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Abstract 

Korovkin type approximation theorems are useful tools to check whether a given sequence ሺܮሻஹଵ	of positive 
linear operators on ܥሾ0,1ሿ of all continuous functions on the real interval ሾ0,1ሿ is an approximation process. That 
is, these theorems exhibit a variety of test functions which assure that the approximation property holds on the 
whole space if it holds for them. Such a property was discovered by Korovkin in 1953 for the functions 1,  and ݔ
 ሾ0,1ሿ as well as for the functions 1, cos and sin in the space of all continuous 2π-periodicܥ in the space	ଶݔ
functions on the real line. In this paper, we use the notion of statistical lacunary summability to improve the result 
of [Ann. Univ. Ferrara, 57(2) (2011) 373-381] by using the test functions 1, ݁ି௫	, ݁ିଶ௫ in place of 1,  ଶ. Weݔ and ݔ
apply the classical Baskakov operator to construct an example in support of our main result. 
 
Keywords: Statistical convergence; statistical lacunary summability; positive linear operator; Korovkin type 
approximation theorem 

 
1. Introduction and Preliminaries 

Let ܭ ك Գ and ܭ ൌ ሼ݇  ݊: ݇ א Գሽ. Then the 
natural density of ܭ is defined by ߜሺܭሻ ൌ
݈݅݉

ଵ

	
 | denotesܭ| | if the limit exists, whereܭ|

the cardinality of the set ܭ. A sequence ݔ ൌ
ሺݔሻ∞ୀ of real numbers is said to be statistically 
convergent (c.f. [1]) to ܮ provided that for every 
ߝ  0_ > 0 the set ܭఌ ؔ ሼ݇ א Գ: ݔ| െ |ܮ   ሽ hasߝ
natural density zero, i.e. for each ߝ  0, 
 

݈݅݉
1
݊	
|ሼ݇  ݊: ݔ| െ |ܮ  |ሽߝ ൌ 0. 

 
In this case, we write ܮ ൌ ݐݏ െ  Note that .ݔ݈݉݅

every convergent sequence is statistically 
convergent but not conversely. 

By a lacunary sequence we mean an increasing 
sequence θ= ሺ݇ሻ of positive integers such that 
݇ ൌ 0, ݄ ൌ ݇ െ ݇ିଵ ՜ ∞ as ݎ ՜ ∞. Throughout 
this paper the intervals determined by θ will be 
denoted by ܫ ൌ ሺ݇ିଵ, ݇ሿ and the ratio ݇/݇ିଵ 
will be abbreviated by ݍ. 

Let ܭ ك Գ. Then 
 

ሻܭఏሺߜ ൌ ݈݅݉
1
݄	

|ሼ݇ିଵ ൏ ݆  ݇: ݆ א  |ሽܭ

 
is said to be the θ-density of the set ܭ. 
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A sequence ݔ ൌ ሺݔሻ	is said to be lacunary 
statistically convergent (see [2]) to ܮ if for every 
ߝ  0, the set ܭఌ ؔ ൛݆ א Գ: หݔ െ หܮ  -has θ	ൟߝ
density zero, i.e. ߜఏሺܭఌሻ ൌ 0.	In this case we write 
ܮ ൌ ܵ െ  ,That is .ݔ݈݉݅
 

݈݅݉
1
݄	

ห൛݇ିଵ ൏ ݆  ݇: หݔ െ หܮ  ൟหߝ ൌ 0. 

 
Recently the concept of statistically lacunary 

summability has been introduced in [3]. 
A sequence ݔ ൌ ሺݔሻ	is said to be statistically 

lacunary summable (or statistically θ-summable) to 
ߝ if for every ܮ  0, the set ܭఌሺߠሻ ؔ ሼݎ א
Գ: ሻݔሺݐ| െ |ܮ   .has natural density zero, i.e	ሽߝ
ሻሻߠఌሺܭሺߜ ൌ 0.	In this case we write ܮ ൌ ܵ െ  .ݔ݈݉݅
That is, 
 

݈݅݉
1
݊	
|ሼݎ  ݊: ሻݔሺݐ| െ |ܮ  |ሽߝ ൌ 0, 

 
where ݐሺݔሻ ൌ

ଵ

ೝ	
∑ ூೝאݔ . 

