
IJST (2015) 39A3 (Special issue): 375-382

Iranian Journal of Science & Technology

http://ijsts.shirazu.ac.ir

A novel differential evolution based optimization

algorithm for Non-Sliceable VLSI floorplanning

D. Gracia Nirmala Rani*

and S. Rajaram

Department of Electronics and Communication Engineering, Thiagarajar College

of Engineering, Madurai, 625015, Tamilnadu, India

E-mail: gracia@tce.edu

Abstract

Floorplanning is an important step in physical design of VLSI circuits. It is used to plan the positions of a set of

circuit modules on a chip in order to optimize the circuit performance. However, modern floorplanning takes

better care of providing extra options to place dedicated modules in the hierarchical designs to align circuit blocks

one by one within certain bounding box for helping sequential data transfer (bus or pipeline) signal in the VLSI

circuit. In this paper, the placement of circuit blocks with alignment constraints can be handled using B*tree

representation with Differential Evolutionary algorithm. In order to reduce the solution space, feasibility

conditions of nonslicing floorplan with alignment constraints have been examined. The properties associated with

our proposed Differential Evolutionary algorithm provide the way to produce optimal floorplan. Experimental

results based on the MCNC benchmark circuits with the alignment constraint shows that our Differential

algorithm can produce promising solutions.

Keywords: CAD VLSI; floorplanning; alignment constraints; differential evolutionary algorithm

1. Introduction

Floorplanning problem plays a significant role in

physical design of VLSI circuits and the problem is

shown to be NP-complete (Stockmeyer L, 1983).

Classical floorplanning formulation can be used to

determine the location of given set of modules

without overlapping each other. The main objective

of the floorplanning is to minimize area and wire

length

(Chang-Tzu Lin et al, 2002; Valenzuela C.L

et al, 2002). In this floorplanning step, the VLSI

designer will pay more attention to giving extra

options to place modules in the final packing for

various reasons. If there are many interconnections

between the modules, and to provide a space for

bus based routing, the VLSI circuit designer has to

be careful regarding the separation between two

modules. Therefore, it is desirable to find an

efficient and effective way to handle the

floorplanning problem with the placement

constraints.

Floorplanning structure can be divided into two

types, one is sliceable and another one is non-

sliceable. For slicing structure, Otten (1982) first

introduced a binary tree representation, and later

Wong and Liu (1986) proposed a normalized Polish

*Corresponding author
Received: 25 July 2013 / Accepted: 21 January 2015

expression. Young et al (2001) proposed an

algorithm to handle abutment constraint based on

slicing structure. Chang et al (2005) also presented

the floorplanning with abutment and fixed outline

constraints. Though sliceable structure has so many

advantages, typical floorplan is always non-

sliceable.

There are several representations for non-slicing

structures such as BSG (S. Nakatake et al, 1996),

sequence pair (H. Murata et al, 1995), O-tree (P.N.

Guo et al, 1999), B*-tree (Y. C. Chang et al, 2000),

CBL (Hong et al, 2000), and Q-sequence (K.

Sakanushi and Y. Kajitani, 2000)

right, below, and

above. These representations are used for general

floorplanning problem. Block placement can be

obtained by compacting blocks subject to relative

positions. O-tree and B*-tree are used to describe

one dimensional relative positions among blocks.

The final placement is achieved by compacting

blocks to the left and bottom. Even though O-tree

and B*-tree have smaller solution space, they are

dimension dependent. Because of the geometric

relation between blocks, solution cannot be

obtained directly from representation.

