulas are 
 

0 0
0

0 0
.                       (6) 

 
Proof: Let :  be a curve with arc length 
parameter and the Frenet frame of  be , , . 
Assume that 0. In this case, an 

orthonormal basis of  Sasakian space is 

, , . From here, we get 
 

, , , . 
 

On the other hand, derivating  we obtain 
 

 
    ,  
    , ,  

    , ,  

    = √1 . 
 

From here, we say that 
 

. 
 

Since  is a  Legendre curve, we can easily 

see that 0. Moreover, from (4) we get , 
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,  and 
 

 

											 	
2

,  

											 .  
 

From (4), we get , . Hence, the 

Serret-Frenet formulas are 
 

0 0

0
2

0
2

0

. 

 
Theorem 3.2: Let :  be a non-geodesic 

 Legendre curve and 0 | 	 | 1. The 

curvature and the torsion of  are 
 

, , ,                         (7) 
 
and 
 

,                                        (8) 
 
respectively. 
 
Proof: Let :  be a curve with arc length 
parameter and the Frenet frame of  be , , . 
Assume that 0.In this case, an 

orthonormal basis of  Sasakian space is 

, , . From here we get 
 

, , , . 
 

So, we obtain 
 

	 , 			 , ,   
 
and 
 

1
. 

 
On the other hand, derivating , we have 

 
 

              

             

.                                                           (9) 
 

Similaly, derivating we get, 
 

 

                       

 .                                                            (10) 
 

On the other hand, derivating  we have 
 

 
    ,  
    , ,  

   , ,  

			 √1 . 
 

From here, we see that 
 

 . 
 

Similarly, derivating and we obtain 
 

                    (11) 
 
and 
 

                    (12) 
 
respectively. Furthermore, 
 

1
 

                      											 

												
1

√1
1

√1
 

																

. 
 

Using (9), (10), (11) and (12), we get 
 

2

√1 √1
 

           . 
 

From (6), it can be easily seen that 
 

2 √1 √1
 

       . 
 

Taking the norm of the last equation, we have 
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. 

 
Lemma 3.1. Let :  be a curve with arc 
length parameter and , ,  be the Frenet 
frame of . Then, the following equation is 
obtained: 
 

2 2

0.                                                            (13) 
 
Proof: From (6), we know that 
 

2
 

 
and 
 

. 
 

From here, 
 

1
2

 

. 
 

Differentiating the last equation, we have 
 
1

2
1 1

4
1

0. 
 

Considering the last equation, we get 
 

2 2

0. 
 
Theorem 3.3. Let : , 

, , , be a Legendre curve in 

 and  be the projection curve of  on 0 
plane. Then, the curvature of  is the curvature of 

. 
 
Proof: The tangent vector field of  is 

. 
We can choose the parameter of  as 

1. Then, if we choose  and  as 
sin , cos , respectively, 

we obtain 
 

 
 
and 
 

1
2

 

. 
 

On the other hand, the projection curve  of  on 

0 plane is , . Thus, it can 
be easily seen that α is a unit speed curve. The 
curvature of α is 
 

| |
. 

 
From here, 

 
. 

 
Corollary 3.1. Let  be a non-geodesic Legendre 
curve in IN³. Then, 
i)  is not a circle. 
ii) If  is a helix, it satisfies the following equation: 

∆ . 

iii) If γ is a line, 
, 0. 

iv) γ is not a planar curve. 
 

Proof: i) Since  is a Legendre curve, the 

torsion of  is . So, it can be easily seen that  is 

not a circle. 
ii) If  is helix,  is constant. Also, on the ground 

that the torsion of  is ,  must be constant. So, 

, 0. 
From (13), we obtain 

 

. 
 

Using , ∆  and  we 
have 
 

∆ . 
 

iii) If  is a line, the curvature of  is zero. Also, 
. 

From here, we get 
, 0. 

iv) Since  is a Legendre curve, the torsion of  

is not zero. So, it is said that  is not a planar curve. 
 
Example 3.1. 

:				 		 , cos , sin ,  is a 

curve in . If we assume that 
cos  
sin  

2
 

we get 
 

. 

 
Thus, using (1.3), we get 
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0.

                                                (14) 

 
From (14), we can say that  is a Legendre 

curve. On the other hand, we obtain 
 
‖ ‖  
| |, 

 
 
and 
 

. 
 

Moreover, from (5) we have	 
 

2
, ,  

           , ,  

           . 
 
Namely, we see that 
 

1
 

 
where  is the curvature of . Also, we know that 

 for a non-geodesic  Legendre curve in 

. As a result,  and  are non-zero constants. So, 
 is a helix. 

 
Result 3.1. Helix in Euclidean space is a helix in 

 Sasakian space, too. Also, it is a  Legendre 

curve. 

Corollary 3.2. :				 		  be a   non-Legendre 

curve. Then, 
i) If  is a geodesic, it satisfies the following 
equation: 
 

, , . 
 
ii) If  is a circle, 
 

2

√1
 

 
or 
 

. 

 
where cos  and sin . 
iii) If  is a circular helix, 
 

. 
 

iv) If  is a helix, 
 

. 

 
Proof: i) If  is a geodesic, 0. So, from (7) 
we say that 0 and  is indefinite. 
On the other hand, if  is a geodesic, 0. 
So, from (5) we get 
 

, , . 
 
ii) If  is a circle,  is a non-zero constant. In which 
case there are two situations: 
a) We assume that  and  are constants. Thus, 
 

2 √1
0 

 
or 
 

. 
 
b) We assume that  is a non-zero constant and  
and  are not constants. Hence, if  and  are 
chosen as cos  and sin , respectively, it 
is found that 

 
and 
 

. 
 

Since 0, from (12) we get 
 

. 
 
iv) If  is a helix, , 0  and from 

(7) and (8) 
 

. 

 
Example 3.2. 
:				 		 , cos , sin ,  is a curve 

in . If we assume that, 
cos  
sin  

 
we get 
 

. 

 
Thus using (3), we obtain 

 

.
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So, we can say that  is not a Legendre curve. 

On the other hand, we have 
 

 
 
and 
 

‖ ‖ . 
 

Thus, we get 
 

√ 1 √ 1 √ 1
 

 
and 
 

. 
 

Moreover, from (5) we have 
 

2
, ,  

          , ,  

          . 
 
Since, 
 

√1 √1
,  

 
we obtain 

 
1

2 2
 

 
and 0. On the other hand, we get 
 

1
2 2

 
 
And 
 

2
1
1

1
1

 
 
where  and  are the curvature and the torsion of 

, respectively. As a result, we say that  and  are 
non-zero constants. Namely,  is a circular helix. 
 
Result 3.2. Circle in Euclidean space  is a 

circular helix in Sasakian space. 
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