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Abstract 

The effects of conduction band nonparabolicity, aluminum concentration and external electric field on the charge 

density and binding energy of an on-center hydrogenic donor impurity in a spherical quantum dot which is located 

at the center of a cylindrical nano-wire are studied. The energy eigenvalues and the corresponding wave functions 

are calculated using finite difference approximation within the effective mass framework. The results reveal that 

the binding energies (I) decrease as the electric field increases, (II) become negligible for large values of electric 

field, (III) increase as the aluminum concentration increases and (IV) the conduction band nonparabolicity has a 

noticeable effect on the binding energy, and hence should be taken into account.  
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1. Introduction 

Since the first investigation on the binding energy of a 

hydrogenic donor impurity within an infinite potential 

well (Bastard, 1981), there has been increasing interest 

on the electronic and optical properties of hydrogenic 

impurity confined by low-dimensional 

semiconductors. Existence of hydrogenic impurity 

influences not only on the electronic mobility, but also 

alters optical properties of nanostructures (Dalgic, 

2005; Rezaei, 2011; Mathan Kumar, 2012; Liang, 

2012). It has been found that the dimension reduction 

of the system results in strengthening the coulomb 

interaction, so the binding energy is larger in low 

dimensional systems (Dalgic, 2005; Nasri, 2010, 

Liang, 2011). An outstanding type of low dimensional 

semiconductors is quantum dot (QD), which has 

received a great deal of attention. In usage, QDs 

provide the opportunity of confining charge carriers in 

all spatial directions in electronic devices (Vaseghi, 

2012; Xie, 2011). In nanofabrication progress, 

researchers were able to produce new generation of 

low dimensional semiconductors which are the 

combination of embedded QDs in a nano-wire. Owing 

to these combinational nanostructures, it is possible to 

manipulate devices based on low-dimensional 

semiconductors in order to reach desired properties 

(Safarpour, 2012; Safarpour, 2012). 
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Additionally, external perturbations significantly 

affect electronic and optical properties of the 

nanostructures. Applying external electric field, 

among other perturbations, has attracted many 

researchers. It is found that altering the direction or 

magnitude of electric field makes it possible to 

precisely modify electronic and optical features of 

system (He, 2010; Ulas, 1998; Gerardin Jayam, 2003; 

Rezaei, 2012). 

In the field of electronic properties of semiconductor 

nanostructures, most of investigations are based on 

parabolic one band approximation. On the other hand, 

it is well known that energy dispersion relation is only 

parabolic around band edge (Rezaei, 2012). So, in a 

more realistic model, in order to accurately calculate 

the energy levels, it is essential to take nonparabolicity 

of conduction band into account (Rezaei, 2011; 

Nithiananthi, 2006; Bose, 2006; Mora-Ramos, 2012). 

In the present work simultaneous effects of external 

electric field and conduction band nonparabolicity on 

the binding energy of an impure spherical QD 

embedded at the center of a cylindrical nano-wire are 

reported. Calculations are based on the effective mass 

approximation via finite difference method. The rest 

of this article is organized as follows. Theoretical 

approach and applied method are demonstrated in 

section (2) and numerical results and a brief summery 

are presented in Sections (3) and (4), respectively. 
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2. Theory 

We consider a GaAs spherical QD with radius 1R , 

located at the center of a Ga1-xAlxAs cylindrical 

nano-wire with radius 2R
 
and height l . The origin 

is taken at the bottom of nano-wire and the z-axis is 

defined along nano-wire axis. In the energy 

dependent effective mass which accounts for the 

band nonparabolicity and in the cylindrical 

coordinates the Hamiltonian of a single particle in 

the presence of an external electric field can be 

expressed as 
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The electric field is assumed to be in the z-

direction and the particle confining potential,
 

),( zV  , is given by  

 

,
0&&)2/(

)2/(0
),(

21
22

1
22













lzRRlzv

Rlz
zV




   (2) 

 

here )( 1 GaAs
g

AsAlGa
gc EEQv xx   , gE

 
is the 

band-gap energy and cQ  is the band offset ratio 

(Herbert, 2000). The nonparabolicity of the 

conduction band (Cooper, 2010) is considered 

through the energy dependent effective mass as 
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where E is the particle energy, ),( zV   is the 

confining potential, ),(* zm   is the band edge 

effective mass and ),( z  is the nonparabolicity 

parameter which quantifies the effect of nearby 

energy bands on the particle dispersion relation. 

