$\frac{\lambda}{2}$-Legendre curves in 3-dimensional Heisenberg group ${ }^{\prime} N^{3}$

S. Tul* and A. Sarioglugil
Department of Mathematics, Faculty of Sciences and Arts, Ondokuz Mayıs
University, 55139, Kurupelit, Samsun, Turkey
E-mails: tul_sidiqa@hotmail.com \& ayhans@omu.edu.tr

Abstract

In this study, we focused on $\frac{\lambda}{2}$ - Legendre curves and non- $\frac{\lambda}{2}$ - Legendre curves in 3-dimensional Heisenberg group $I N^{3}$. Also, we gave some characterizations of these curves.

Keywords: Heisenberg group; Sasakian manifold; Legendre curve

1. Introduction

In mathematics, the Heisenberg group, named after Werner Heisenberg, is the group of 3×3 upper triangular matrices of the form

$$
\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right)
$$

or its generalizations under the operation of matrix multiplication. In 1987, L. Bianchi classified the homogeneous metrics. L. Bianchi, E. Cartan and G. Vranceanu found the following 2-parameter family of homogeneous Riemannian metrics on the cartesian 3- space $I R^{3}(x, y, z)$:

$$
g_{\lambda, \mu}=\frac{d x^{2}+d y^{2}}{\left\{1+\mu\left(x^{2}+y^{2}\right)\right\}}+\left\{d z+\frac{\lambda}{2} \frac{y d x-x d y}{\left\{1+\mu\left(x^{2}+y^{2}\right)\right\}}\right\}^{2}, \forall \lambda, \mu
$$

In this family, if $\lambda=\mu=0$, the Euclidean metric is obtained, and if $\lambda \neq 0, \mu=0$, the Heisenberg metric is obtained. Inoguchi studied the differential geometry of Heisenberg metric.

The Legendre curves play an important role in the study of contact manifolds. In a 3-dimensional Sasakian manifold, the Legendre curves are studied by Baikousis and Blair who gave the Frenet 3frame in this space [1]. Yıldırım gave some characterizations of Legendre curves in Homogeneous space [2]. İlarslan gave a characterization of curves on non-Euclidean manifolds [3]. On the other hand, Baikosis and Hirica studied Legendre curves in Riemannian and Lorentzian Sasaki spaces [4]. Also, Legendre

*Corresponding author

Received: 13 February 2012 / Accepted: 8 April 2012
curves in α - Sasakian spaces are studied by Özgür and Tripathi [5]. In this study, we focused on $\frac{\lambda}{2}$-Legendre curves in 3-dimensional Heisenberg group in $I N^{3}$ and gave a characterization of these curves. Also, we gave similar results for non-$\frac{\lambda}{2}$-Legendre curves in 3-dimensional Heisenberg group in $I N^{3}$.

2. Preliminaries

In this section, we will give some basic concepts related to Sasakian geometry for later use.

The Heisenberg group $I N^{3}$ can be seen as the Euclidean space with the multiplication

$$
(x, y, z)\left(x^{\prime}, y^{\prime}, z^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}, z+z^{\prime}+\frac{\lambda}{2}\left(x y^{\prime}-y x^{\prime}\right)\right)
$$

and with the Riemannian metric
$g_{\lambda}=d x^{2}+d y^{2}+\left\{d z+\frac{\lambda}{2}\left\{\frac{y d x-x d y}{\left\{1+\mu\left(x^{2}+y^{2}\right)\right\}}\right\}^{2}, \forall \lambda, \mu \in I R\right.$.
$I N^{3}$ is a three dimensional, connected, simply connected and 2 -step nilpotent Lie group. The Lie algebra of $I N^{3}$ has a basis

$$
\left\{\begin{array}{c}
e_{1}=\frac{\partial}{\partial x}-y \frac{\partial}{\partial z} \tag{2}\\
e_{2}=\frac{\partial}{\partial x}-x \frac{\partial}{\partial z} \\
e_{3}=\frac{\partial}{\partial z}
\end{array}\right.
$$

which is dual to

$$
\left\{\begin{array}{c}
\theta^{1}=d x \tag{3}\\
\theta^{2}=d y \\
\theta^{3}=d z+\frac{\lambda}{2}(y d x-x d y)
\end{array}\right.
$$

