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Abstract 

In this paper, we give some characterizations for Legendre spherical, Legendre normal and Legendre rectifying 

curves in the 3-dimensional Sasakian space. Furthermore, we show that Legendre spherical curves are also 

Legendre normal curves. In particular, we prove that the inverse of curvature of a Legendre rectifying curve is a 

non-constant linear function of the arclength parameter.  

 

Keywords: Legendre curve; normal curve; rectifying curve; Sasakian space 

 
1. Introduction 

Necessary and sufficient conditions for a curve to 

be a spherical curve in Euclidean space 
3E  have 

been given by Wong (1963; 1972). The 

corresponding characterizations for spherical curves 

in the Minkowski 3-space have been studied by 

Petrović-Torgašev and Šućurović (2000; 2001). 

Analogue to the 3-dimensional spherical curves, the 

authors have given characterizations for 4-

dimensional spherical curves in the Minkowski 4-

space (Camcı et al., 2003; Önder and Kocayiğit 

2007). Moreover, Camcı et al (2008) have 

considered the concept of spherical curve in the 3-

dimensional Sasakian space and have given some 

conditions for the Legendre spherical curves in this 

space. 

In the Euclidean space 
3E , to each regular unit 

speed curve 
3: IR E    , with at least four 

continuous derivatives, it is possible to associate three 

mutually orthogonal unit vector fields NT,  and B , 

called the unit tangent, the principal normal and the 

binormal vector fields, respectively. The planes 

spanned by  ,, NT  BT,  and  BN,  are 

known as the osculating plane, the rectifying plane 

and the normal plane, respectively. The curve 
3: IR E     for which the position vector   

always lies in its normal plane is called normal curve 

(Chen, 2003). Therefore, for a normal curve, by 

definition the position vector   satisfies the equation 

( ) ( ) ( ) ( ) ( )s s N s s B s     where )(s  and 
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( )s  are differentiable functions of arclength 

parameter s . The characterizations for normal curves 

in some spaces such as Euclidean 3-space, Minkowski 

3-space and dual Minkowski 3-space have been 

studied by some authors (Chen, 2003; İlarslan, 2005; 

Önder, 2006). Similar to normal curves, if the position 

vector   always lies in its rectifying plane, then the 

curve 
3: IR E     is called rectifying curve 

(Chen, 2003). By this definition, the position vector 

  of a rectifying curve satisfies the equation 

( ) ( ) ( ) ( ) ( )s s T s s B s     for some 

differentiable functions ( )s  and ( )s . One of the 

most interesting characteristics of rectifying curves is 

that the ratio of their torsion and curvature is a non-

constant linear function of arc length parameter s . 

Rectifying curves lying fully in the Euclidean space 
3E  are determined explicitly by Chen (2003). 

In this paper, first we give some characterizations 

for a Legendre curve to be a spherical curve in the 3-

dimensional Sasakian space. Later, we define 

Legendre normal curve and give the characterizations 

for this curve. We show that Legendre normal curves 

are spherical curves. Moreover, we give a definition 

and characterizations of Legendre rectifying curve. In 

particular, we prove that the inverse of curvature of a 

Legendre rectifying curve is a non-constant linear 

function of arclength parameter s . Also, we find 

some parametrizations for Legendre rectifying curves 

in the Sasakian 3-space. 
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2. Preliminaries 

Let M  be a smooth manifold. A contact form   

on M  is a 1-form such that ( ) 0nd     on 

M . A manifold M  together with a contact form 

is called a contact manifold. The distribution D  

defined by the Phaffian equation 0   is called 

the contact structure determined by  . That is, 

 
𝐷 = {𝑋 ∈ 𝑥(𝑀)|𝜂: 𝑥(𝑀) → 𝐶∞(𝑀, 𝜂), 𝜂(𝑋) = 0} 

 
The maximum dimension of integral submanifold 

of D  is called a Legendre submanifold of ( , )M 
. 

The reel vector field   (killing vector field) is 

defined by 
 

( ) 1, ( , ) 0d X      

 
(Yano and Kon, 1983; Belkelfa and et al. 2002). 