Here we use the simplest form of the 

nonparabolicity i.e. gE/1  (Cooper, 2010).  

We are interested in finding ground and first 

excited states. Since our geometry has axial 

symmetry, the azimuthal part of the wave function 

can be separated as 



 im

m eF
2

1
)(  . It is worth 

pointing out that we just calculate the electron 

energy levels for 0m . Therefore, the 

Schrodinger equation can be rewritten as: 
 

),,(),(}),(

)
1

(
),,(2

{
2

2

2

2

*

2

zEzeFzzV

zzEm
























                

(4) 

 
The Schrodinger equation is numerically solved 

by the finite difference (FD) approximation 

(Cooper, 2010; Wayan Sudiarta, 2007; Amiraliyev, 

2005). In order to carry out simulation numerically, 

one needs to discretize Eq. (4) using FD schemes. 

First, it should be noted that to avoid achieving 

huge matrix, the non-uniform space discretization is 

considered for z-coordinate with aspect ratio 
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z
. For  –coordinate a 

uniform space discretization is applied. The spatial 

derivative is approximated by the central FD 

scheme for all discretized space except on 

boundaries and is given by 
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The notation ),(),( ),(),(
jj

outinoutin zziji    

(where  and jz are spatial spacing) is used in 

this paper and the superscriptions “in” and “out” 

represent the wave function inside and outside the 

dot. For discretized space on different boundaries, 

different FD schemes should be used (Ozturk, 

2004) as follows: (I) for boundary )0,(  z  the 

forward FD scheme is applied, (II) for boundary 

),( lz   the backward FD scheme is applied, 

(III) for boundary ),0( z  the forward FD 

scheme is used for  -coordinate and the central 

FD scheme for z -coordinate, (IV) for boundary 

),( 2 zR  the backward FD scheme is used for 

 -coordinate.  

The Dirichlet boundary condition (i.e., infinite 

potential barrier) has been imposed at the nano-wire 

boundaries. The continuity of the wave function 
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and its derivative on the QD boundary 

))2/(( 1
22 Rlz   are imposed and are 

considered by appropriate FD schemes. In order to 

linearize the coefficient matrix we use the same 

method which has been introduced by Cooper et al. 

(Cooper, 2010). Additionally, we use the same 

assumption to identify the physical eigenvalues, 

i.e.: (I) discarding complex eigenvalues which arise 

due to considering nonparabolicity and asymmetry 

in coefficient matrix, (II) discarding the real states 

whose energies exceed the maximum confining 

potential. These states are usually not of interest 

and can be discarded based on their energy 

(Cooper, 2010). 

3. Numerical results and discussion 

In this study, we have numerically calculated the 

electronic structures of a GaAs spherical quantum 

dot which is located at the center of a Ga1-xAlxAs 

cylindrical nano-wire under effects of external 

electric field and conduction band nonparabolicity. 

Electronic wave functions and energy eigenvalues 

are calculated by FD approximation. The numerical 

method used in this paper is the same as the one 

applied in Safarpour et al. (2014). In that paper the 

error tolerance was reported and the obtained 

results were compared with both analytical and 

computed results by finite element method. The 

parameters used in the present work are as follows 

(Herbert Li, 2000; Cooper, 2010):
2

0AsAlGa
* x 0231.0x 0856.00632.0m/m x1x 

, 

)x 310.1127.0)(x1(xx 519.1424.1E AsAlGa

g
x1x  , 

7.0cQ  and 18.13r . In our calculation we 

have used the following units: meV for energy, nm 

for length and KV/cm for electric field. 