Ma et al (2001)

proposed a novel algorithm for

Non-slicing representation with abutment

constraints. In case of constraints violation,

simulated annealing process is used to examine the

intermediate solutions and repair the solutions by

heuristics method (penalty function). Adya et al

http://ijsts.shirazu.ac.ir/
mailto:gracia@tce.edu

IJST (2015) 39A3 (Special issue): 375-382 376

(2001) suggested new objective functions to drive

simulated annealing and types of move to help

exploit fixed-outline floorplans. The new move is

helpful in reducing critical path. Meng-Chen Wu

and Yao-Wen Chang (2004)

proposed the

placement problem with alignment constraints

using B*tree representation. Still, it does not

guarantee an optimal floorplan with fixed-outline

constraint being produced. Rong Liu et al (2005)

recommended the sequence pair representation for

nonslicing Floorplanning with boundary and pre-

placement constraints. VLSI Block placement using

alignment constraints is proposed by Song Chen et

al (2006). Then, Wan-Ping Lee et al (2009)

developed a dynamic-programming based voltage

scaling algorithm and a timing driven

Floorplanning with the B*tree representation using

multi supply voltage (MSV) design.

Po-Hsun Wu and Tsung-Yi Ho (2012) developed

a Bus driven VLSI Floorplanning with thermal

consideration. They used the sequence pair

representation with simulated annealing algorithm

for effectively separate hotspots and reduce the chip

temperature in the VLSI Floorplanning.

In this paper, we present the modern

floorplanning with the alignment constraints using

the nonslicing representation. First, we consider the

feasible properties of a non-slicing floorplan with

alignment constraints. These properties, together

with our proposed Differential evolutionary

algorithm provide the way to produce optimal

floorplan.

2. Preliminaries

The non-slicing floorplans are handled using an

ordered binary-tree representation called B*tree

representation. We can construct a B*tree for a

given admissible placement. [See Fig. 1(b) for the

B*tree representing and the placement is shown in

Fig. 1(a)]. A B*tree is an ordered binary tree. Each

node ni in a B*-Tree denotes a module. The root of

a B*-Tree corresponds to the module on the

bottom-left corner. We have to construct the B*tree

for an admissible placement P in a recursive fashion

which is similar to the depth first search procedure.

Starting from the rooting node, we build the left

sub tree and then the right sub tree in recursively

manner. The geometric relationship between two

modules in a B*tree will be explained as follows.

Each node ni in a B*-Tree denotes a module. The

root of a B*-Tree corresponds to the module on the

bottom-left corner. The left child nj of a node ni

denotes the module bj that is the lowest adjacent

module on the right-hand side of bi i.e. (xj = xi +

wi). The right child nk of a node ni denotes the

module bk that is the lowest visible module above bi

and with the same x co-ordinate as bi i.e. (xk = xi).

Figures 1(a) and 1(b) show a placement and its

corresponding B*-Tree respectively. The root n0 of

the B*-Tree in Fig. 1(b) denotes that b0 is the

module on the bottom-left corner of the placement.

For node n3 in the B*tree, n3 has a left child n4

which means that module b4 is the lowest adjacent

module in the right-hand side of module b3 (i.e. x4

= x3 + w3). n7 is the right child of n3 since module

b7 is the visible module over module b3 and the two

modules have the same x co-ordinate (x7 = x3).

Fig. 1. (a) An admissible placement. (b) The B*tree

representing the placement

3. Alignment Constraints

Nowadays, VLSI circuit designers are focused the

alignment constraints for facilitating sequential data

transfer operation. As it is different from rectilinear

blocks with fixed relative positions, the alignment

blocks are flexible to move within the pre-specified

alignment range. Similar to a bus width, the

alignment blocks must be placed one by one

horizontally or vertically in a predefined range.

Therefore, the alignment can be divided into H-

alignment and V-alignment according to the

direction of blocks either horizontal or vertical. The

horizontal and vertical alignment diagrams are

shown in Fig. 2.

