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Abstract 

Floorplanning is an important step in physical design of VLSI circuits. It is used to plan the positions of a set of 

circuit modules on a chip in order to optimize the circuit performance. However, modern floorplanning takes 

better care of providing extra options to place dedicated modules in the hierarchical designs to align circuit blocks 

one by one within certain bounding box for helping sequential data transfer (bus or pipeline) signal in the VLSI 

circuit. In this paper, the placement of circuit blocks with alignment constraints can be handled using B*tree 

representation with Differential Evolutionary algorithm. In order to reduce the solution space, feasibility 

conditions of nonslicing floorplan with alignment constraints have been examined. The properties associated with 

our proposed Differential Evolutionary algorithm provide the way to produce optimal floorplan. Experimental 

results based on the MCNC benchmark circuits with the alignment constraint shows that our Differential 

algorithm can produce promising solutions. 
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1. Introduction 

Floorplanning problem plays a significant role in 

physical design of VLSI circuits and the problem is 

shown to be NP-complete (Stockmeyer L, 1983). 

Classical floorplanning formulation can be used to 

determine the location of given set of modules 

without overlapping each other. The main objective 

of the floorplanning is to minimize area and wire 

length
 
(Chang-Tzu Lin et al, 2002; Valenzuela C.L 

et al, 2002). In this floorplanning step, the VLSI 

designer will pay more attention to giving extra 

options to place modules in the final packing for 

various reasons. If there are many interconnections 

between the modules, and to provide a space for 

bus based routing, the VLSI circuit designer has to 

be careful regarding the separation between two 

modules. Therefore, it is desirable to find an 

efficient and effective way to handle the 

floorplanning problem with the placement 

constraints. 

Floorplanning structure can be divided into two 

types, one is sliceable and another one is non-

sliceable. For slicing structure, Otten (1982) first 

introduced a binary tree representation, and later 

Wong and Liu (1986) proposed a normalized Polish 
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expression. Young et al (2001) proposed an 

algorithm to handle abutment constraint based on 

slicing structure. Chang et al (2005) also presented 

the floorplanning with abutment and fixed outline 

constraints. Though sliceable structure has so many 

advantages, typical floorplan is always non-

sliceable. 

There are several representations for non-slicing 

structures such as BSG (S. Nakatake et al, 1996), 

sequence pair (H. Murata et al, 1995), O-tree (P.N. 

Guo et al, 1999), B*-tree (Y. C. Chang et al, 2000), 

CBL (Hong et al, 2000), and Q-sequence (K. 

Sakanushi and Y. Kajitani, 2000)
 
right, below, and 

above. These representations are used for general 

floorplanning problem. Block placement can be 

obtained by compacting blocks subject to relative 

positions. O-tree and B*-tree are used to describe 

one dimensional relative positions among blocks. 

The final placement is achieved by compacting 

blocks to the left and bottom. Even though O-tree 

and B*-tree have smaller solution space, they are 

dimension dependent. Because of the geometric 

relation between blocks, solution cannot be 

obtained directly from representation.  

Ma et al (2001)
 
proposed a novel algorithm for 

Non-slicing representation with abutment 

constraints. In case of constraints violation, 

simulated annealing process is used to examine the 

intermediate solutions and repair the solutions by 

heuristics method (penalty function). Adya et al 
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(2001) suggested new objective functions to drive 

simulated annealing and types of move to help 

exploit fixed-outline floorplans. The new move is 

helpful in reducing critical path. Meng-Chen Wu 

and Yao-Wen Chang (2004)
 

proposed the 

placement problem with alignment constraints 

using B*tree representation. Still, it does not 

guarantee an optimal floorplan with fixed-outline 

constraint being produced. Rong Liu et al (2005)
 

recommended the sequence pair representation for 

nonslicing Floorplanning with boundary and pre-

placement constraints. VLSI Block placement using 

alignment constraints is proposed by Song Chen et 

al (2006). Then, Wan-Ping Lee et al (2009) 

developed a dynamic-programming based voltage 

scaling algorithm and a timing driven 

Floorplanning with the B*tree representation using 

multi supply voltage (MSV) design. 

Po-Hsun Wu and Tsung-Yi Ho (2012) developed 

a Bus driven VLSI Floorplanning with thermal 

consideration. They used the sequence pair 

representation with simulated annealing algorithm 

for effectively separate hotspots and reduce the chip 

temperature in the VLSI Floorplanning. 

In this paper, we present the modern 

floorplanning with the alignment constraints using 

the nonslicing representation. First, we consider the 

feasible properties of a non-slicing floorplan with 

alignment constraints. These properties, together 

with our proposed Differential evolutionary 

algorithm provide the way to produce optimal 

floorplan. 