For this basis Lie brackets are
$\left[e_{1}, e_{2}\right]=e_{3},\left[e_{3}, e_{1}\right]=\left[e_{2}, e_{3}\right]=0,[6]$.
To study curves in $I N^{3}$, we shall use their Frenet vector fields and equations. Let $\gamma: I \rightarrow I N^{3}$ be a differentiable curve parametrized by arc length and let $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the orthonormal frame field tangent defined as follows: by V_{1} we denote $\dot{\gamma}$ tangent to γ, by V_{2} the unit vector field in the direction $D_{V_{1}} V_{1}$ normal to γ and we choose $V_{3}=V_{1} \times V_{2}$, so that $\left\{V_{1}, V_{2}, V_{3}\right\}$ is a positive oriented orthonormal basis. Thus, we have the following Frenet equations [7]:
$\left[\begin{array}{l}D_{V_{1}} V_{1} \\ D_{V_{1}} V_{2} \\ D_{V_{1}} V_{3}\end{array}\right]=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & -\tau \\ 0 & \tau & 0\end{array}\right]\left[\begin{array}{l}V_{1} \\ V_{2} \\ V_{3}\end{array}\right]$.
Now, let us consider the odd-dimensional Riemannian manifold (M, g). So, the Riemannian manifold (M, g) is said to be an almost contact metric manifold if there exist on M a $(1,1)$ tensor field φ, a vector field ξ (called the Reeb vector field) and a 1-form η such that

$$
\eta(\xi)=1, \varphi^{2}(X)=-X+\eta(X) \xi
$$

and

$$
g(\varphi X, \varphi X)=g(X, Y)-\eta(X) \eta(Y)
$$

for any vector fields X, Y on M. In particular, in an almost contact metric manifold we also have $\varphi \xi=0$ and $\eta \circ \varphi=0$.

Such a manifold is said to be contact metric manifold, if $d \eta=\Phi$, where $\Phi(X, Y)=g(X, \Phi Y)$ is called the fundamental 2-form of M. If ξ is a Killing vector field, then M is said to be a K-contact manifold, we have
$\left(D_{X} \varphi\right) Y=R(\xi, X) Y$
for any $X, Y \in M$.
On the other hand, the almost contact metric structure of M is said to be normal if
$[\varphi, \varphi](X, Y)=\varphi^{2}[X, Y]+[\varphi X, \varphi Y]-\varphi[\varphi X, Y]-$ $\varphi[X, \varphi Y],[8,9]$.

A normal contact metric manifold is called a Sasakian Manifold. It can be proved that a Sasakian manifold is K-contact, and that an almost contact metric manifold is Sasakian if and only if

$$
\left(D_{X} \varphi\right) Y=g(X, Y) \xi-\eta(Y) X
$$

for any X, Y. Furthermore, assuming that $\eta=\theta^{3}$, $\xi=e_{3}$ and defining

$$
\begin{aligned}
& \varphi: \chi\left(I N^{3}\right) \rightarrow \chi\left(I N^{3}\right), \varphi(X) \\
&=-a_{2} \frac{\partial}{\partial x_{1}}+a_{1} \frac{\partial}{\partial x_{2}} \\
&+\frac{\lambda}{2}\left(x_{1} a_{1}+x_{2} a_{2}\right) \frac{\partial}{\partial x_{3}}
\end{aligned}
$$

where $\sum_{i=1}^{3} a_{i} \frac{\partial}{\partial x_{i}} \in \chi\left(I N^{3}\right)$, it can be easily seen that $I N^{3}$ is a Sasakian space. Since all computings have $\frac{\lambda}{2}$ coefficients, we have denoted $I N^{3}$ as $\frac{\lambda}{2}$-Sasakian space. We need the following Lemma for later use:

Lemma: Let X and Y be two vector fields in $\chi\left(I N^{3}\right), D$ and \widetilde{D} be Riemannian connections on $I N^{3}$ and $I E^{3}$, respectively. Thus,
$D_{X} Y=\frac{\lambda}{2} X \wedge Y-g_{\lambda}\left(\left[e_{1}, e_{2}\right], X\right) \varphi Y+\widetilde{D}_{X}^{Y}$.
On the other hand, if D is the contact distribution in a contact manifold (M, φ, ξ, η), defined by the subspaces $D_{m}=\left\{X \in T_{m} M \mid \eta(X)=0\right\}$, then a one-dimensional integral submanifold of D will be called a Legendre curve. A curve $\gamma: I \rightarrow M$, parametrized by its arc length is a Legendre curve if and only if $\eta(\dot{\gamma})=0,[8,9]$.