On a contact manifold ( , )M  , there exists an 

endomorphism field   and a metric g  satisfying 

 
2 ( ) ,

( , ) ( , ) ( ) ( ),

( , ) ( , )

X X

g X Y g X Y X Y

d X Y g X Y

  

   

  

  

 



 

 

for all vector fields X  and Y  on M  where 

( , ) 1g      . When 1   and 1   , 

then g  is Riemannian and Lorentzian metric, 

respectively. The structure tensors ( , , )g   are 

called the associated almost contact structure of   

(Belkelfa et al. 2002). 

A contact manifold ( , ; , , , )M g     is said to 

be a Sasaki manifold if M  satisfies  

( ) ( , ) ( ) , , ( ).X Y g X Y Y X X Y M       

(Yano and Kon, 1983; Belkelfa and et al. 2002). 

Now let 
3 ( , , , , , )M M g     be a contact 

3-manifold with an associated metric g . A curve 

( ) :s I M    parameterized by arclength 

parameter s  is said to be a Legendre curve if   is 

tangent to contact distribution D  of M . It is 

obvious that   is a Legendre curve if and only if 

( ) 0   . 

Let   be a Legendre curve in 
3M . Then the 

Frenet frame of   is given by  BNT ,,  where 

T  , ( )N    and B  . Then, the 

Frenet formulae of   are given explicitly by 
 

0 0

0

0 1 0

T

T

T

T T T

N N N

B B B



 

       
          
       

               

. 

 
where the function   is the curvature of  . 

Namely, every Legendre curve has constant torsion 

1 (Baikoussis and Blair, 1994; Belkelfa et al. 2002). 

In a 3-dimensional Sasakian space M , the sphere 

is defined by 
2 2

1 1H S  where 

 

 2 2

1 : ( , )H P M g P P r    

 
and 
 

 2 2

1 : ( , )S P M g P P r    

(Camci et al. 2008). 

3. Legendre Spherical Curves 

In this section we give the characterizations for 

Legendre spherical curves in the 3-dimensional 

Sasakian space. 

 

Theorem 3.1. Let   be a Legendre curve with 

curvature 0   in the 3-dimensional Sasakian 

space. Then   is a Legendre spherical curve if and 

only if  
 

2
2

21 1
r

 

          
    
 

,                               (1) 

 
holds, where r  is the radius of the sphere. 

 

Proof: Let m  be the center of sphere on which   

lies. Then, we have  
 

2( , )g m m r    .                                   (2) 

 
If we derive this equation with respect to s , the 

arc-length of  , then we have  
 

( , ) 0g m T   ,                                               (3) 

 

where T  is unit tangent vector of  . If we repeat 

the derivation we get 
 

1
( , )g m N


  ,                                         (4) 

 
and the derivation of the last equality gives us 
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1
( , )g m B 



 
    

 
.                                 (5) 

 
Then, from (4) and (5) we can write 

 

1 1
m N B

 

 
    

 
.                               (6) 

 
Since we have that the radius of the sphere is 

( , )g m m r    , we obtain that 

 
2

2

21 1
r

 

          
    
 

, 

 
which completes the proof.  

Conversely, assume that (1) holds. If we define 

the vector   
 

1 1
m N B

 

 
   

 
,                                  (7) 

 

and consider (1), we have that 0m  , i.e., m  is a 

constant. Moreover (7) gives that   
 

2
2

1 1
( , )g m m  

 

           
    
 

,        (8) 

 
and from hypothesis  
 

( , )g m m r constant     ,               (9) 

 
we get that the Legendre curve   lies on the 

sphere whose center is m  and radius is r . 

Let now give the integral characterization for 

Legendre spherical curves in the 3-dimensional 

Sasakian space. 

 

Theorem 3.2. In 3-dimensional Sasakian space, a 

unit speed Legendre curve ( )s  with curvature 

0   is a spherical curve if and only if there are 

constants ,A B IR  such that 

 

1
( ) ( )A s B s 


  .                                     (10) 

 

where ( ) sin( ), ( ) cos( )s s s s    if 1  ; 

and ( ) sinh( ), ( ) cosh( )s s s s    if 1   . 

 

Proof: Assume that the Legendre curve   lies on 

the sphere with center m  and radius r . Then, from 

Theorem 3.1 we have 
 

2
2

21 1
r

 

          
    
 

.                             (11) 

 

If we take 
1

y


  in (11) we get 

 
2 2 2( )y y r    .                                          (12) 

 

Then we can write that 
2 2dy

r y
ds

   and 

2 2dy
r y

ds
   . These differential equations 

can be put into their variables, so we can write  
 

2 2 2 2
,

dy dy
ds ds

r y r y 
  

 
,       (13) 

 

respectively. If 1  , from the last equalities we 

get 
 

2 2 2 2
,

dy dy
ds ds

r y r y
  

 
.            