In all numerical calculations, the validity of the 

method should be confirmed. One way to check the 

accuracy of the produced wave functions is to test 

the orthogonality between states which are exactly 

orthogonal. For solving an eigenvalue problem with 

FD approximation, the first step is to discretize 

space and apply different FD schemes (Mora-

Ramos, 2012). This discrete approximation leads to 

finite-dimensional matrix representation. In the 

present method for the geometry with parameters 

nmRnmR 20,5 21   and nml 400 , the 

dimensions of the coefficient matrix are 

65516551 . For parabolic band approximation 

the absolute values of orthogonality between 

ground and first excited states, ps 21 , is equal 

to 
111024622.7   and 

111001990.10   for 

cmKVF /0
 
and cmKVF /10 , respectively. 

As mentioned in Cooper et al's work (Cooper, 

2010) the nonparabolicity inherently introduces 

nonorthogonality. However, in present work the 

orthogonality between ground and first excited 

states is also calculated for nonparabolic band 

approximation and is equal to 810 64734.4   and 
810 22695.2   for cmKVF /0  

and cmKVF /10 , 

respectively. It is clear that, even for nonparabolic 

band approximation, calculated wave functions by 

the presented method are as reliable as expected.  

We should mention that in many articles, the 

nonparabolic band approximation has been 

considered for confined region by QD (Rezaei, 

2012; Bose, 2006). In present work the binding 

energies of ground state (1s) and first excited state 

(2p) are calculated for the case that nonparabolicity 

is considered in both dot and nano-wire region and 

obtained results are compared with parabolic band 

approximation.  

First, consider charge density. Figures 1 and 2 

show the charge distribution along nano-wire axis 

in presence and absence of hydrogenic impurity, 

parabolic and nonparabolic band approximations 

and for two different values of electric field 

strengths 0F
 

and cmKVF /10 . As we 

can see from Fig. 1, in the absence of electric field 

the charge distribution is symmetric and 

concentrated around the origin of the QD 

)nm200z(   in both cases of presence or 

absence of hydrogenic impurity. In absence of 

hydrogenic impurity the first confinement (quantum 

confinement of dot) is dominant factor, leading to 

carrier localization inside the dot. The effect of 

impurity increases probability of finding electron 

around the origin. Moreover, the effect of 

nonparabolicity parameter (see Eq. 3) increases 

energy eigenvalues and consequently causes an 

increment in the charge distribution. As mentioned 

above the direction of electric field is assumed to be 

along the nano-wire axis (+z). Then, applying 

electric field causes an asymmetry in charge density 

and forces the electron to localize at the bottom of 

nano-wire. Additionally, it is also shown that 

presence of impurity is diminished by applying an 

electric field, because of the dominant effect of 

electric field in comparison to Coulomb interaction.  
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Fig. 1. The charge distribution along the nano-wire axis 

in presence and absence of hydrogenic donor impurity for 

parabolic and nonparabolic band approximations in 

absence of external electric field 
 

 
 
Fig. 2. The charge distribution along the nano-wire axis 

in presence and absence of hydrogenic donor impurity for 

parabolic and nonparabolic band approximations for two 

different values of external electric filed 
 

Figures 3(a) and 3(b) display variations of 

binding energies of 1s and 2p states as a function of 

dot radius for both parabolic and nonparabolic band 

approximations in the absence and presence of 

external electric field. The figures show that, the 

binding energies of ground and first exited states 

are increased by increasing dot radius. The origin of 

this behavior is that by increasing the dot radius 

electronic wave functions become more localized 

inside the dot region which enhances the binding 

energy. By further increasing the dot radius an 

opposite behavior is observed and binding energies 

are decreased. For large values of dot radius, 

electron is mostly localized inside the dot. Hence, 

with an augment in dot radius the expectation value 

of electron-impurity distance increases, therefore, 

binding energy decreases. Additionally, the 

influence of band edge nonparabolicity is negligible 

for small and large dot radii for ground state 

binding energy, which causes a decrement in 

binding energy for intermediate dot radii. For first 

excited state the peak value of binding energy is 

shifted toward lower dot radii by taking into 

account the effect of nonparabolic band 

approximation. Furthermore, the effect of 

nonparabolicity is more obvious for first exited 

state. 
 