3. $\frac{\lambda}{2}$ - Legendre Curves in $I N^{3}$

Theorem 3.1. Let $\gamma: I \rightarrow I N^{3}$ be a non-geodesic $\frac{\lambda}{2}$ - Legendre curve. The Frenet frame of γ is $\left\{V_{1}, \varphi V_{1}, \xi\right\}$ and the Frenet formulas are
$\left[\begin{array}{c}D_{V_{1}} V_{1} \\ D_{V_{1}} \varphi V_{1} \\ D_{V_{1}} \xi\end{array}\right]=\left[\begin{array}{ccc}0 & \kappa & 0 \\ -\kappa & 0 & \frac{\lambda}{2} \\ 0 & -\frac{\lambda}{2} & 0\end{array}\right]\left[\begin{array}{c}V_{1} \\ \varphi V_{1} \\ \xi\end{array}\right]$.
Proof: Let $\gamma: I \rightarrow I N^{3}$ be a curve with arc length parameter and the Frenet frame of γ be $\left\{V_{1}, V_{2}, V_{3}\right\}$. Assume that $\eta(\dot{\gamma})=\sigma \neq 0$. In this case, an orthonormal basis of $\frac{\lambda}{2}-$ Sasakian space is $\left\{V_{1}, \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}, \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}\right\}$. From here, we get

$$
D_{V_{1}} V_{1}=\alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}+\beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}, \alpha, \beta \in C^{\infty}\left(\mathbb{N}^{3}, \mathbb{R}\right)
$$

On the other hand, derivating σ we obtain

$$
\begin{aligned}
\dot{\sigma} & =D_{V_{1}} \sigma \\
& =D_{V_{1}} g_{\lambda}\left(V_{1}, \xi\right) \\
& =g_{\lambda}\left(D_{V_{1}} V_{1}, \xi\right)+g_{\lambda}\left(V_{1}, D_{V_{1}} \xi\right) \\
& =g_{\lambda}\left(\alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}+\beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}, \xi\right)+g_{\lambda}\left(V_{1},-\frac{\lambda}{2} \varphi V_{1}\right) \\
& =\beta \sqrt{1-\sigma^{2}} .
\end{aligned}
$$

From here, we say that

$$
\beta=\dot{\sigma} \frac{1}{\sqrt{1-\sigma^{2}}} .
$$

Since γ is a $\frac{\lambda}{2}-$ Legendre curve, we can easily see that $\beta=0$. Moreover, from (4) we get $\alpha=\kappa$,
$V_{2}=\varphi V_{1}, D_{V_{1}} V_{1}=\kappa \varphi V_{1}$ and

$$
\begin{aligned}
D_{V_{1}} V_{2} & =\varphi D_{V_{1}} V_{1}+\left(D_{V_{1}} \varphi\right) V_{1} \\
& =\varphi\left(\kappa \varphi V_{1}\right)+\frac{\lambda}{2}\left\{g_{\lambda}\left(V_{1}, V_{1}\right) \xi-\eta\left(V_{1}\right) V_{1}\right\} \\
& =-\kappa V_{1}+\frac{\lambda}{2} \xi .
\end{aligned}
$$

From (4), we get $V_{3}=\xi, \tau=-\frac{\lambda}{2}$. Hence, the Serret-Frenet formulas are

$$
\left[\begin{array}{c}
D_{V_{1}} V_{1} \\
D_{V_{1}} \varphi V_{1} \\
D_{V_{1}} \xi
\end{array}\right]=\left[\begin{array}{ccc}
0 & \kappa & 0 \\
-\kappa & 0 & \frac{\lambda}{2} \\
0 & -\frac{\lambda}{2} & 0
\end{array}\right]\left[\begin{array}{c}
V_{1} \\
\varphi V_{1} \\
\xi
\end{array}\right] .
$$

Theorem 3.2: Let $\gamma: I \rightarrow I N^{3}$ be a non-geodesic $\frac{\lambda}{2}-$ Legendre curve and $0<|\eta(\dot{\gamma})|<1$. The curvature and the torsion of γ are
$\kappa=\sqrt{\alpha^{2}+\beta^{2}}, \alpha, \beta \in C^{\infty}\left(\mathbb{N}^{3}, \mathbb{R}\right)$
and
$\tau=\frac{\lambda}{2}+\frac{\alpha \dot{\beta}-\alpha \dot{\beta}}{\alpha^{2}+\beta^{2}}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}}$,
respectively.
Proof: Let $\gamma: I \rightarrow I N^{3}$ be a curve with arc length parameter and the Frenet frame of γ be $\left\{V_{1}, V_{2}, V_{3}\right\}$. Assume that $\eta(\dot{\gamma})=\sigma \neq 0$.In this case, an orthonormal basis of $\frac{\lambda}{2}-$ Sasakian space is $\left\{V_{1}, \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}, \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}\right\}$. From here we get
$D_{V_{1}} V_{1}=\alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}+\beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}, \alpha, \beta \in C^{\infty}\left(\mathbb{N}^{3}, \mathbb{R}\right)$.
So, we obtain
$\kappa=\left\|D_{V_{1}} V_{1}\right\|=\sqrt{\alpha^{2}+\beta^{2}}, \quad \alpha, \beta \in C^{\infty}\left(\mathbb{N}^{3}, \mathbb{R}\right)$
and
$V_{2}=\frac{1}{\kappa} D_{V_{1}} V_{1}$.
On the other hand, derivating φV_{1}, we have

