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Abstract 

The complex-step derivative approximation is applied to compute numerical derivatives. In this study, we propose 

a new formula of fractional complex-step method utilizing Jumarie definition. Based on this method, we 

illustrated an approximate analytic solution for the fractional Cauchy-Euler equations. Application in image 

denoising is imposed by introducing a new fractional mask depending on such a solution.  
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1. Introduction 

Recently, the complex-step method has been 

considered by many researchers (Abreu, Stich, & 

Morales, 2013) (Al-Mohy & Higham, 2010). The 

advantages of the complex-step approximation 

method over a typical finite difference include: 1) it 

can be employed on discontinuous functions, 2) the 

Jacobian approximation is not related to subtractive 

cancelations inherent on roundoff errors, 3) it can 

be utilized near analytical accuracy caused by an 

arbitrarily small step-size and 4) it can be assumed 

in general non-linear functions. Ibrahim introduced 

the fractional complex transform, convert fractional 

differential equations analytically in the sense of 

the Srivastava-Owa fractional operator and its 

generalization  in the unit disk (Ibrahim, 2011, 

2012). Jumarie studied fractional Brownian motion 

with complex variables (Jumarie, 2006). The 

authors generalized the complex-step method by 

utilizing the fractional calculus differential 

operator. They derived several approximations for 

computing the fractional order derivatives. Stability 

of the generalized fractional complex step 

approximations is deduced for analytic test 

functions (Ibrahim & Jalab, 2013). 

The most recent applications of fractional 

calculus occur in signal and image processing. The 

differential operators were used in the sense of 

Riemann-Liouville operator, Srivastava-Owa 

operator and its generalization, Grünwald-Letnikov 

operator and ells. Moreover, the authors employed 
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the fractional polynomials such as Alexander and 

Conway polynomials (Jalab & Ibrahim, 2012, 

2015a, 2015b). In this study we shall focuss on 

discrete fractional operators in the sense of Jumarie 

derivative The complex-step derivative 

approximation is applied to compute numerical 

derivatives. In this work, we propose a new rule of 

fractional complex-step method by making use of 

Jumarie definition. Based on this method, an 

approximate analytic solution for the fractional 

Cauchy- Euler equations was clarified. Application 

in image denoising is imposed by introducing a new 

fractional mask depending on such a solution. 

2. Main method 

This section deals with preliminaries and some 

concepts(Jumarie, 2006). 

 

Definition 2.1. For a continuous function 

RR :  and a constant 0,>>  the forward 

operator )(>FW  is defined by the equality 

 

).(:=)()( >> xxFW   

 
The fractional difference on the right and of order 

1<<0,   of )(x  is defined by the formula  
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with its fractional derivative on the right  
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The fractional Taylor expansion is obtained by 

the following formula: 
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where 

xD  is the Riemann-Liouville differential 

operator, 11 :=   kkk xxx  is the forward 

deference operator and  
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Applying Definition 2.1 on (1), yields 
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The authors constructed the fractional complex 

step method (FCSM), employing the function 

(0,1),),( 


xix  and deduced the 

approximation of the fractional derivative 
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where )( 2 x  is the error. While the 

approximation of the second fractional derivative 
2D  is defined as follows: 
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Moreover, the authors generalized the above 

approximations by employing the function 

),( viux


  where u  and v  are real numbers 

related to the real and imaginary differential steps, 

by 
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Other versions can be found in (Ibrahim & Jalab, 

2013). 

Applying the Jumarie deference, on (3) and (4) to 

obtain the modify fractional complex-step method 
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where )(  xJ  is the error. While the 

approximation of the second fractional derivative is 

defined as follows: 
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3. Main outcomes 

In this section, we deal with an approximate 

solution for the fractional Cauchy-Euler equation 
 

1<<0),())(2(1=

)(1)()2(1)( )()(22
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where 1],,(\ R   and  are analytic 

functions belonging to the class A  of functions 
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The class A  is the main class of functions in the 

theory of univalent function. It is well known that if 

,|| nn   then the function is univalent and if 

1,|| n  then the function is convex. 

Next we investigate the univalent and convex 

univalent solutions of the problem (8), for 1 . 

 

Theorem 3.1. Assume that A,  are in the 

class {0}\=),( ** --bbS  satisfying  
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If 0=  and b  satisfies the inequality  
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then Eq. (8) has a univalent solution in the unit 

disk. 