(14) 
 

By integrating the equations in (14), we have 
 

2 2
0 0

2 2
0 0

,

,

s s

s s

dy
ds s

r y

dy
ds s

r y


 



    
 

 

 

                          (15)  

 
and then the particular solutions of these equalities 

are  
 

1 siny r s ,     2 cosy r s ,                          (16) 

 
respectively. So, the general solution of differential 

equation (12) with 1   is  
 

1 1 2 2 1 2sin cosy c y c y c r s c r s    ,      (17) 

 

where 1 2,c c IR . If we write 
1

y


 , 1 ,c r A

2c r B , the integration of (12) will be in the form 
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1
sin( ) cos( )A s B s


  ,                              (18) 

 
that finishes the proof.  

If 1   , then from (13) we have  
 

2 2
0 0

2 2
0 0

,

.

s s

s s

dy
ds s

r y

dy
ds s

r y


 



    
 

 

 

                           (19) 

 
Then we obtain the particular solutions of these 

equalities as follows 
 

1 sinhy r s , 2 coshy r s .                         (20) 

 
So, the general solution of differential equation 

(12) with 1    is  
 

1 1 2 2 1 2sinh coshy c y c y c r s c r s    ,   (21) 

 

where 1 2,c c IR . If we write 
1

y


 , 

1 2,c r A c r B  , the integration of (12) will be 

in the form 
 

1
sinh( ) cosh( )A s B s


  .                         (22) 

 
Using (18) and (22) we can write  

 

1
( ) ( )A s B s 


  .                                     (23) 

 

where ( ) sin( ), ( ) cos( )s s s s    if 1  ; 

and ( ) sinh( ), ( ) cosh( )s s s s    if 

1    and ,A B IR . 

Conversely, if (23) holds for the Legendre curve 

( )s , we have 

 
2

2

21 1
r

 

          
    
 

. 

 
Then, from Theorem 3.1, we say that the curve 

( )s  is a Legendre spherical curve in 3-

dimensional Sasakian space.  

 

 

4. The Legendre Normal Curves  

In this section, we give the definition and the 

characterization of Legendre normal curves and 

show that Legendre normal curves are also 

Legendre spherical curves in the 3-dimensional 

Sasakian space. 

 

Definition 4.1. Let ( )s  be a unit speed Legendre 

curve in the 3-dimensional Sasakian space with 

Frenet frame  , ,T N B  and curvature 0  . 

The curve ( )s  is called Legendre normal curve if 

the position vector   always lies on the normal 

plane of the Legendre curve ( )s .  

By definition, for a Legendre normal curve the 

position vector   satisfies the equation 

( ) ( ) ( ) ( ) ( )s s N s s B s     for some 

differentiable functions )(s  and ( )s . Then, we 

can give the following characterizations. 

 

Theorem 4.1. Let ( )s  be a unit speed Legendre 

normal curve with curvature ( ) 0s   in the 3-

dimensional Sasakian space. Then the following 

statements hold: 

i) The curvature ( )s  satisfies the following 

equality 
 

1 2

1
( ) ( )d s d s 


  ,                                    (24) 

 

where ( ) sin( ), ( ) cos( )s s s s    if 1  ; 

and ( ) sinh( ), ( ) cosh( )s s s s    if 

1    and 1 2,d d IR . 

ii) The principal normal and binormal components 

of the position vector of the Legendre curve ( )s  

are given by 
 

 

 
1 2

1 2

( ( ), ) ( ) ( ) ,

( ( ), ) ( ) ( ) ,

g s N d s d s

g s B d s d s

  

   

  


  
        (25) 

 
respectively. 

 

Proof: Suppose that ( )s  is a unit speed Legendre 

normal curve. Then by Definition 4.1, we have  
 

( ) ( ) ( ) ( ) ( )s s N s s B s    .                     