Fig. 2. (a) Blocks with H-alignment (b) Blocks with V-

alignment

4. Floorplanning with Alignment Constraints

4.1. Problem Definition

The floorplanning problem can be stated as follows:

Consider B = b1, b2…bn will be a set of n

rectangular blocks. If we let wi be the width of

module i and hi be the height of module i, then the

area of the module i will be calculated as A = wi x

377 IJST (2015) 39A3 (Special issue): 375-382

hi, 1 i n. The bottom-left corner of block bi will

be coordinated as (xi, yi). No two blocks can

overlap and the given alignment constraints should

be satisfied when we place the blocks in the chip.

The main objective of floorplanning/placement is to

optimize a predefined cost metric such as area (i.e.,

the minimum rectangle of P) and wire length (i.e.,

the sum of all interconnection lengths) of the chip.

4.2. B*Tree with Alignment blocks

For a B*-tree, the left child nj of the node ni

represents the lowest adjacent block bj which is

right to block bi (i.e. xj = xi wi). If the

corresponding nodes of blocks form a left skewed

sub tree, the blocks can be adjacent to one by one in

a B*tree representation. There are four sets of

abutment blocks b0 and b1, b3 and b4, b2 and b5, and

b6 and b7 correspond to four left-skewed sub-trees

in the given example Fig. 5.

Fig. 3. (a) An infeasible placement with blocks falling

out of alignment range; block b2 and b4 are not in the

alignment range. (b) Insertion dummy blocks, we obtain a

feasible placement without any blocks violating the

alignment constraints

After packing, the blocks are arranged in the

bottom left corner. The blocks which are joined

with a left-skew sub-tree of a B*-tree may be

aligned together if no blocks fall during packing.

To solve the problem of block falling, dummy

blocks are introduced to fix it. As the dummy

blocks can be arranged near to the alignment range

r, the dummy block will have the same x-coordinate

with the alignment block and right below it.

Attempting to set width of the dummy block equal

to its corresponding alignment block. This dummy

block is simply left in corresponding alignment

block, and the height can be adjusted to make a

displaced alignment block allowing shifted in to

right alignment range. As illustrated in Fig. 3(a),

the blocks b2 and b4 will fall out of the alignment

range. According to the alignment range, the

dimensions are adjusted in Fig. 3(b). We have

adjusted the height of the two dummy blocks to

shift the displaced alignment blocks. After

adjusting the heights of the dummy blocks, we

make sure that the resulting placement height

recommendations will be possible with the

alignment constraints.

4.3. Feasibility condition for Alignment constraints

Given a B*-tree construction, the node

representing an alignment block should be

considered as an alignment node. On the alignment

node, it is introduced in the dummy node within the

B*-tree, so that the alignment node is connecting

the right child of its corresponding dummy node.

According to the definition of the B*-tree, the

dummy block is to be placed right under its

corresponding alignment block. Then we modify

the height of the dummy block to change the y-

coordinate of the alignment block, if needed.

The combination of alignment node and its

corresponding dummy node will be called as a

cluster node. For example, three cluster nodes n3, n4

and n5 will make a left-skewed sub-tree in an

alignment shape (Fig. 4(a)) whose placement for

the alignment blocks b3, b4, and b5 will be one by

one as shown in Fig. 4(b). To develop the

feasibility condition of a B*tree with the alignment

constraints, we will follow the theorem (Meng-

Chen Wu and Yao-Wen Chang, 2004) given below,

Theorem: If the alignment nodes in a B*tree form

an alignment shape, there is a feasible placement

with alignment constraints will exist.

When dealing with the alignment constraints, two

passes are required to pack blocks correctly. In the

first operation, the coordinate of each non-dummy

blocks (a regular block or an alignment block)

should be calculated. Then, it can be checked

whether any alignment block is out of range or not.

If there is any violation, it should be computed in

the second pass which is the minimum movement

(height) for the corresponding alignment (dummy)

block to shift into the alignment range.