2. Preliminaries 

The non-slicing floorplans are handled using an 

ordered binary-tree representation called B*tree 

representation. We can construct a B*tree for a 

given admissible placement. [See Fig. 1(b) for the 

B*tree representing and the placement is shown in 

Fig. 1(a)]. A B*tree is an ordered binary tree. Each 

node ni in a B*-Tree denotes a module. The root of 

a B*-Tree corresponds to the module on the 

bottom-left corner. We have to construct the B*tree 

for an admissible placement P in a recursive fashion 

which is similar to the depth first search procedure.  

Starting from the rooting node, we build the left 

sub tree and then the right sub tree in recursively 

manner. The geometric relationship between two 

modules in a B*tree will be explained as follows. 

Each node ni in a B*-Tree denotes a module. The 

root of a B*-Tree corresponds to the module on the 

bottom-left corner. The left child nj of a node ni 

denotes the module bj that is the lowest adjacent 

module on the right-hand side of bi i.e. (xj = xi + 

wi). The right child nk of a node ni denotes the 

module bk that is the lowest visible module above bi 

and with the same x co-ordinate as bi i.e. (xk = xi). 

Figures 1(a) and 1(b) show a placement and its 

corresponding B*-Tree respectively. The root n0 of 

the B*-Tree in Fig. 1(b) denotes that b0 is the 

module on the bottom-left corner of the placement. 

For node n3 in the B*tree, n3 has a left child n4 

which means that module b4 is the lowest adjacent 

module in the right-hand side of module b3 (i.e. x4 

= x3 + w3). n7 is the right child of n3 since module 

b7 is the visible module over module b3 and the two 

modules have the same x co-ordinate (x7 = x3). 
 

 
 
Fig. 1. (a) An admissible placement. (b) The B*tree 

representing the placement 

3. Alignment Constraints 

Nowadays, VLSI circuit designers are focused the 

alignment constraints for facilitating sequential data 

transfer operation. As it is different from rectilinear 

blocks with fixed relative positions, the alignment 

blocks are flexible to move within the pre-specified 

alignment range. Similar to a bus width, the 

alignment blocks must be placed one by one 

horizontally or vertically in a predefined range. 

Therefore, the alignment can be divided into H-

alignment and V-alignment according to the 

direction of blocks either horizontal or vertical. The 

horizontal and vertical alignment diagrams are 

shown in Fig. 2. 
 

 
 
Fig. 2. (a) Blocks with H-alignment (b) Blocks with V-

alignment 

4. Floorplanning with Alignment Constraints 

4.1. Problem Definition 

The floorplanning problem can be stated as follows: 

Consider B = b1, b2…bn will be a set of n 

rectangular blocks. If we let wi be the width of 

module i and hi be the height of module i, then the 

area of the module i will be calculated as A = wi x 
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hi, 1 i n. The bottom-left corner of block bi will 

be coordinated as (xi, yi). No two blocks can 

overlap and the given alignment constraints should 

be satisfied when we place the blocks in the chip. 

The main objective of floorplanning/placement is to 

optimize a predefined cost metric such as area (i.e., 

the minimum rectangle of P) and wire length (i.e., 

the sum of all interconnection lengths) of the chip. 

4.2. B*Tree with Alignment blocks 

For a B*-tree, the left child nj of the node ni 

represents the lowest adjacent block bj which is 

right to block bi (i.e. xj = xi wi). If the 

corresponding nodes of blocks form a left skewed 

sub tree, the blocks can be adjacent to one by one in 

a B*tree representation. There are four sets of 

abutment blocks b0 and b1, b3 and b4, b2 and b5, and 

b6 and b7 correspond to four left-skewed sub-trees 

in the given example Fig. 5. 
 

 
 
Fig. 3. (a) An infeasible placement with blocks falling 

out of alignment range; block b2 and b4 are not in the 

alignment range. (b) Insertion dummy blocks, we obtain a 

feasible placement without any blocks violating the 

alignment constraints 
 

After packing, the blocks are arranged in the 

bottom left corner. The blocks which are joined 

with a left-skew sub-tree of a B*-tree may be 

aligned together if no blocks fall during packing. 

To solve the problem of block falling, dummy 

blocks are introduced to fix it. As the dummy 

blocks can be arranged near to the alignment range 

r, the dummy block will have the same x-coordinate 

with the alignment block and right below it. 