$$
\begin{align*}
D_{V_{1}} \varphi V_{1} & =\varphi D_{V_{1}} V_{1}+\left(D_{V_{1}} \varphi\right) V_{1} \\
& =\varphi\left(\alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}+\beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}\right)+\frac{\lambda}{2}\left(\xi-\sigma V_{1}\right) \\
& =-\frac{\alpha}{\sqrt{1-\sigma^{2}}} V_{1}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}} \xi-\frac{\beta \sigma}{\sqrt{1-\sigma^{2}}} \varphi V_{1}+ \\
\frac{\lambda}{2}(\xi- & \left.\sigma V_{1}\right) . \tag{9}
\end{align*}
$$

Similaly, derivating $\xi-\sigma V_{1}$ we get,

$$
D_{V_{1}}\left(\xi-\sigma V_{1}\right)=D_{V_{1}} \xi-\dot{\sigma} V_{1}-\sigma D_{V_{1}} V_{1}
$$

$$
\begin{equation*}
=-\frac{\lambda}{2} \varphi V_{1}-\dot{\sigma} V_{1}-\sigma \alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}- \tag{10}
\end{equation*}
$$

$\sigma \beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}$.
On the other hand, derivating σ we have

$$
\begin{aligned}
\dot{\sigma} & =D_{V_{1}} \sigma \\
& =D_{V_{1}} g_{\lambda}\left(V_{1}, \xi\right) \\
& =g_{\lambda}\left(D_{V_{1}} V_{1}, \xi\right)+g_{\lambda}\left(V_{1}, D_{V_{1}} \xi\right) \\
& =g_{\lambda}\left(\alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}+\beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}}, \xi\right)+g_{\lambda}\left(V_{1},-\frac{\lambda}{2} \varphi V_{1}\right) \\
& =\beta \sqrt{1-\sigma^{2}} .
\end{aligned}
$$

From here, we see that

$$
\beta=\dot{\sigma} \frac{1}{\sqrt{1-\sigma^{2}}} .
$$

Similarly, derivating $\frac{\alpha}{\sqrt{1-\sigma^{2}}}$ and $\frac{\beta}{\sqrt{1-\sigma^{2}}}$ we obtain
$D_{V_{1}}\left(\frac{\alpha}{\sqrt{1-\sigma^{2}}}\right)=\dot{\alpha} \frac{1}{\sqrt{1-\sigma^{2}}}+\alpha \beta \sigma \frac{1}{1-\sigma^{2}}$
and
$D_{V_{1}}\left(\frac{\beta}{\sqrt{1-\sigma^{2}}}\right)=\dot{\alpha} \frac{1}{\sqrt{1-\sigma^{2}}}+\beta^{2} \sigma \frac{1}{1-\sigma^{2}}$
respectively. Furthermore,

$$
\begin{aligned}
& D_{V_{1}} V_{2}= D_{V_{1}}\left(\frac{1}{\kappa} D_{V_{1}} V_{1}\right) \\
&=-\frac{\dot{\kappa}}{\kappa^{2}} D_{V_{1}} V_{1}+\frac{1}{\kappa} D_{V_{1}} D_{V_{1}} V_{1} \\
&=-\frac{\dot{\kappa}}{\kappa^{2}} D_{V_{1}} V_{1}+\frac{1}{\kappa} D_{V_{1}}\left(\frac{\alpha}{\sqrt{1-\sigma^{2}}}\right) \varphi V_{1} \\
& \quad+\frac{1}{\kappa}\left(\frac{\alpha}{\sqrt{1-\sigma^{2}}}\right) D_{V_{1}} \varphi V_{1} \\
& \quad+\frac{1}{\kappa} D_{V_{1}}\left(\frac{\beta}{\sqrt{1-\sigma^{2}}}\right)\left(\xi-\sigma V_{1}\right)+ \\
& \frac{1}{\kappa}\left(\frac{\beta}{\sqrt{1-\sigma^{2}}}\right) D_{V_{1}}\left(\xi-\sigma V_{1}\right) .
\end{aligned}
$$

Using (9), (10), (11) and (12), we get

$$
\begin{aligned}
& D_{V_{1}} V_{2}=-\kappa V_{1}-\left(-\frac{\alpha \dot{\kappa}}{\kappa^{2}}+\frac{\dot{\alpha}}{\kappa}-\frac{\lambda \beta}{2 \kappa}\right. \\
&\left.-\frac{\alpha \beta \sigma}{\kappa \sqrt{1-\sigma^{2}}}\right) \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}} \\
&+\left(-\frac{\beta \dot{\kappa}}{\kappa^{2}}+\frac{\dot{\beta}}{\kappa}-\frac{\lambda \alpha}{2 \kappa}-\frac{\alpha^{2} \sigma}{\kappa \sqrt{1-\sigma^{2}}}\right) \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}} .
\end{aligned}
$$