Fig. 4. (a) The alignment shape in a B*tree. (b) The

corresponding placement of (a)

IJST (2015) 39A3 (Special issue): 375-382 378

If k alignment blocks and the alignment range r

are given, the equation for computing the minimum

movement (height) i for the alignment block bi,

i=1, 2….k in H-alignment is as follows:

1 if 1 max
0 otherwise

y y h i ki i
i

    
  



where

ymax= max  y i i=1, 2, 3…k (1)

After obtaining this minimum movement for each

alignment block, we have to set the height of the

corresponding dummy block to i to move the

alignment block towards the alignment range. We

can ensure that the final placement will be feasible

without violating any alignment constraint by using

such a two-pass packing scheme. The alignment

blocks b2, b3, b4, and b5, one by one, but the blocks

b2 and b5 will fall out of the alignment range after

the 1st-pass packing as shown in Fig. 5(a). Then,

we must compute the minimum movement (i) for

each dummy blocks in the alignment shape and b2

and b5 blocks should be shifted to upward by 2 and

5 respectively. Figure 5(b) produce a good

placement after the adjustment.

Fig. 5. (a) The placement obtained in 1st pass, where

blocks 2 and 5 fall out of the alignment range. (b) The

placement obtained in the 2nd pass, where those blocks

violating the alignment constraint are adjusted by

inserting corresponding dummy blocks with appropriate

heights

5. Differential Evolutionary Algorithm

5.1. Fitness Function

In the Differential Evolution (DE), each individual

in the population is an admissible floorplan

represented by a B*-tree. The main objective of the

VLSI floorplan is to minimize the cost of floorplan

such as area and wire length, the fitness of an

individual in the population is formulated as

follows:

)F(tcos
)F(f

1
 (2)

Where F is the corresponding floorplan, and cost

(F) is the cost of F defined as,

**
)(cos

wirelength

wirelength

area

area
Ft   (3)

5.2. Initial Population

An admissible VLSI floorplan F is represented by

individual in the initial population in B*tree.

Admissible B*tree is designed by using

constructive algorithm. The constructive algorithm

is based on a deterministic algorithm proposed by

Chang et al (2000).

For each rectangular module B, we have to

calculate the function V by using this algorithm.

According to the value of V, we can include the

modules into an initially empty B*tree B. Then we

have to check a point such that the new module will

be packed in the feasible region in the bottom left

corner. The constructive algorithm is invoked

iteratively to create an initial population of

individuals.

5.3. Differential Evolutionary Operators

In this technique, the Differential Evolutionary

algorithm (Price, et al, 1995) is a population based

algorithm derived from genetic algorithms by using

similar operators like crossover, mutation and

selection. The implementation of operators depends

on constructing better solutions in genetic

algorithms that rely on crossover at the same time

Differential Evolution relies on mutation operation.

The main operation is based on the divergence

between random sample pairs of solutions in the

population.

The algorithm is a search mechanism used as

mutation operation inspired by selection operation

to direct the search toward the prospective regions

in the search space. It is also used as a non-uniform

crossover for finding operations like child vector

parameters from one parent more often than it does

from others. The solutions obtained were better

using the various components like trial vectors; the

recombination (crossover) operator efficiently

shuffles information about successful combinations,

enabling the search for a better solution space.

An optimization task consisting of D parameters

can be represented by a Dimensional vector (Price,

et al, 1995). In Differential Evolution, a population

of NP solution vectors is randomly created at the

start. This population is successfully improved by

applying mutation, crossover and selection

operators.

379 IJST (2015) 39A3 (Special issue): 375-382

5.3.1. Mutation

A mutant vector is generated according to the

following formula for each target vector xi, G,

.(-)
, -1 1, 2, 3,

V X F X X
i G r G r G r G

  (4)

Randomly chosen indexes r1, r2, r3 ε {1, 2,

3…NP}. It must be noticed that indexes have to be

different from each other and also from the running

index. Hence, the number of parameter vectors in a

population must be at least four, which is a real and

constant factor ε [0, 2], F is the scaling vector that

controls the amplification of the difference vector

(xr2,G - xr3,G). The smaller difference between the

parameters of parent r2 and r3 shows that the step

length is automatically decreased if the population

gets close to the optimum. Two sub trees with the

same tree height at a level were selected randomly.