In other words, a sequence ݔ ൌ ሺݔሻ is 
statistically lacunary summable to L if and only if 
the sequence (ݐሺݔሻ) is statistically convergent to L. 
In this case we write θS െ ݔ݈݉݅ ൌ  We denote the .ܮ
set of all statistically lacunary summable sequences 
by θS. 

Note that if a sequence ݔ ൌ ሺݔሻ is bounded and 
lacunary statistically convergent to L then it is 
statistically lacunary summable to L [3].  
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Let ܥሾܽ, ܾሿ be the space of all functions f 
continuous on ሾܽ, ܾሿ. We know that ܥሾܽ, ܾሿ is a 
Banach space with norm 
 
צ ݂ ஶൌצ 	 sup௫אሾ,ሿ	|݂ሺݔሻ|, ݂ א ,ሾܽܥ ܾሿ. 
 

The classical Korovkin approximation theorem is 
stated as follows [4, 5]: 

Let ሺ ܶሻ be a sequence of positive linear 
operators from ܥሾܽ, ܾሿ into ܥሾܽ, ܾሿ. Then 
݈݅݉ צ ܶሺ݂, ሻݔ െ ݂ሺݔሻ ஶൌצ 	0 for all ݂ א

,ሾܽܥ ܾሿ	if and only if ݈݅݉ צ ܶሺ ݂, ሻݔ െ ݂ሺݔሻ ஶൌצ
	0 for i = 0,1, 2, where ݂ሺݔሻ ൌ 0, ଵ݂ሺݔሻ ൌ  and	ݔ
ଶ݂ሺݔሻ ൌ  .ଶݔ
Quite recently, such type of approximation 

theorems are proved in [6] and [7] by using almost 
convergence of single and double sequences, 
respectively. Patterson and Savas [8] have proved 
the Korovkin type theorem for lacunary statistical 
convergence. In [9-12] authors have used different 
types of statistical summability methods. In [13] 
and [14] authors have used the notion of statistcal 
A-summability of double sequences to prove 
Korovkin type theorems for functions of two 
variables. Boyanov and Veselinov [15] have proved 
the Korovkin theorem on ܥሾ0,∞ሻ by using the test 
functions 1, ݁ି௫	, ݁ିଶ௫.	In this paper, we generalize 
the result of Boyanov and Veselinov by using the 
notion of statistical lacunary summability while 
using the same test functions 1, ݁ି௫	, ݁ିଶ௫.	We also 
give an example to justify that our result is stronger 
than that of Boyanov and Veselinov [15]. 

2. Main result 

Let ܥሺܫሻ be the Banach space with the uniform 
norm צ.  ஶof all real-valued continuous functionsצ
on I = [0;1), provided that lim௫՜ஶ ݂ሺݔሻ is finite. 
Suppose that ܮ: ሻܫሺܥ ՜ ;ሺ݂ܮ ሻ. We writeܫሺܥ  ሻݔ
for ܮሺ݂ሺݏሻ;  ሻ; and we say that L is a positiveݔ
operator if ܮሺ݂; ሻݔ  0 for all ሺ݂ሺݔሻ  0. 

We prove the following generalization of 
Boyanov and Veselinov [15] for statistical lacunary 
summability. 
 