Attempting to set width of the dummy block equal 

to its corresponding alignment block. This dummy 

block is simply left in corresponding alignment 

block, and the  height can be adjusted to make a 

displaced alignment block allowing shifted in to 

right alignment range. As illustrated in Fig. 3(a), 

the blocks b2 and b4 will fall out of the alignment 

range. According to the alignment range, the 

dimensions are adjusted in Fig. 3(b). We have 

adjusted the height of the two dummy blocks to 

shift the displaced alignment blocks. After 

adjusting the heights of the dummy blocks, we 

make sure that the resulting placement height 

recommendations will be possible with the 

alignment constraints. 

4.3. Feasibility condition for Alignment constraints 

Given a B*-tree construction, the node 

representing an alignment block should be 

considered as an alignment node. On the alignment 

node, it is introduced in the dummy node within the 

B*-tree, so that the alignment node is connecting 

the right child of its corresponding dummy node. 

According to the definition of the B*-tree, the 

dummy block is to be placed right under its 

corresponding alignment block. Then we modify 

the height of the dummy block to change the y-

coordinate of the alignment block, if needed. 

The combination of alignment node and its 

corresponding dummy node will be called as a 

cluster node. For example, three cluster nodes n3, n4 

and n5 will make a left-skewed sub-tree in an 

alignment shape (Fig. 4(a)) whose placement for 

the alignment blocks b3, b4, and b5 will be one by 

one as shown in Fig. 4(b). To develop the 

feasibility condition of a B*tree with the alignment 

constraints, we will follow the theorem (Meng-

Chen Wu and Yao-Wen Chang, 2004) given below,  

 

Theorem: If the alignment nodes in a B*tree form 

an alignment shape, there is a feasible placement 

with alignment constraints will exist. 

When dealing with the alignment constraints, two 

passes are required to pack blocks correctly. In the 

first operation, the coordinate of each non-dummy 

blocks (a regular block or an alignment block) 

should be calculated. Then, it can be checked 

whether any alignment block is out of range or not. 

If there is any violation, it should be computed in 

the second pass which is the minimum movement 

(height) for the corresponding alignment (dummy) 

block to shift into the alignment range. 
 

 
 
Fig. 4. (a) The alignment shape in a B*tree. (b) The 

corresponding placement of (a) 
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If k alignment blocks and the alignment range r 

are given, the equation for computing the minimum 

movement (height) i for the alignment block bi, 

i=1, 2….k in H-alignment is as follows: 
 

1                if 1     max
0                                      otherwise

y y h i ki i
i

    
  


 

 
where  
 

ymax= max  y i i=1, 2, 3…k                            (1) 
 

After obtaining this minimum movement for each 

alignment block, we have to set the height of the 

corresponding dummy block to i to move the 

alignment block towards the alignment range. We 

can ensure that the final placement will be feasible 

without violating any alignment constraint by using 

such a two-pass packing scheme. The alignment 

blocks b2, b3, b4, and b5, one by one, but the blocks 

b2 and b5 will fall out of the alignment range after 

the 1st-pass packing as shown in Fig. 5(a). Then, 

we must compute the minimum movement (i) for 

each dummy blocks in the alignment shape and b2 

and b5 blocks should be shifted to upward by 2 and 

5 respectively. Figure 5(b) produce a good 

placement after the adjustment. 
 

 
 
Fig. 5. (a) The placement obtained in 1st pass, where 

blocks 2 and 5 fall out of the alignment range. (b) The 

placement obtained in the 2nd pass, where those blocks 

violating the alignment constraint are adjusted by 

inserting corresponding dummy blocks with appropriate 

heights 

5. Differential Evolutionary Algorithm 

5.1. Fitness Function 

In the Differential Evolution (DE), each individual 

in the population is an admissible floorplan 

represented by a B*-tree. The main objective of the 

VLSI floorplan is to minimize the cost of floorplan 

such as area and wire length, the fitness of an 

individual in the population is formulated as 

follows: 

)F(tcos
)F(f

1
                                           (2) 

 
Where F is the corresponding floorplan, and cost 

(F) is the cost of F defined as, 
 

**
)(cos

wirelength

wirelength

area

area
Ft      (3) 

5.2. Initial Population 

An admissible VLSI floorplan F is represented by 

individual in the initial population in B*tree. 

Admissible B*tree is designed by using 

constructive algorithm. The constructive algorithm 

is based on a deterministic algorithm proposed by 

Chang et al (2000).  

For each rectangular module B, we have to 

calculate the function V by using this algorithm. 

According to the value of V, we can include the 

modules into an initially empty B*tree B. Then we 

have to check a point such that the new module will 

be packed in the feasible region in the bottom left 

corner. The constructive algorithm is invoked 

iteratively to create an initial population of 

individuals. 