(26) 
 

Differentiating (26) with respect to s  and using 

the Frenet equations, we find 
 



 

 

 
537                      IJST (2015) 39A4: 533-541 

 

 

( ) ( ) 1,

( ) ( ) 0,

( ) ( ) 0.

s s

s s

s s

 

 

 

 

  

  

                                        (27) 

 
From the first and second equations of (27) we 

get 
 

1 1
, 

 

 
    

 
.                                 (28) 

 
Thus,  
 

1 1
N B

 

 
   

 
.                                     (29) 

 
Further, from the third equation in (27) and using 

(28) we find the following differential equation 
 

1 1
0

 

   
    

   
.                                        (30) 

 

Putting 
1

( )y s


 , equation (30) can be written 

as  
 

0y y   .                                                    (31) 

 
The solution of (31) is 

 

1 2

1
( ) ( )d s d s 


  ,                                    (32) 

 

where ( ) sin( ), ( ) cos( )s s s s    if 1  ; 

and ( ) sinh( ), ( ) cosh( )s s s s    if 

1    and 1 2,d d IR . Thus we have proved 

statement (i).  

By Theorem 3.2, we see that the Legendre normal 

curve ( )s  is a spherical curve. So we can give 

the following corollary. 

 

Corollary 4.1. Every Legendre normal curve ( )s  

is also a Legendre spherical curve in the 3-

dimensional Sasakian space. 

Furthermore, Camcı et al. (2008) have shown that 

there are no Legendre spherical curves in the 3-

dimensional Sasakian space 
3( 3 )IR   . Then, by 

considering Corollary 4.1, we can give the 

following corollary. 

 

Corollary 4.2. There are no Legendre normal 

curves ( )s  in the 3-dimensional Sasakian space 

3( 3 )IR   . 

Let us now prove statement (ii). Substituting (32) 

into (28) and (29), we get 
 

 1 2( ) ( ) ( )s d s d s    ,                         (33) 

 

 1 2( ) ( ) ( )s d s d s      ,                      (34) 

 

 

 
1 2

1 2

( ) ( ) ( )

( ) ( ) ( )

d s d s N s

d s d s B s

  

  

  

 
                   (35) 

 

Therefore, since ( , )g B B  , from (35) we 

easily find that  
 

2 2

2 1( , )g d d    ,                                      (36) 

 

 1 2( ( ), ) ( ) ( )g s N d s d s    ,            (37) 

 

 1 2( ( ), ) ( ) ( ) .g s B d s d s                (38) 

 
Consequently we have proved (ii).  

Conversely, suppose that statement (i) holds. 

Then we have  
 

1 2

1
( ) ( )d s d s 


  ,                                    (39) 

 

where ( ) sin( ), ( ) cos( )s s s s    if 1  ; 

and ( ) sinh( ), ( ) cosh( )s s s s    if 1    

and 1 2,d d IR . Since ( ) ( )s s    and 

( ) ( )s s    , by differentiating (39) two times 

with respect to s  we find  
 

 1 2

1
( ) ( )

( )
d s d s

s
  



 
   

 
.               

(40) 
 

Then from (39) and (40) we have 
 

1 1
0

 

   
    

   
.                                        (41) 

 
Equation (41) shows that 
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2
2

21 1
constant r

 

           
    
 

. 

 

It also means that ( )s  is a Legendre spherical 

curve. So, from (6), by applying Frenet equations 

we obtain 
 

1 1
( ) ( ) ( ) 0.

( ) ( )

d
s N s B s

ds s s


 

 
     

  
 

  (42) 

 

Consequently, ( )s  is congruent to a Legendre 

normal curve. Next, assume that statement (ii) 

holds. Then the equations (36) and (37) are 

satisfied. Differentiating (36) with respect to s  and 

using (37), we find ( , ) 0g T  , which means 

that ( )s  is a Legendre normal curve.  

5. The Legendre Rectifying Curves  

In this section, we give the definition and 

characterizations of Legendre rectifying curve in 

the 3-dimensional Sasakian space. 

 

Definition 5.1. Let ( )s  be a unit speed Legendre 

curve in the 3-dimensional Sasakian space with 

Frenet frame  , ,T N B  and curvature 0  . 

The curve ( )s  is called Legendre spherical curve 

if the position vector   always lies on the normal 

plane of the Legendre curve ( )s .  