Then, these two sub-trees will swap with each other

which is equal to swapping two modules. It is one

of the basic operations for local search on the

B*tree.

Fig. 6. Mutation operators

5.3.2. Crossover

The target vector is mixed with the mutated

vector to use the following scheme to yield the trial

vector

 , 1 , 1, 2 , 1 , 1
-1

i G i G i G Di G
u u u u

  
 (5)

Where

 

 
, 1

, 1

,

(() or

(() and

i G

ij G

ji G

V if r j CR j m i
U

X if r j CR j m i





 


 





If any two individuals are considered as alleged

parents, both of them are admissible floorplans

represented by B*tree. The crossover operator can

exchange important structural information from two

parents to a child. Firstly, a partial set of nodes

move to the offspring through this process straight

from the first parent. Hence, the child can have

some inherited properties from their parents. In the

second case, the remaining nodes are selected from

the second parent in an arbitrary direction.

Fig. 7. P1 Parent

Fig. 8. P2 Parent

Fig. 9. C1 Child

The child C1 (Fig. 9) produced this way has

structural information from two parents P1 (Fig. 7)

and P2 (Fig. 8). In this paper, the crossover operator

is selected and creates the duplicates copy of

structural information from the left branch from P1

and puts it in Cl. Then, the crossover operator takes

a copy from P2 and removes those nodes that have

already been present in C1 and then adds the

remaining structural components to C1. In this way,

after generating a child it carries the significant

structural information from the parents.

5.3.3. Selection

The trail vector is accepted as a new parent vector

for the following G+1, if only it gives a better cost

function value when compared to the parameter

vector. It is accepted as a new parent vector for the

following generation G+1. Otherwise, the target

vector is retained to serve as a parent vector for

generating G+1 once again.

The Pseudo code for our proposed algorithm is

given below.

Algorithm: Placement with Alignment Constraints

(blocks, constraints)

IJST (2015) 39A3 (Special issue): 375-382 380

Input: A set of blocks with alignment constraints.

Output: An optimal placement without violating the

given constraint.
1. Initialize a B*-tree for the input blocks and

constraints;

2. Differential Evolutionary Process;

3. Begin

4. Initialize the parameters

5. Evaluate the cost of the vector

6. Mutation

7. Crossover

8. Selection

9. Evaluate the B*-tree cost.

10. until criteria are met.

11. End

12. Return the best solution;

6. Experimental results

The experiment employed MCNC benchmarks for

the VLSI floorplanning with alignment constraints.

We have compared our method to Meng-Chen Wu

and Yao-Wen Chang (2004), the most recent

Differential Evolution based performance driven

VLSI Floorplanning. For a fair comparison, we

adopt the same cases used in Meng-Chen Wu and

Yao-Wen Chang (2004), as shown in Table 1. All

experiments were run on the same machine. Our

approach adopts a Differential Evolutionary

algorithm without resorting to floorplan

representations, and the placement constraints of

the buses are satisfied during the block-packing

process.

For the Differential Evolutionary algorithm,

crossover (CR) and Scaling factor (F) are the

control parameters. Like Number of Population

(NP), both values remain constant during the search

process. F is a real-valued factor in the range (0.0,

1.0) that scales the differential variations, and

therefore controls mutation amplifications.

Respectively, CR is a real-valued crossover factor

in range [0.0, 1.0] that controls the probability that

a trial vector parameter will come from the

randomly chosen, mutated vector, V j,i,G+1, instead

of from the current vector, Xj,i,G. Usually, suitable

values for F, CR and NP can be found by trial-and-

error after a few tests using different values. In our

experiment, we have obtained better optimal results

by setting NP to 100, the probability for crossover

(CR) is 0.9 and Scaling Factor F=0.5 compared

with the Simulated Annealing. The comparison

between the various optimization algorithms

without constraints is shown in Table 1. The area

and run time comparison with constraints results

are shown in Table 2 and Table 3.