From (6), it can be easily seen that

$$
\begin{aligned}
\tau V_{3} & =\left(-\frac{\alpha \dot{\kappa}}{\kappa^{2}}+\frac{\dot{\alpha}}{\kappa}-\frac{\lambda \beta}{2 \kappa}-\frac{\alpha \beta \sigma}{\kappa \sqrt{1-\sigma^{2}}}\right) \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}} \\
& +\left(-\frac{\beta \dot{\kappa}}{\kappa^{2}}+\frac{\dot{\beta}}{\kappa}-\frac{\lambda \alpha}{2 \kappa}-\frac{\alpha^{2} \sigma}{\kappa \sqrt{1-\sigma^{2}}}\right) \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}} .
\end{aligned}
$$

Taking the norm of the last equation, we have

$$
\tau=\frac{\lambda}{2}+\frac{\alpha \dot{\beta}-\alpha \dot{\beta}}{\alpha^{2}+\beta^{2}}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}} .
$$

Lemma 3.1. Let $\gamma: I \rightarrow I N^{3}$ be a curve with arc length parameter and $\left\{V_{1}, V_{2}, V_{3}\right\}$ be the Frenet frame of γ. Then, the following equation is obtained:
$D_{V_{1}}^{3} V_{1}-2 \frac{\dot{k}}{\kappa} D_{V_{1}}^{2} V_{1}+\left(2 \frac{\dot{\kappa}}{\kappa}-\frac{\ddot{\kappa}}{\kappa}+\kappa^{2}+\frac{\lambda^{2}}{4}\right) D_{V_{1}} V_{1}+$
$\kappa \dot{\kappa} V_{1}=0$.
Proof: From (6), we know that

$$
D_{V_{1}} \varphi V_{1}=-\kappa V_{1}+\frac{\lambda}{2} \xi
$$

and

$$
D_{V_{1}} V_{1}=-\kappa \varphi V_{1} .
$$

From here,
$D_{V_{1}} \frac{1}{\kappa} D_{V_{1}} V_{1}=-\kappa V_{1}+\frac{\lambda}{2} \xi$
$\Rightarrow\left(\frac{1}{\kappa}\right)^{\prime} D_{V_{1}} V_{1}+\frac{1}{\kappa} D_{V_{1}}^{2} V_{1}=-\kappa V_{1}+\frac{\lambda}{2} \xi$.
Differentiating the last equation, we have
$\frac{1}{\kappa} D_{V_{1}}^{3} V_{1}+2\left(\frac{1}{\kappa}\right)^{\prime} D_{V_{1}}^{2} V_{1}+\left(\left(\frac{1}{\kappa}\right)^{\prime \prime}+\kappa+\frac{\lambda^{2}}{4} \frac{1}{\kappa}\right) D_{V_{1}} V_{1}$
$+\dot{\kappa} V_{1}=0$.
Considering the last equation, we get
$D_{V_{1}}^{3} V_{1}-2 \frac{\dot{\kappa}}{\kappa} D_{V_{1}}^{2} V_{1}+\left(2 \frac{\dot{\kappa}}{\kappa}-\frac{\ddot{\kappa}}{\kappa}+\kappa^{2}+\frac{\lambda^{2}}{4}\right) D_{V_{1}} V_{1}+$ $\kappa \dot{\kappa} V_{1}=0$.

Theorem 3.3. Let $\quad \gamma: I \rightarrow I N^{3}, \quad \gamma(t)=$ $\left(\gamma_{1}(t), \gamma_{2}(t), \gamma_{3}(t)\right)$, be a $\frac{\lambda}{2}$-Legendre curve in $I N^{3}$ and α be the projection curve of γ on $z=0$ plane. Then, the curvature of γ is the curvature of α.