Theorem 2.1. Let ሺ ܶሻ be a sequence of positive 
linear operators from ܥሺܫሻ	into ܥሺܫሻ. Then for all 
݂ א  ሻܫሺܥ
 
	θS െ lim՜ஶ צ ܶሺ݂; ሻݔ െ ݂ሺݔሻ ஶצ ൌ 	0.           (1) 
 
If and only if 
 
	θS െ lim՜ஶ צ ܶሺ1; ሻݔ െ 1 ஶצ ൌ 	0,                 (2) 
 
		θS െ lim՜ஶ צ ܶሺ݁ି௦	; ሻݔ െ ݁ି௫	 ஶצ ൌ 	0,       (3) 
 
		θS െ lim՜ஶ צ ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	 ஶצ ൌ 	0.    (4) 

Proof: Since each 1, ݁ି௫	, ݁ିଶ௫ belongs to ܥሺܫሻ, 
conditions (2)--(4) follow immediately from (1). 
Let ݂ א  ሻ. Then there exists a constant M > 0ܫሺܥ
such that |݂ሺݔሻ|  ݔ for ܯ א  ,Therefore .ܫ
 
		|݂ሺݏሻ െ ݂ሺݔሻ|  ∞െ,ܯ2 ൏ ,ݏ ݔ ൏ ∞.               (5) 
 

It is easy to prove that for a given ߝ  0 there is 
ߜ  0	such that 
 
		|݂ሺݏሻ െ ݂ሺݔሻ|   (6)                                              ,ߝ
 
whenever |݁ି௦	 െ ݁ି௫	| ൏ ݔ for all ߜ א  .ܫ

Using (5), (6), putting ߖଵ ൌ ,ݏଵሺߖ ሻݔ ൌ
ሺ݁ି௦	 െ ݁ି௫	ሻଶ, we get 
 
	|݂ሺݏሻ െ ݂ሺݔሻ| ൏ ߝ 

ଶெ

ఋమ
ݏ| for every		ଵ,ߖ െ |ݔ ൏  .ߜ

 
That is, 

 

െߝ െ
ܯ2
ଶߜ

ଵߖ ൏ ݂ሺݏሻ െ ݂ሺݔሻ ൏ ߝ 
ܯ2
ଶߜ

 .ଵߖ
 

Now, operating ܶሺ1;  ሻ to this inequality andݔ
using the monotonicity and linearity of ሺ ܶሻ, we 
obtain 
 

ܶሺ1; ሻݔ ൬െߝ െ
ܯ2
ଶߜ

ଵ൰ߖ ൏ ܶሺ1; ሻݏሻ൫݂ሺݔ െ ݂ሺݔሻ൯

൏ ܶሺ1; ሻݔ ൬ߝ 
ܯ2
ଶߜ

 .ଵ൰ߖ
 

Note that x is fixed and so f(x) is a constant 
number. Therefore 
 
											െߝ ܶሺ1; ሻݔ െ

ଶெ

ఋమ ܶሺߖଵ; ሻݔ ൏ ܶሺ݂; ሻݔ െ

݂ሺݔሻ ܶሺ1; ሻݔ ൏ ߝ ܶሺ1; ሻݔ 
ଶெ

ఋమ ܶሺߖଵ;  ሻ.          (7)ݔ
 
But 
 

ܶሺ݂; ሻݔ െ ݂ሺݔሻ ൌ ܶሺ݂; ሻݔ െ ݂ሺݔሻ ܶሺ1; ሻݔ
 ݂ሺݔሻ ܶሺ1; ሻݔ െ ݂ሺݔሻ 

=ሾ ܶሺ݂; ሻݔ െ ݂ሺݔሻ ܶሺ1; ሻሿݔ  ݂ሺݔሻሾ ܶሺ1; ሻݔ െ 1ሿ.    (8) 
 

Using (7) and (8), we have 
 
	 ܶሺ݂; ሻݔ െ ݂ሺݔሻ ൏ ߝ ܶሺ݂; ሻݔ 

ଶெ

ఋమ ܶሺߖଵ; ሻݔ 
݂ሺݔሻሾ ܶሺ1; ሻݔ െ 1ሿ.                                               (9) 
 
Now 
 
ܶሺߖଵ; ሻݔ ൌ ܶሺሺ݁ି௦	 െ ݁ି௫	ሻଶ; ሻݔ

ൌ ܶሺ݁ିଶ௦	 െ 2݁ି௦	݁ି௫	  ݁ିଶ௫	;  ሻݔ
= ܶሺ݁ିଶ௦	; ሻݔ െ 2݁ି௫	 ܶሺ݁ି௦	; ሻݔ  ݁ିଶ௫	 ܶሺ1;  ሻݔ
=[ ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	ሿ െ 2݁ି௫	ሾ ܶሺ݁ି௦	; ሻݔ െ
݁ି௫	ሿ  ݁ିଶ௫	ሾ ܶሺ1; ሻݔ െ 1ሿ. 
 

