[1] Fridy, J. A. (1985). On statistical convergence. Analysis, 5, 301-313.
[2] Fridy, J. A. & Orhan, C. (1993). Lacunary statistical convergence. Pacific J. Math., 160, 43-51.
[3] Mursaleen, M. & Alotaibi, A. (2011). Statistical lacunary summability and a Korovkin type approximation theorem. Ann. Univ. Ferrara, 57(2), 373-381.
[4] Korovkin, P. P. (1953). Convergence of linear positive operators in the spaces of continuous functions (Russian). Doklady Akad. Nauk. SSSR (N.S.). 90, 961-964.
[5] Korovkin, P. P. (1960). Linear Operators and Approximation Theory. Delhi. Hindustan Publ. Corp.
[6] Anastassiou, G. A., Mursaleen, M. & Mohiuddine, S. A. (2011). Some approximation theorems for functions of two variables through almost convergence of double sequences. Jour. Comput. Analy. Appl., 13(1), 37-40.
[7] Mohiuddine, S. A. (2011). An application of almost convergence in approximation theorems. Appl. Math. Lett., 24, 1856-1860.
[8] Patterson, R. & Savas, E. (2005). Korovkin and Weierstass approximation via lacunary statistical sequences. J. Math. Stat., 1(2), 165-167.
[9] Edely, O. H. H., Mohiuddine, S. A. & Noman, A. K. (2010). Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett., 23, 1382-1387.
[10] Mursaleen, M. & Alotaibi, A. (2011). Statistical summability and approximation by de la Vall e-Poussin mean. Appl. Math. Lett., 24, 320-324.
[11] Mursaleen, M., Karakaya, V., Ert rk, M. & G rsoy, F. (2012). Weighted statistical convergence and its application to Korovkin type approximation theorem. Appl. Math. Comput., 218, 9132-9137.
[12] Srivastava, H. M., Mursaleen, M. & Khan, A. (2012). Generalized equi-statistical convergence of positive linear operators and associated approximation theorems. Math. Comput. Modelling, 55, 2040-2051.
[13] Belen, C., Mursaleen, M. & Yildirim, M. (2012). Statistical A-summability of double sequences and a Korovkin type approximation theorem. Bull. Korean Math. Soc., 49(4), 851-861.
[14] Mursaleen, M. & Alotaibi, A. (2012). Korovkin type approximation theorem for functions of two variables through statistical A-summability. Adv. Difference Equ., 2012:65, doi:10.1186/1687-1847-2012-65.
[15] Boyanov, B. D. & Veselinov, V. M. (1970). A note on the approximation of functions in an infinite interval by linear positive operators. Bull. Math. Soc. Sci. Math. Roum., 14(62) 9-13.
[16] Becker, M. (1978). Global approximation theorems for Szasz-Mirakjan and Baskakov operators in polynomial weight spaces. Indiana Univ. Math. J., 27(1), 127-142.
[17] Srivastava, H. M., Mursaleen, M. & Khan, A. (2012). Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling, 55, 2040-2051.
[18] Mohiuddine, S. A., Alotaibi, A. & Mursaleen, M. (2012). Statistical summability (C; 1) and a Korovkin type approximation theorem. Jour. Ineq. Appl., 2012:172, doi:10.1186/1029-242X-2012-172.
[19] Mursaleen, M. & Alotaibi, A. (2013). Korovkin type approximation theorem for statistical A-summability of double sequences. Jour. Comput. Anal. Appl., 15(6), 1036-1045.
[20] Mursaleen, M. & Kilicman, A. (2013). Korovkin second theorem via B-statistical A-summability, Abstract Appl. Anal., Volume 2013, Article ID 598963, 6 pages, doi:10.1155/2013/598963.
[21] Edely, O. H. H., Mursaleen, M. & Khan, A. (2013). Approximation for periodic functions via weighted statistical convergence. Appl. Math. Comput., 219, 8231-8236.