5.3. Differential Evolutionary Operators 

In this technique, the Differential Evolutionary 

algorithm (Price, et al, 1995) is a population based 

algorithm derived from genetic algorithms by using 

similar operators like crossover, mutation and 

selection. The implementation of operators depends 

on constructing better solutions in genetic 

algorithms that rely on crossover at the same time 

Differential Evolution relies on mutation operation. 

The main operation is based on the divergence 

between random sample pairs of solutions in the 

population. 

The algorithm is a search mechanism used as 

mutation operation inspired by selection operation 

to direct the search toward the prospective regions 

in the search space. It is also used as a non-uniform 

crossover for finding operations like child vector 

parameters from one parent more often than it does 

from others. The solutions obtained were better 

using the various components like trial vectors; the 

recombination (crossover) operator efficiently 

shuffles information about successful combinations, 

enabling the search for a better solution space. 

An optimization task consisting of D parameters 

can be represented by a Dimensional vector (Price, 

et al, 1995). In Differential Evolution, a population 

of NP solution vectors is randomly created at the 

start. This population is successfully improved by 

applying mutation, crossover and selection 

operators. 
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5.3.1. Mutation 

A mutant vector is generated according to the 

following formula for each target vector xi, G, 
 

.( - )
, -1 1, 2, 3,

V X F X X
i G r G r G r G

                          (4) 

 
Randomly chosen indexes r1, r2, r3 ε {1, 2, 

3…NP}. It must be noticed that indexes have to be 

different from each other and also from the running 

index. Hence, the number of parameter vectors in a 

population must be at least four, which is a real and 

constant factor ε [0, 2], F is the scaling vector that 

controls the amplification of the difference vector 

(xr2,G - xr3,G). The smaller difference between the 

parameters of parent r2 and r3 shows that the step 

length is automatically decreased if the population 

gets close to the optimum. Two sub trees with the 

same tree height at a level were selected randomly. 

Then, these two sub-trees will swap with each other 

which is equal to swapping two modules. It is one 

of the basic operations for local search on the 

B*tree. 
 

 
 

Fig. 6. Mutation operators 

5.3.2. Crossover 

The target vector is mixed with the mutated 

vector to use the following scheme to yield the trial 

vector  
 

 , 1 , 1, 2 , 1 , 1
-1 .........

i G i G i G Di G
u u u u

  
   (5) 

 
Where 
 

 

 
, 1 

, 1

,  

( ( )   or  

( ( )   and  

i G

ij G

ji G

V if r j CR j m i
U

X if r j CR j m i





 


 





 

 
If any two individuals are considered as alleged 

parents, both of them are admissible floorplans 

represented by B*tree. The crossover operator can 

exchange important structural information from two 

parents to a child. Firstly, a partial set of nodes 

move to the offspring through this process straight 

from the first parent. Hence, the child can have 

some inherited properties from their parents. In the 

second case, the remaining nodes are selected from 

the second parent in an arbitrary direction. 
 

 
 

Fig. 7. P1 Parent 
 

 
 

Fig. 8. P2 Parent 
 

 
 

Fig. 9. C1 Child 
 

The child C1 (Fig. 9) produced this way has 

structural information from two parents P1 (Fig. 7) 

and P2 (Fig. 8). In this paper, the crossover operator 

is selected and creates the duplicates copy of 

structural information from the left branch from P1 

and puts it in Cl. Then, the crossover operator takes 

a copy from P2 and removes those nodes that have 

already been present in C1 and then adds the 

remaining structural components to C1. In this way, 

after generating a child it carries the significant 

structural information from the parents. 

5.3.3. Selection 

The trail vector is accepted as a new parent vector 

for the following G+1, if only it gives a better cost 

function value when compared to the parameter 

vector. It is accepted as a new parent vector for the 

following generation G+1. Otherwise, the target 

vector is retained to serve as a parent vector for 

generating G+1 once again. 

The Pseudo code for our proposed algorithm is 

given below. 

Algorithm: Placement with Alignment Constraints 

(blocks, constraints) 
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Input: A set of blocks with alignment constraints. 

Output: An optimal placement without violating the 

given constraint. 
1. Initialize a B*-tree for the input blocks and 

constraints; 

2. Differential Evolutionary Process; 

3. Begin 

4. Initialize the parameters 

5. Evaluate the cost of the vector 

6. Mutation 

7. Crossover 

8. Selection 

9. Evaluate the B*-tree cost. 

10. until criteria are met. 

11. End 

12. Return the best solution; 

6. Experimental results 

The experiment employed MCNC benchmarks for 

the VLSI floorplanning with alignment constraints. 