Using (9), we obtain 
 
																				 ܶሺ݂; ሻݔ െ ݂ሺݔሻ ൏ ߝ ܶሺ݂;  ሻݔ



 
 
 
101                              IJST (2013) 37A2: 99-102 


ܯ2
ଶߜ

ሼ ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	ሿ െ 2݁ି௫	ሾ ܶሺ݁ି௦	; ሻݔ

െ ݁ି௫	ሿ  ݁ିଶ௫	ሾ ܶሺ1; ሻݔ െ 1ሿሽ 
݂ሺݔሻሾ ܶሺ1; ሻݔ െ 1ሿ 

ሾߝ	= ܶሺ1; ሻݔ െ 1ሿ   ߝ


ܯ2
ଶߜ

ሼ ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	ሿ െ 2݁ି௫	ሾ ܶሺ݁ି௦	; ሻݔ

െ ݁ି௫	ሿ  ݁ିଶ௫	ሾ ܶሺ1; ሻݔ െ 1ሿሽ 
݂ሺݔሻሾ ܶሺ1; ሻݔ െ 1ሿ. 

 
Since ߝ is arbitrary, we can write 

 
	 ܶሺ݂; ሻݔ െ ݂ሺݔሻ  ሾߝ	 ܶሺ1; ሻݔ െ 1ሿ 


ܯ2
ଶߜ

ሼ ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	ሿ െ 2݁ି௫	ሾ ܶሺ݁ି௦	; ሻݔ

െ ݁ି௫	ሿ  ݁ିଶ௫	ሾ ܶሺ1; ሻݔ െ 1ሿሽ 
݂ሺݔሻሾ ܶሺ1; ሻݔ െ 1ሿ. 

 
Therefore 

 
|	 ܶሺ݂; ሻݔ െ ݂ሺݔሻ|<	ߝ  ሺߝ  	|ሻܯ ܶሺ1; ሻݔ െ 1| 
ଶெ

ఋమ
|݁ିଶ௫	||	 ܶሺ1; ሻݔ െ 1| 


ܯ2
ଶߜ

| ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	| 
ܯ4
ଶߜ

|݁ି௫	|| ܶሺ݁ି௦	; ሻݔ െ ݁ି௫	| 

 ߝ	  ൬ߝ  ܯ 
ܯ4
ଶߜ
൰ |	 ܶሺ1; ሻݔ െ 1| 

ܯ2
ଶߜ

|	 ܶሺ1; ሻݔ െ 1| 

		
ଶெ

ఋమ
| ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	| 

ସெ

ఋమ
| ܶሺ݁ି௦	; ሻݔ െ ݁ି௫	|,       (10) 

 
since |݁ି௫	|  1 for all ݔ א  ,ூא௫ݑݏ Now, taking .ܫ
we get 
 
צ		 ܶሺ݂; ሻݔ െ ݂ሺݔሻ  ஶצ
	 ߝ  צሺܭ 	 ܶሺ1; ሻݔ െ 1 צஶצ ܶሺ݁ି௦	; ሻݔ െ ݁ି௫	 ஶצ
צ ܶሺ݁ିଶ௦	; ሻݔ െ ݁ିଶ௫	  ஶሻ,                                     (11)צ
 

where ܭ ൌ max ቄߝ ܯ 
ସெ

ఋమ
,
ଶெ

ఋమ
ቅ.	Now replacing 

	 ܶሺ. ; .ሺܤ	 ሻ byݔ ; ሻݔ ൌ
ଵ

ೝ	
∑ 	 ܶሺ. ; ூೝאሻݔ  in (11) on 

both sides. For a given ݎ	  	0 choose ߝᇱ  0 such 
that ߝᇱ ൏  Define the following sets .ݎ
 