Proof: The tangent vector field of γ is
$\dot{\gamma}(t)=\dot{\gamma}_{1}(t) e_{1}+\dot{\gamma_{2}}(t) e_{2}+\dot{\gamma_{3}}(t) e_{3}$.
We can choose the parameter of γ as $\dot{\gamma}_{1}(t)^{2}+$ $\dot{\gamma}_{2}(t)^{2}=1$. Then, if we choose $\gamma_{1}(t)$ and $\gamma_{2}(t)$ as $\dot{\gamma}_{1}(t)=-\sin \theta(t), \dot{\gamma}_{2}(t)=\cos \theta(t)$, respectively, we obtain

$$
D_{\dot{\gamma}(t)} \dot{\gamma}(t)=\ddot{\gamma}_{1}(t) e_{1}+\ddot{\gamma_{2}}(t) e_{2}
$$

and
$\left\|D_{\dot{\gamma}(t)} \dot{\gamma}(t)\right\|=\frac{1}{2} \sqrt{\ddot{\gamma}_{1}(t)^{2}+\ddot{\gamma}_{2}(t)^{2}}$
$\kappa=\dot{\theta}(t)$.
On the other hand, the projection curve α of γ on
$z=0$ plane is $\alpha(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right)$. Thus, it can be easily seen that α is a unit speed curve. The curvature of α is

$$
\kappa_{\alpha}=\frac{\left|\ddot{\gamma}_{1}(t) \dot{\gamma}_{2}(t)-\dot{\gamma}_{1}(t) \ddot{\gamma}_{2}(t)\right|}{\sqrt[3]{\left(\dot{\gamma}_{1}(t)^{2}+\dot{\gamma}_{2}(t)^{2}\right)^{2}}}
$$

From here,

$$
\kappa=\kappa_{\alpha} .
$$

Corollary 3.1. Let γ be a non-geodesic Legendre curve in IN^{3}. Then,
i) γ is not a circle.
ii) If γ is a helix, it satisfies the following equation:
$\Delta H=\left(\kappa^{2}+\frac{\lambda^{2}}{4}\right) H$.
iii) If γ is a line,
$g_{\lambda}\left(D_{V_{1}} V_{1}, \varphi V_{1}\right)=0$.
iv) γ is not a planar curve.

Proof: i) Since γ is a $\frac{\lambda}{2}$-Legendre curve, the torsion of γ is $-\frac{\lambda}{2}$. So, it can be easily seen that γ is not a circle.
ii) If γ is helix, $\frac{\kappa}{\tau}$ is constant. Also, on the ground that the torsion of γ is $-\frac{\lambda}{2}, \kappa$ must be constant. So, $\dot{\kappa}, \ddot{\kappa}=0$.
From (13), we obtain

$$
D_{V_{1}}^{3} V_{1}=-\left(\kappa^{2}+\frac{\lambda^{2}}{4}\right) D_{V_{1}} V_{1}
$$

Using $V_{1}=\dot{\gamma}, \Delta=-D_{V_{1}} D_{V_{1}} V_{1}$ and $H=D_{V_{1}} V_{1}$ we have

$$
\Delta H=\left(\kappa^{2}+\frac{\lambda^{2}}{4}\right) H
$$

iii) If γ is a line, the curvature of γ is zero. Also, $D_{V_{1}} V_{1}=\kappa \varphi V_{1}$.
From here, we get
$g_{\lambda}\left(D_{V_{1}} V_{1}, \varphi V_{1}\right)=0$.
iv) Since γ is a $\frac{\lambda}{2}$-Legendre curve, the torsion of γ is not zero. So, it is said that γ is not a planar curve.

Example 3.1.

$\gamma: I \rightarrow \mathbb{N}^{3}, \gamma(t)=\left(r \cos t, r \sin t, \frac{\lambda}{2} r^{2} t\right) \quad$ is \quad a curve in $I N^{3}$. If we assume that
$x=r \cos t$
$y=r \sin t$
$z=\frac{\lambda}{2} r^{2}$
we get

$$
\dot{\gamma}(t)=\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right)_{\gamma(t)} .
$$

Thus, using (1.3), we get

$$
\left\{\begin{array}{l}
\theta^{1}(\dot{\gamma}(t))=-y \tag{14}\\
\theta^{2}((\dot{\gamma}(t))=x \\
\theta^{3}(\dot{\gamma}(t))=0 .
\end{array}\right.
$$

From (14), we can say that γ is a $\frac{\lambda}{2}$-Legendre curve. On the other hand, we obtain
$\|\dot{\gamma}(t)\|=\sqrt{\left[\theta^{1}(\dot{\gamma}(t))\right]^{2}+\left[\theta^{2}(\dot{\gamma}(t))\right]^{2}+\left[\theta^{3}(\dot{\gamma}(t))\right]^{2}}$
$=|r|$,
$V_{1}=\mp \frac{y}{r} e_{1} \mp \frac{x}{r} e_{2}$
and

$$
\varphi V_{1}=\mp \frac{x}{r} e_{1} \mp \frac{y}{r} e_{2}
$$

Moreover, from (5) we have

$$
\begin{aligned}
D_{V_{1}} V_{1} & =\frac{\lambda}{2} V_{1} \wedge V_{1}-g_{\lambda}\left(\left[e_{1}, e_{2}\right], V_{1}\right) \varphi V_{1}+\widetilde{D}_{V_{1}}^{V_{1}} \\
& =-g_{\lambda}\left(\left[e_{1}, e_{2}\right], V_{1}\right) \varphi V_{1}+\widetilde{D}_{V_{1}}^{V_{1}} \\
& =\mp \frac{1}{r} \varphi V_{1} .
\end{aligned}
$$

