In the present paper, we introduce q-analogue of the Jakimovski-Leviatan operators with the help of q-Appell polynomials. We establish some moments and auxiliary results by using q-derivatives and then prove a basic convergence theorem. Also, the Voronovskaja-type asymptotic formula and some direct results for the above operators are discussed. Moreover, the rate of convergence and weighted approximation by these operators in terms of modulus of continuity are studied.
Mursaleen, M. , Ansari, K. J. and Nasiuzzaman, M. (2016). Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials. Iranian Journal of Science, (), -. doi: 10.22099/ijsts.2016.3632
MLA
Mursaleen, M. , , Ansari, K. J., and Nasiuzzaman, M. . "Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials", Iranian Journal of Science, , , 2016, -. doi: 10.22099/ijsts.2016.3632
HARVARD
Mursaleen, M., Ansari, K. J., Nasiuzzaman, M. (2016). 'Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials', Iranian Journal of Science, (), pp. -. doi: 10.22099/ijsts.2016.3632
CHICAGO
M. Mursaleen , K. J. Ansari and M. Nasiuzzaman, "Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials," Iranian Journal of Science, (2016): -, doi: 10.22099/ijsts.2016.3632
VANCOUVER
Mursaleen, M., Ansari, K. J., Nasiuzzaman, M. Approximation by q-analogue of Jakimovski-Leviatan operators involving q-Appell polynomials. Iranian Journal of Science, 2016; (): -. doi: 10.22099/ijsts.2016.3632