Table 1. Area Estimation without Constraints

Table 2. Area Estimation with Constraints

Circuit Blocks

Constrained

Blocks
Meng and Chang Ours

Alignment Area (mm2) Area (mm2)

Apte 9 4 46.92 45.339

xerox-1 10 4 20.08 19.17

xerox-2 10 4 20.08 19.98

hp-1 11 4 9.20 8.85

hp-2 11 4 9.349 9.00

ami 33-1 33 4 1.180 1.17

ami 33-2 33 4 1.181 1.22

ami 49-1 49 5 36.60 35.36

ami 49-2 49 4 36.56 35.55

ami 49-3 49 4 36.64 35.60

MCNC

Benchmarks

Non Slicing floorplanning without Constraints

 Previous research work
Proposed

method

Circuits
Module

number#

Simulated

Annealing

Area (mm2)

SA embedded

inTabu

searchArea(mm2)

Evolutionary

Simulated

Annealing

mm2)

Hybrid

Simulated

annealing

(mm2)

Hybrid

Genetic

(mm2)

Differential

Evolution

Area(mm2)

apte 9 46.92 46.92 49.43 47.12 46.90 46.6339

Xerox 10 19.83 20.08 20.78 20.89 20.03 19.69

Hp 11 8.95 9.16 9.364 9.47 9.08 9.293

Ami33 33 1.27 1.21 1.253 1.21 1.19 1.22

Ami49 49 36.80 36.95 36.74 37.80 37.49 36.22

381 IJST (2015) 39A3 (Special issue): 375-382

Table 3. Run Time Estimation with Constraints

Circuit Blocks
Constrained Blocks Meng and chang Ours

Alignment Time(sec) Time (sec)

Apte 9 4 3.6 1.48

xerox-1 10 4 5.8 4.09

xerox-2 10 4 6.4 5.12

hp-1 11 4 5.9 3.98

hp-2 11 4 6.1 4.04

ami 33-1 33 4 35.4 20.98

ami 33-2 33 4 52.6 25.78

ami 49-1 49 5 132.7 87.98

ami 49-2 49 4 97.9 78.56

ami 49-3 49 4 109.2 80.09

7. Conclusion

In this paper, we have proposed an efficient and

effective Differential Evolutionary algorithm for

floorplanning based on B*tree representation. The

proposed DE (Differential Evolution) algorithm

guarantees a feasible and good placement solution

with alignment constraints for giving support to

sequential data transfer (bus or pipeline signals).

MCNC benchmark circuit’s data are used for

testing and the results are very promising. Our

approach generates a good placement solution with

an optimum area and a short run time. Another

major advantage using DE is the reduction of

computation time by proposing a trial solution

(with all constraints) which will not require

evaluating the objective function every time. Also

we have obtained good packings with the alignment

constraints satisfied efficiently. The future scope of

this work is to include boundary constraints, range

constraints, rectilinear constraints and performance

constraints to the proposed algorithm.

References

Chang, Y. C., & Chang, Y. W, Wu, G. M., & Wu, S. W.

(2000). B*tree: A New representations for nonslicing

floorplans. Proc. ACM/IEEE Design Automation

Conf., Los Angles, 458–463.

Chang-Tzu Lin, De-Sheng Chen, Yi-Wen Wang, & Hsin-

Hsien Ho. (2005). Modern Floorplanning with

Abutment and Fixed-Outline Constraints. IEEE

International Symposium on Circuits and Systems, 6,

6214–6217.

Chang-Tzu Lin, De-Sheng Chen, & Yiwen.Wang.

(2002). An Efficient Genetic Algorithm for Slicing

Floorplan Area Optimization. Proceedings of the IEEE

International Symposium on Circuits and Systems, 2,

879–882.