By definition, for a Legendre normal curve the 

position vector   satisfies the equation 

( ) ( ) ( ) ( ) ( )s s T s s B s     for some 

differentiable functions ( )s and ( )s . 

 

Theorem 5. 1. Let ( )s   be a unit speed 

Legendre rectifying curve in Sasakian 3-space with 

curvature ( ) 0s  . Then the following 

statements hold: 

(i) The distance function    satisfies 

2 2 2

1 2( )s n n    , for some 1 2,n n IR . 

(ii) The tangential component of the position vector 

of   is given by 1( , )g T s n   , where 

1n IR . 

(iii) The normal component 
N  of the position 

vector of the curve has a constant length and the 

distance function   is non-constant. 

(iv) The binormal component of the position vector 

of the curve is constant, i.e., ( , )g B  is constant. 

Conversely, if ( )s  is a unit speed Legendre 

curve in the Sasakian 3-space with curvature 

( ) 0s   and one of the statements (i), (ii), (iii) 

and (iv) holds, then   is a rectifying curve. 

 

Proof: Let us suppose that ( )s   is a unit 

speed Legendre rectifying curve. Then the position 

vector   of the curve satisfies the equation  
 

( ) ( ) ( ) ( ) ( )s s T s s B s    ,                     (43) 

 

where ( )s  and ( )s  are some differentiable 

functions of arclength parameter s . Differentiating 

(43) with respect to s  and applying the Frenet-

Serret equations gives  
 

1, 0, 0        .                        (44) 

 
Therefore, it follows that  
 

1 2

1 2

( ) , ( ) ,

0, , .

s s n s n

n n IR

 

 

  


  
                         

(45) 
 

From the equations (43) and (45), we easiliy find 
22 2 2

1 2( )s n n      , 

and so (i) holds. Further, from (43) we obtain 

( , )g T   which together with (45), 

1( , )g T s n   , where 1n IR  and (ii) holds. 

Next, from the relation (43) it follows that the 

normal component 
N  of the position vector   is 

given by N B  . Therefore 
2 0N n    . 

Thus we proved statement (iii). Finally, from (43) 

we easily get 2( , ) constantg B n    and so 

the statement (iv) is proved. 

Conversely, assume that statement (i) or 

statement (ii) holds. Then, there holds the equation 

1( , )g T s n   , where 1n IR . Differentiating 

this equation with respect to s , we get 

 ( ) ( ), ( ) 0s g s N s   . Since ( ) 0s  , it 

follows that ( , ) 0g N  . Hence   is a 

Legendre rectifying curve. 
Next, suppose that statement (iii) holds. Let us put 

( ) ( ) ( ) , ( )Ns m s T s m s IR    . Then we easily find 

that 2( , ) constant ( , ) ( , )N Ng C g g T        . 

Differentiating this equation with respect to s  we 

have  
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( , ) 0g N   .                                                (46) 

 

Since 0  , we have ( , ) 0g T  . Moreover, 

since ( ) 0s   from (46) we obtain 

( , ) 0g N  , which means that   is a Legendre 

rectifying curve. 

Finally, if statement (iv) holds, then by applying 

Frenet equations, we easily obtain that the curve   

is a Legendre rectifying curve.  

In the next theorem, we prove that the inverse of 

the curvature of a Legendre rectifying curve is a 

non-constant linear function of arc length parameter 

s . 

 

Theorem 5.2. Let ( )s   be a unit speed 

Legendre rectifying curve with curvature 

( ) 0s   in the Sasakian 3-space. Then, up to 

isometries of Sasakian 3-space, the curve   is a 

Legendre rectifying curve if and only if 

3 4

1

( )
n s n

s
   holds, where 3 4,n n IR . 

 

Proof: Let us first suppose that ( )s  is Legendre 

rectifying curve. By the proof of Theorem 5.1 and 

by relations (44) and (45), it follows that  
 

1

2

1

( )

s n

s n



 


  ,                                        (47) 

 
where 

1 2,n n IR . Consequently, 
3 41/ ( )s n s n    

where 
3 2 4 1 21/ , /n n n n n   are real constants. 

Conversely, let us suppose that 

3 41/ ( )s n s n    and 3 4,n n IR . Then, we 

may choose 3 2 4 1 21/ , /n n n n n   where 

1 2,n n IR . Hence, 1

2

1

( )

s n

s n


 . Applying 

the Frenet equations, we easily find that  
 

 1 2( ) ( ) 0
d

s s n T n B
ds

     , 

 
which means that up to isometries of Sasakian 

space, the Legendre curve ( )s   is a 

rectifying curve.  