 

Proof: Let the functions  and  be in the class 

).(* bS  Thus they achieve the relation [19]  
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By the assumption, we conclude that  

 

,|| nn   

 
consequently, (8) has a univalent solution. 

 

Theorem 3.2. Assume that A  and A  is 

in the class {0}\=),,,,( ** -- bbm 7  

satisfying  
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where 
mD  is the Salagean operator (Salagean, 

1983). If b satisfies the inequality  
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then Eq. (8) has a univalent solution in the unit 

disk. 

 

Proof: Let  
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Since ),,,,(* bm   7  then we obtain   

 

.
)(11)!(

)(1||2
||

2
0=




nnn

bj
m

n
j

n







 

 
Moreover, we have  
 

,
)1)((

))(2(1
= nn

nn










 

 

thus we attain  
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By the hypotheses of the theorem we get  

,|| nn   

which implies that (8) admits a univalent solution. 

We proceed to study the convex univalent 

solutions of the problem (8). 

 

Theorem 3.3. Assume that A,  are in the 

class {0}\=),( * --bbC  satisfying  
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If 0=  and b  achieves the inequality  
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then Eq. (8) has a univalent solution in the unit 

disk. 

 

Proof: Let the functions  and  be in the class 

).(* bS  Thus, we have 
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By the assumption, we conclude that  

 

1,|| n  

 
consequently, (8) has a convex univalent solution. 

4. Applications 

Recently, fractional calculus was applied in image 

processing procedures. This technique is divided 

into two branches: fractional differentiation and 

fraction integration operators. In our discussion, we 

utilize the approximate solution of (8). By applying 

the approximate fractional derivatives (6) and (7) in 
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(8), we may conclude that for 0,=  1,>  and 

the function ,1)(=)( zz   the 

approximate solution of (8) takes its form 

zz )( . 

The fractional Cauchy-Euler equation (FCE) 

mask windows can be applied on four directions. 

We conduct a convoluting FCE filter on four 

directions. These directions are used to cover all 

corrupted pixels inside the corrupted image. To 

address this situation, we define the fractional mask 

windows on four directions )( , namely 0°, 45°, 

90°, and 135° (Fig. 1). 
 

Mask1 

0 θ2 0 

0 θ1 0 

0 θ0 0 

Mask2 

 

0 0 0 

θ0 θ1  θ2 

0 0  0 

Mask3 

0 0 θ2 

0 θ1  0 

θ0 0  0 

Mask4 

θ0 0 0 

0 θ1  0 

0 0  θ2 

 
Fig. 1. Fractional Differential masks on 4 directions: 90°, 

0°, 45°, and 135° 
 

To achieve high denoising with low complexity, 

the size of the mask window should be small. The 

steps for the proposed image denoising algorithm of 

the fractional mask window is presented as follows: 

1. FCE windows with 3  3 sizes are initialized. 

2. The values of the fractional power of the 

proposed mask windows with ranges of 

(0,1).  

3. Additive white Gaussian noise with standard 

deviation of 15, 20, 25 and 30 are added to test the 

performance of the proposed algorithm. 

4. Each pixel of the ),( jif  corrupted images are 

convolved with the mask windows using the 

following technique: 
 

),(*
4

1
=

4

1=

jifmaskimageDenoised k
k

     (10) 

 
5. Gaussian filter, and proposed filter were then 

applied to the corrupted images to remove the 

noise. 

6. The performance of the denoising process was 

quantified using the peak signal to noise ratio 

(PSNR)(Jalab & Ibrahim, 2012). 

The same algorithm can be utilized for color 

images, but is implemented separately for each of 

the red, green, and blue color components. 

4. 1. Experimental results 

This section demonstrates the denoising 

performance of FCE. Performance tests are 

implemented by using MATLAB 2013b on 

Windows 8.1. The following sets of grayscale 

images of size 256  256 pixels are employed in 

this: "Lena", "" X- Ray", "Boat" and "MRI image". 

We study the performance of the proposed 

approach by using images corrupted by additive 

white Gaussian noise with standard deviation  

values of 15, 20, 25 and 30. To verify the quality of 

the denoised image we consider PSNR, which has 

been widely used in literature to determine the 

quality of a processed image (Jalab & Ibrahim, 

2012). The optimal value of fractional power 

parameter 1< , was defined depending on the 

relation between PSNR and  using "Lena" 

corrupted by additive white Gaussian noise with a 

standard deviation  of 15. From Fig 2, we can 

reach the following conclusions: The PSNR reaches 

peak value in 0.8 for FCE algorithm. While, the 

PSNR decreases rapidly as  tends to 1. 