We have compared our method to Meng-Chen Wu 

and Yao-Wen Chang (2004), the most recent 

Differential Evolution based performance driven 

VLSI Floorplanning. For a fair comparison, we 

adopt the same cases used in Meng-Chen Wu and 

Yao-Wen Chang (2004), as shown in Table 1. All 

experiments were run on the same machine. Our 

approach adopts a Differential Evolutionary 

algorithm without resorting to floorplan 

representations, and the placement constraints of 

the buses are satisfied during the block-packing 

process.  

For the Differential Evolutionary algorithm, 

crossover (CR) and Scaling factor (F) are the 

control parameters. Like Number of Population 

(NP), both values remain constant during the search 

process. F is a real-valued factor in the range (0.0, 

1.0) that scales the differential variations, and 

therefore controls mutation amplifications. 

Respectively, CR is a real-valued crossover factor 

in range [0.0, 1.0] that controls the probability that 

a trial vector parameter will come from the 

randomly chosen, mutated vector, V j,i,G+1, instead 

of from the current vector, Xj,i,G. Usually, suitable 

values for F, CR and NP can be found by trial-and-

error after a few tests using different values. In our 

experiment, we have obtained better optimal results 

by setting NP to 100, the probability for crossover 

(CR) is 0.9 and Scaling Factor F=0.5 compared 

with the Simulated Annealing. The comparison 

between the various optimization algorithms 

without constraints is shown in Table 1. The area 

and run time comparison with constraints results 

are shown in Table 2 and Table 3.  

 
Table 1. Area Estimation without Constraints 

 

 
Table 2. Area Estimation with Constraints 

 

Circuit Blocks 

Constrained 

Blocks 
Meng and Chang  Ours 

Alignment Area (mm2) Area (mm2) 

Apte 9 4 46.92 45.339 

xerox-1 10 4 20.08 19.17 

xerox-2 10 4 20.08 19.98 

hp-1 11 4 9.20 8.85 

hp-2 11 4 9.349 9.00 

ami 33-1 33 4 1.180 1.17 

ami 33-2 33 4 1.181 1.22 

ami 49-1 49 5 36.60 35.36 

ami 49-2 49 4 36.56 35.55 

ami 49-3 49 4 36.64 35.60 

 

 

MCNC 

Benchmarks 

Non Slicing floorplanning without Constraints 

                        Previous research work 
Proposed  

method 

Circuits 
Module 

number# 

Simulated 

Annealing 

Area (mm2) 

SA embedded 

inTabu 

searchArea(mm2) 

Evolutionary 

Simulated 

Annealing 

mm2) 

Hybrid 

Simulated 

annealing 

(mm2) 

Hybrid 

Genetic 

(mm2) 

Differential 

Evolution 

Area(mm2) 

apte 9 46.92 46.92 49.43 47.12 46.90 46.6339 

Xerox 10 19.83 20.08 20.78 20.89 20.03 19.69 

Hp 11 8.95 9.16 9.364 9.47 9.08 9.293 

Ami33 33 1.27 1.21 1.253 1.21 1.19 1.22 

Ami49 49 36.80 36.95 36.74 37.80 37.49 36.22 
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Table 3. Run Time Estimation with Constraints 
 

Circuit Blocks 
Constrained Blocks Meng and chang  Ours 

Alignment Time(sec) Time (sec) 

Apte 9 4 3.6 1.48 

xerox-1 10 4 5.8 4.09 

xerox-2 10 4 6.4 5.12 

hp-1 11 4 5.9 3.98 

hp-2 11 4 6.1 4.04 

ami 33-1 33 4 35.4 20.98 

ami 33-2 33 4 52.6 25.78 

ami 49-1 49 5 132.7 87.98 

ami 49-2 49 4 97.9 78.56 

ami 49-3 49 4 109.2 80.09 

7. Conclusion 

In this paper, we have proposed an efficient and 

effective Differential Evolutionary algorithm for 

floorplanning based on B*tree representation. The 

proposed DE (Differential Evolution) algorithm 

guarantees a feasible and good placement solution 

with alignment constraints for giving support to 

sequential data transfer (bus or pipeline signals). 

MCNC benchmark circuit’s data are used for 

testing and the results are very promising. Our 

approach generates a good placement solution with 

an optimum area and a short run time. Another 

major advantage using DE is the reduction of 

computation time by proposing a trial solution 

(with all constraints) which will not require 

evaluating the objective function every time. Also 

we have obtained good packings with the alignment 

constraints satisfied efficiently. The future scope of 

this work is to include boundary constraints, range 

constraints, rectilinear constraints and performance 

constraints to the proposed algorithm. 
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