 

Theorem 5.3. Let ( )s   be a unit speed 

Legendre curve in the Sasakian 3-space. Then   is 

a Legendre rectifying curve if and only if, up to a 

parametrization,   is given by  
 

2
2

2
2

( ) ( ) , , 1
cos

( ) ( ) , , 1
sinh

n
t y t n IR if

t

n
t y t n IR if

t

 

 






  


    


   (48) 

 

where ( )y t  is a unit speed Legendre curve lying 

on the sphere 
2 2

1 1(1) (1)H S . 

 

Proof: Let us first assume that ( )s  is a unit 

speed Legendre rectifying curve. Since 

( , ) 1, ( , )g T T g B B   , by the proof of 

Theorem 5.1, it follows that 
22 2 2

1 2( )s n n      , 1 2,n n IR . We 

may choose 
2n IR . Also, we may apply a 

translation with respect to s , such that 
2 2 2

2s n   . Next, we define a curve by 

 

( )
( )

( )

s
y s

s




 .                                                   (49) 

 
and assume that the curve y  is lying on the sphere 

2 2

1 1(1) (1)H S . Then we have  

 

2 2

2( ) ( )s y s s n   .                                 (50) 

 
Differentiating (50) with respect to s , we get 

 

2 2

22 2

2

( ) ( ) ( )
s

T s y s y s s n
s n




  


.  (51) 

 

Since ( , ) 1g y y  , it follows that 

( , ) 0g y y  . From (51) we obtain 

 
2

2 2

2 2 2

2

1 ( , ) ( , )( )
s

g T T g y y s n
s n




    


 

 
and hence  
 

2

2

2 2 2

2

( , )
( )

n
g y y

s n




  


.                                (52) 

 

From (52), we get 
2 2

2 2( ) / ( )y s n s n   . Let 

0

( )
s

t y u du   be the arclength parameter of the 

curve y . Then we have  
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2

2 2

20

s
n

t du
u n


 . 

 

If 1  , then we get 2 tans n t  and if 

1   , then we get 2 coths n t . Substituting 

these into (50), respectively, we obtain the 

parametrizations given in (48).   

Conversely, assume that   is a curve defined by 

(48) where ( )y t  is a unit speed Legendre curve 

lying on the sphere 
2 2

1 1H S  with radius 1. 

Differentiating the equation (48) with respect to s , 

we get  
 

 

 

2

2

2

2

( ) ( )sin ( )cos , 1
cos

( ) ( )cosh ( )sinh , 1
sinh

n
t y t t y t t if

t

n
t y t t y t t if

t

 

 


   


      


 

 

By assumption, we have ( , ) 1g y y  , 

( , ) 1g y y    and consequently ( , ) 0g y y  . 

Therefore, it follows that 
 

2 2

2 2

3 4

2 2

2 2

3 4

sin
( , ) , ( , ) , 1

cos cos

cosh
( , ) , ( , ) , 1

sinh sinh

n t n
g g if

t t

n t n
g g if

t t

    

    


    


        


 (53) 

 
and consequently  
 

2

2

2

2

( ) / cos , 1

( ) / sinh , 1

t n t if

t n t if

 

 

  


   
 

 

Let us put ( ) ( ) ( ) Nt m t t    , where 

( )m t IR  and 
N  is normal component of the 

position vector  . Then we easily find that 
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by using (53), the last equation becomes 

2

2( , ) constantN Ng n    . It follows that 

constantN   and since 
2 / cos constantn t    , 

Theorem 5.1 implies that   is a Legendre 

rectifying curve. 

6. Conclusion 

In the study of contact manifolds, Legendre curves 

have an important role. In the contact manifolds, a 

diffeomorphism is a contact transformation if and 

only if any Legendre curves in a domain of it go to 

Legendre curves (Baikoussis and Blair, 1994). Then 

the study of special Legendre curves is fascinating. 

By considering the importance of this, Legendre 

spherical, Legendre normal and Legendre rectifying 

curves in Lorentzian Sasakian space have been 

introduced. It is shown that Legendre normal curves 

are also Legendre spherical curves. 
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