 
 
Fig. 3. The variation of the binding energy of ground and 

first excited states as a function of the dot radius for both 

parabolic and nonparabolic band approximations (a) in 

the absence and (b) presence of electric field 
 

In order to investigate the effect of wire radius on 

electronic structure of the system, in Fig. 4 the ground 

and first excited states binding energies are plotted as 

a function of nano-wire radius in absence 

)/0( cmKVF   and presence )/4( cmKVF   

of external electric field for both parabolic and 

nonparabolic band approximations. The following 

points can be concluded from this Fig. (I). For small 

nano-wire radius, the effect of nano-wire confinement 

forces electron to remain in the dot region. As nano-

wire radius, increases, the effect of second 

confinement becomes weaker and thus binding 

energies decrease. (II) In presence of electric field and 

for the ground state the first confinement (QD 

confinement) and second confinement (nano-wire) are 

dominant factors. Therefore, for large values of nano-

wire radius binding energy of ground state approaches 

meV44  even in presence of external electric field. 

(III) In presence of electric field and for first excited 

state the second confinement is a determining factor. 

For small values of nano-wire radius, the electron is 

mostly localized around the impurity. Therefore, first 

excited state binding energy is not negligible. By 

increasing the nano-wire radius the effect of second 

confinement becomes negligible and hence presence 

of external electric field causes an increment in 

probability distribution of finding electron at the 

bottom of nano-wire. So, expectation value of 

electron-impurity distance increases which causes a 
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decrement in first excited state binding energy. 

Additionally, in presence of electric field, the binding 

energy of first excited state becomes negligible for 

large value of nano-wire radius.  
 

 
 
Fig. 4. Ground and first excited state binding energies as 

a function of nano-wire radius in presence and absence of 

external electric field for a given value of dot radius 
 

Figure 5 shows the variation of binding energies of 

1s and 2p states as a function of electric field strength 

in both parabolic and nonparabolic band 

approximations. This figure indicates that binding 

energies rapidly decrease with an augment in electric 

field strength and remain constant by further 

increasing of the electric field. In order to explain this 

behavior we note that at zero electric field electron is 

mostly localized inside the dot. By increasing electric 

field, the charge distribution of electron shifts away 

from the impurity. Therefore, the expectation value of 

electron-impurity distance increases which leads to a 

decrement in binding energy. For large values of 

electric field, electron is localized at the bottom of 

nano-wire; hence, further increasing of the electric 

field has no effect on the binding energies.  
 

 
 
Fig. 5. The variation of the binding energies of ground 

and first excited states as a function of the electric field 

strength in both parabolic and nonparabolic band 

approximations  

The effect of the Al concentration on the binding 

energies of a donor impurity is presented in Fig. 6 

for both parabolic and nonparabolic band 

approximations. It is clear that an increase in Al 

concentration results in an increment in the binding 

energy. It is a direct consequence of the effect of Al 

concentration on the confining potential. By 

increasing Al concentration the electron wave 

functions are more strongly localized inside the 

QD, thus, the Coulomb interaction is enhanced and 

then donor binding energy increases. Additionally, 

the effect of band edge nonparabolicity is to 

decrease (increase) the binding energy for ground 

state (first exited state). Again, the effect of 

nonparabolicity approximation is more striking for 

the first exited state. 
 

 
 
Fig. 6. The variation of the binding energies of ground 

and first excited states as a function of the Al 

concentration in both parabolic and nonparabolic band 

approximations 

4. Conclusion 

In conclusion, we have calculated the ground and 

first excited states charge density and binding 

energies of an on-center hydrogenic donor impurity 

in a spherical QD located at the center of a 

cylindrical nano-wire under the influence of applied 

electric field and Al concentration for parabolic and 

non-parabolic band approximations. The binding 

energies of ground and first exited state are studied 

as a function of dot radius, electric field, and Al 

concentration. The result shows that (I) as the dot 

radius increases the binding energies of ground and 

first excited states show a maximum value. (II) For 

small or large values of electric field strength, as 

the electric field increases the binding energies of 

ground state remains constant but for intermediate 

electric field strength, it decreases by increasing 
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electric field. For the first exited state, binding 

energy decreases and becomes negligible as the 

electric field strength increases. (III) The binding 

energies of ground and first excited states increase 

as the Al concentration increases. 
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