Guo, P. N., Cheng, C. K., & Yoshimura, T. (1999). An

O-tree representation of non- slicing floorplans and its
applications. Proc. DAC, 268–273.

Hong, X. L., Huang, G., & Cai, Y. C. et al. (2000). Corner

block list: An effective and efficient topological

representation of non-slicing floorplan. Proceedings of

IEEE/ACM International Conference on Computer-Aided

Design, 8–12.

Murata, H., Fujiyoshi, K., Nakatake, S., & Kajitani, K.

(1995). Rectangle-packing based module placement.

Proceedings of the IEEE/ACM International

conference on Computer-aided design, 472–479.

Nakatake, S., Murata, H. Fujiyoshi, K., & Kajitani Y.

(1996). VLSI module placement on BSG-structure and

IC layour applications. Proceedings of the IEEE/ACM

International conference on Computer-aided design,

484–491.

Otten, R. H. J. M. (1982). Automatic floorplan design.

Proc. DAC, 61–267.

Sakanushi, K., & Kajitani, Y. (2000). The quarter-state

sequence (Q-sequence) to represent the floorplan and

applications to layout optimization. Proc. APCAS,

829–832.

Stockmeyer, L. (1983). Optimal orientations of cells in

slicing floorplan designs. Information and Control, 59,

91–101.

Valenzuela, C. L., & Wang, P. Y. (2002). VLSI

placement and area optimization using a genetic

algorithm to breed normalized postfix expressions.

IEEE Transactions on Evolutionary Computation,

6(4), 390–401.

Wong, D. F., & Liu, C. L. (1986). A new Algorithm for

floorplan design, Proc. DAC, 101–107.

Young, F. Y., Yang, H. H., & Wong, D. F. (2001). On

extending slicing floorplans to handle L/T-shaped

blocks and abutment constraints, IEEE Transactions

on Computer-aided Design of Integrated Circuits and

Systems, 20(6), 800–807.

Yuchun Ma, Xianlong Hong, Sheqin Dong, Yici Cai,

Chung-Kuan Cheng, & Jun Gu. (2001). Floorplanning

with abutment constraints based on corner block list.

Integration VLSI Journal, 65–77.

Saurabh, N. A., & Markov, L. I. (2001). Fixed-outline

FloorplanningThrough Better Local Search.

Proceedings of the International Conference on

Computer Design, 328–334.

Meng-Chen Wu, & Yao-Wen Chang. (2004). Placement

with Alignment and Performance Constraints Using

the B*-tree Representation. Proceedings of the IEEE

International Conference on VLSI in computers and

Processors, 568–571.

Rong Liu, Sheqin Dong, Xianlong Hong, & Yoji

Kajitani. (2005). Fixed-outline Floorplanning with

Constraints through Instance Augmentation. IEEE

International symposium on circuits and systems, 2,

1883–1886.

Song Chen, Sheqin Dong, Xianlong Hong, Yuchun Ma,

IJST (2015) 39A3 (Special issue): 375-382 382

& Cheng, C. K. (2006). VLSI Block Placement With

Alignment Constraint. IEEE Transactions on Circuits

and Systems: Express Briefs, 53(8).

Wan-Ping Lee, Hung-Yi Liu, & Yao-Wen Chang. (2009).

Voltage-Island Partitioning and Floorplanning under

Timing Constraints. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems,

28(5).
Po-Hsun Wu, & Tsung-Yi Ho. (2012). Bus-driven

floorplanning with thermal consideration. Intergration, the

VLSI journal, http://dx.doi.org/10.1016/j.vlsi.2012.11.002.

Stron, R., & Price, K. (1995). Differential evolution-a

simple and efficient adaptive scheme for global

optimization over continuous spaces.Tech.Rep.TR-95–

102, International Computer Science Institute (ICSI),

Berkeley, California, USA.