 

 
 
Fig. 2. PSNR with different choices of parameter P for 

“Lena” corrupted by additive white Gaussian noise of 

standard deviation σ = 15 
 

The experimental results of all images are shown 

in Figs. 3 to 6. These figures show the proposed 

FCE algorithm has good denoising performance for 

all testing images. Figures 7-10 show the results of 

the PSNR obtained with different values of  for 

"Lena", " X- Ray", "Boat" and MRI respectively. 

The maximum PSNR value is obtained by our 

proposed algorithms by using the optimal values of 

. The denoised PSNR results of our proposed 

algorithms are higher than that of the Gaussian for 

higher noise level. 
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Fig. 3. Experiment for "Lena". (a) original image. (b) corrupted image by Gaussian 

noise for σ=10, 20 and 30. (c) Gaussian smoothing filter. (d) FCE proposed filter 
 

 

 

 
 

Fig. 4. Experiment for "X- Ray". (a) original image. (b) corrupted image by Gaussian noise  

for σ=10, 20 and 30. (c) Gaussian smoothing filter. (d) FCE proposed filter 
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Fig. 5. Experiment for "Boat". (a) original image. (b) corrupted image by Gaussian noise  

for σ=10, 20 and 30. (c) Gaussian smoothing filter. (d) FCE proposed filter 
 

 
 

Fig. 6. Experiment for "MRI" (a) original image. (b) corrupted image by Gaussian noise  

for σ=10, 20 and 30. (c) Gaussian smoothing filter. (d) FCE proposed filter 
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Fig. 7. Experimental results of the PSNR for "Lena" obtained with Gaussian noise σ=10, 20 and 30 
 

 
 

Fig. 8. Experimental results of the PSNR for "X-Ray" obtained with Gaussian noise σ=10, 20 and 30 
 

 
 

Fig. 9. Experimental results of the PSNR for "Boat" obtained with Gaussian noise σ=10, 20 and 30 
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Fig. 10. Experimental results of the PSNR for "MRI" obtained with Gaussian noise σ=10, 20 and 30 

 

4. 2. Comparison with other methods 

Table 1 shows the comparison of the 

experimental results for "Boat" of the proposed 

algorithm with other denoising algorithms based on 

fractional calculus. Jalab and Ibrahim (2012) 

proposed an image denoising algorithm called 

generalized fractional integral filter based on 

generalized Srivastava-Owa fractional integral 

operator. Cuesta, Kirane, & Malik (2012) proposed 

a partial differential equation based on Volterra 

equation as a pixel-by-pixel technique for filtering, 

denoising, and enhancing. Table 1  

provides an overall view of the performance of 

different methods, although these methods use the 

same image with different noise  values. The 

values of PSNR for FCE is slightly higher than 

those for the other methods for noise  values of 

15, 20, and 25. The proposed algorithms for image 

denoising provide satisfactory results. The good 

visual effect and PSNR of our proposed algorithm 

serve as important parameters to judge their 

performance. 

 

 
Table 1. Comparison of the experimental results for "Boat" corrupted  

image with Gaussian noise with other standard methods 
 

Gaussian- noise () 
PSNR (dB) 

(Jalab & Ibrahim, 2012) 

PSNR (dB) 

(Cuesta et al., 2012) 

PSNR (dB) 

Proposed FCE Filter 

15 29.93  28.42  29.98 

20 28.01  27.12  28.94 

25 27.35  26.32  27.77  

5. Discussion 

An image denoising algorithms based on FCE is 

introduced. The structures of fractional masks are 

constructed by using n x n processing masks on 

four directions (0,45
A

,90
A

,135
A

). The denoising 

performance is measured by conducting 

experiments according to visual perception and 

PSNR values. We analyze the influence of 

parameter  for images corrupted by Gaussian 

noise with a  value of 15 on the performance of 

PSNR denoising. The characteristic of the FCE 

filter can only be modified by changing the values 

of  of the proposed masks. However, the main 

contribution of our paper was an image denoising 

algorithms based on FCE that is capable of 

denoising images corrupted by Gaussian noise. Our 

method could be applied as a pre-processing image 

enhancement procedure for image processing 

applications. Future works involve extending the 

proposed method for the texture enhancement, 

segmentation of digital images by using FCE 

method. 
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