Namely, we see that

$$
\kappa=\mp \frac{1}{r}
$$

where κ is the curvature of γ. Also, we know that $\tau=-\frac{\lambda}{2}$ for a non-geodesic $\frac{\lambda}{2}$ - Legendre curve in \mathbb{N}^{3}. As a result, κ and τ are non-zero constants. So, γ is a helix.

Result 3.1. Helix in Euclidean space is a helix in $\frac{\lambda}{2}-$ Sasakian space, too. Also, it is a $\frac{\lambda}{2}-$ Legendre curve.
Corollary 3.2. $\gamma: I \rightarrow \mathbb{N}^{3}$ be a $\frac{\lambda}{2}$ - non-Legendre curve. Then,
i) If γ is a geodesic, it satisfies the following equation:

$$
\widetilde{D}_{V_{1}}^{V_{1}}=g_{\lambda}\left(\left[e_{1}, e_{2}\right], V_{1}\right) \varphi V_{1} .
$$

ii) If γ is a circle,

$$
\lambda=\frac{2 \alpha \sigma}{\sqrt{1-\sigma^{2}}}
$$

or

$$
\lambda=-\frac{2 \alpha \sigma}{\sqrt{1-\sigma^{2}}}+\dot{\theta}(t) r^{2}
$$

where $\alpha=r \cos \theta(t)$ and $\beta=r \sin \theta(t)$.
iii) If γ is a circular helix,

$$
\tau=-\frac{\lambda}{2}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}}
$$

iv) If γ is a helix,

$$
\alpha^{2}+\beta^{2}=c^{2}\left(\frac{\lambda}{2}+\frac{\alpha \dot{\beta}-\alpha \dot{\beta}}{\alpha^{2}+\beta^{2}}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}}\right)^{2}
$$

Proof: i) If γ is a geodesic, $\kappa=\tau=0$. So, from (7) we say that $\alpha=\beta=0$ and τ is indefinite.
On the other hand, if γ is a geodesic, $D_{V_{1}} V_{1}=0$.
So, from (5) we get

$$
\widetilde{D}_{V_{1}}^{V_{1}}=g_{\lambda}\left(\left[e_{1}, e_{2}\right], V_{1}\right) \varphi V_{1}
$$

ii) If γ is a circle, κ is a non-zero constant. In which case there are two situations:
a) We assume that α and β are constants. Thus,

$$
\tau=-\frac{\lambda}{2}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}}=0
$$

or

$$
\lambda=\frac{2 \alpha \sigma}{\sqrt{1-\sigma^{2}}}
$$

b) We assume that κ is a non-zero constant and α and β are not constants. Hence, if α and β are chosen as $r \cos \theta(t)$ and $r \sin \theta(t)$, respectively, it is found that
$\alpha^{2}+\beta^{2}=r^{2}$
and

$$
\alpha \dot{\beta}-\dot{\alpha} \beta=\dot{\theta}(t) r^{2}
$$

Since $\tau=0$, from (12) we get

$$
\lambda=-\frac{2 \alpha \sigma}{\sqrt{1-\sigma^{2}}}+\dot{\theta}(t) r^{2}
$$

iv) If γ is a helix, $\frac{\kappa}{\tau}=c, c \neq 0=$ const and from (7) and (8)

$$
\alpha^{2}+\beta^{2}=c^{2}\left(\frac{\lambda}{2}+\frac{\alpha \dot{\beta}-\dot{\alpha} \beta}{\alpha^{2}+\beta^{2}}+\frac{\alpha \sigma}{\sqrt{1-\sigma^{2}}}\right)^{2}
$$

Example 3.2.

$\gamma: I \rightarrow \mathbb{N}^{3}, \gamma(t)=(r \cos t, r \sin t, c)$ is a curve in \mathbb{N}^{3}. If we assume that,
$x=r \cos t$
$y=r \sin t$
$z=c$
we get

$$
\dot{\gamma}(t)=\left(-y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}\right)_{\gamma(t)} .
$$

Thus using (3), we obtain

$$
\left\{\begin{array}{c}
\theta^{1}(\dot{\gamma}(t))=-y \\
\theta^{2}((\dot{\gamma}(t))=x \\
\theta^{3}(\dot{\gamma}(t))=-r^{2}
\end{array}\right.
$$