ܦ ൌ ሼݎ  ݊: צ ,ሺ݂ܤ	 ሻݔ െ ݂ሺݔሻ ஶצ  ,ሽݎ

ଵܦ ൌ ൜ݎ  ݊: צ ,ሺ1ܤ	 ሻݔ െ 1 ஶצ
ݎ െ ᇱߝ

ܭ4
ൠ, 

ଶܦ ൌ ൜ݎ  ݊: צ ;	ሺ݁ି௦ܤ	 ሻݔ െ ݁ି௫	 ஶצ
ݎ െ ᇱߝ

ܭ4
ൠ, 

ଷܦ ൌ ൜ݎ  ݊: צ ;	ሺ݁ିଶ௦ܤ	 ሻݔ െ ݁ିଶ௫	 ஶצ
ݎ െ ᇱߝ

ܭ4
ൠ. 

 
Then ܦ ؿ ଵܦ  ଶܦ  ሻܦሺߜ ଷ, and soܦ  ଵሻܦሺߜ 

ଶሻܦሺߜ   ଷሻ. Therefore, using conditions (2), (3)ܦሺߜ
and (4), we get 
 
											θS െ lim՜ஶ צ ܶሺ݂; ሻݔ െ ݂ሺݔሻ ஶצ ൌ 	0. 
 

This completes the proof of the paper. 

3. Example 

In the following we construct an example of a 
sequence of positive linear operators satisfying the 
conditions of Theorem 2.1, but not satisfying the 

conditions of the Korovkin approximation theorem 
due to that of Boyanov and Veselinov [15]. 

Consider the sequence of classical Baskakov 
operators [16] 
 

ܸ	ሺ݂; ሻݔ ൌ݂ ൬
݇
݊
൰ ൬
݊ െ 1  ݇

݇
൰



ሺ1	ݔ   ;ሻିିݔ

 
where 0  ,ݔ ݕ ൏ ∞. 

Let θ= ሺ݇ሻ be any lacunary sequence and 
ݔ ൌ ሺݔሻ be defined by 
 

ݔ ൌ ൜√݊	, if	݊	is	square,
0, otherwise.

 

 
Let ܮ: ሻܫሺܥ ՜  ሻ be defined byܫሺܥ

 
;ሺ݂	ܮ ሻݔ ൌ ሺ1  ሻݔ ܸ	ሺ݂;  .ሻݔ

 
Note that this sequence is statistically lacunary 

summable to 0 but not convergent. Now 
 

;ሺ1	ܮ ሻݔ ൌ 1, 

;ሺ݁ି௦	ܮ ሻݔ ൌ ሺ1  ݔ െ ݁ݔ
ିଵ
 ሻି, 

;ሺ݁ିଶ௦	ܮ ሻݔ ൌ ሺ1  ݔ െ ݁ݔ
ିଶ
 ሻିଶ, 

 
we have that the sequence ሺܮ	ሻ satisfies the 
conditions (2), (3) and (4). Hence by Theorem 2.1, 
we have 
 
θS െ lim՜ஶ צ ሺ݂ሻ	ܮ െ ݂ ஶצ ൌ 	0. 
 

On the other hand, we get ܮ	ሺ݂; 0ሻ ൌ
ሺ1  ሻݔ ܸ	ሺ݂; 0ሻ, since ܸ	ሺ݂; 0ሻ ൌ ݂ሺ0ሻ, and 
hence 
 

צ ;ሺ݂	ܮ ሻݔ െ ݂ሺݔሻ ஶצ ;ሺ݂	ܮ| 0ሻ െ ݂ሺ0ሻ|
ൌ  .||݂ሺ0ሻݔ

 
We see that ሺܮ	ሻ does not satisfy the conditions 

of the theorem of Boyanov and Veselinov, since 
lim՜ஶ   does not exist. Hence our Theorem 2.1ݔ
is stronger than that of Boyanov and Veselinov 
[15]. 

 
Remark: Most recently in [17-21], one can find 
such type of theorems for different summability 
methods through different set of test functions. 
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