So, we can say that γ is not a $\frac{\lambda}{2}$-Legendre curve. On the other hand, we have

$$
\dot{\gamma}(t)=\left(-y e_{1}+x e_{2}-r^{2} e_{3}\right)_{\gamma(t)}
$$

and

$$
\|\dot{\gamma}(t)\|=\sqrt{\left[\theta^{1}(\dot{\gamma}(t))\right]^{2}+\left[\theta^{2}(\dot{\gamma}(t))\right]^{2}+\left[\theta^{3}(\dot{\gamma}(t))\right]^{2}} .
$$

Thus, we get
$V_{1}=-\frac{y}{r \sqrt{r^{2}+1}} e_{1}+\frac{x}{r \sqrt{r^{2}+1}} e_{2}-\frac{r}{\sqrt{r^{2}+1}} e_{3}$
and

$$
\varphi V_{1}=-\frac{x}{r \sqrt{r^{2}+1}} e_{1}-\frac{y}{r \sqrt{r^{2}+1}} e_{2}
$$

Moreover, from (5) we have

$$
\begin{aligned}
D_{V_{1}} V_{1} & =\frac{\lambda}{2} V_{1} \wedge V_{1}-g_{\lambda}\left(\left[e_{1}, e_{2}\right], V_{1}\right) \varphi V_{1}+\widetilde{D}_{V_{1}}^{V_{1}} \\
& =-g_{\lambda}\left(\left[e_{1}, e_{2}\right], V_{1}\right) \varphi V_{1}+\widetilde{D_{V_{1}} V_{1}} \\
& =\left(\frac{1}{r \sqrt{r^{2}+1}}+\frac{\lambda}{2 \sqrt{r^{2}+1}}\right) \varphi V_{1} .
\end{aligned}
$$

Since,

$$
D_{V_{1}} V_{1}=\alpha \frac{\varphi V_{1}}{\sqrt{1-\sigma^{2}}}+\beta \frac{\xi-\sigma V_{1}}{\sqrt{1-\sigma^{2}}} \alpha, \beta \in \mathbb{R}
$$

we obtain

$$
\alpha=\frac{1}{r^{3}+r}+\frac{\lambda r}{2 r^{2}+2}
$$

and $\beta=0$. On the other hand, we get
$\kappa=\left|\frac{1}{r^{3}+r}+\frac{\lambda r}{2 r^{2}+2}\right|$
And
$\tau=-\frac{\lambda}{2}\left(\frac{1}{r^{2}+1}\right)-\left(\frac{1}{r^{2}+1}\right)$
where κ and τ are the curvature and the torsion of γ, respectively. As a result, we say that κ and τ are non-zero constants. Namely, γ is a circular helix.

Result 3.2. Circle in Euclidean space $I E^{3}$ is a circular helix in $\frac{\lambda}{2}$-Sasakian space.

Acknowledgments

The authors thank the referee for the useful suggestions and remarks for the revised version. This study is supported by the University of Ondokuz Mayıs Project no PYO. FEN. 1904. 11. 006.

References

[1] Baikoussis, C. \& Blair, D.E. (1994). On Legendre Curves in Contact 3-Manifolds. Geometriae Dedicata, 49, 135-142.
[2] Yıldırım, A. (2005). Differential Geometry of Curves in Homogeneous Space. Doctorate Dissertation, Ankara Üniveristei Fen Bilimleri Enstitüsü, Ankara.
[3] İlarsalan, K. (2002). Some Special Curves on NonEuclidean Manifolds, Doctorate Dissertation, Ankara Üniveristei Fen Bilimleri Enstitüsü, Ankara.
[4] Belkhelfa, M., Hirica, I. E., Rosca, R. \& Verstlraelen, L. (2002). On Le-gendre Curves in Riemannian and Lorenztian Sasaki Spaces. Soochow J. Math, 28(1), 8191.
[5] Özgür, C. \& Tripathi, M. M. (2008). On Legendre curves in -Sasakian manifolds. Bull. Malays. Math. Sci. Soc. 31(1), 91-96.
[6] Inoguch1, J. I., Kumamoto, T., Ohsugi, N. \& Suyama, Y. (1999). Differential Geometry of Curves and Surfaces in 3-Dimensionan Homogeneous Spaces I. Fukuoka Univ. Sci. Reports, 29(2), 155-182.
[7] Capogna, L., Danielli, D., Pauls, S. D. \& Tyson, J. T. (2007). An Introduction to Heisenberg Group and Isoperimetric Problem, Boston, Basel, Birkhauser.
[8] Blair, D. E. (1976). Contact 3-Manifolds in Riemannian Geometry. New York, Springer 509.
[9] Blair, D. E. (2001). Riemannian Geometry of Contact and Symplectic Manifolds. Boston, Birkhauser.

